### Reproductive Impacts of Elevated Selenium Levels

- -

By

## Katrina D. Estrada and O. Eugene Maughan

Arizona Cooperative Fish and Wildlife Research Unit

A Final Report Prepared for the U.S. Fish and Wildlife Service, Ecological Services Office, Environmental Contaminants Division.

2N23,9520005

#### INTRODUCTION

Selenium is bioaccumulated in organisms at each successive level of the detrital food chain in connected backwater lakes along the lower Colorado River (Radtke et al. 1988, Lusk 1993). Elevated selenium levels first occur in aufwuchs and the organic layer at the surface of the sediment on the pond bottom (Lusk 1993, Villegas 1997). Selenium bioaccumulates in organisms that feed on aufwuchs and detritus (benthic insects, crayfish, and clams) and reaches still higher levels in fish that feed on these organisms. The highest levels are found in fish eating birds (Rusk 1991, Lusk 1993, Martinez 1994, Welsh and Maughan 1994). In contrast, levels are only slightly elevated in plants and aquatic plant eating birds, such as coots. Based on these data, researchers initially concluded that only organisms that feed on aquatic insects, crayfish, clams or fish are in danger of having elevated levels of selenium in their tissues (Rusk 1991, Lusk 1993, Martinez 1994, Welsh and Maughan 1994). Birds, other than those that eat fish, were not initially considered to be at risk of accumulating selenium. However, Martinez (1994) analyzed selenium levels in a single nest of nighthawk eggs and found levels were similar to those in the eggs of fish eating birds.

Prior to the initiation of this study, much consideration was given to how the selenium levels in the nighthawk eggs sampled by Martinez (1994) had become elevated. The most logical source of the selenium in the eggs appeared to be the benthic insects from the backwaters that had metamorphosed from the aquatic to the aerial phase of their life cycle. Birds that fed on these insects might accumulate selenium in their tissues and pass it on into their eggs. Therefore, any bird feeding on aquatic insects emerging from

the backwaters and becoming aerial would be at risk for accumulating selenium. Thus, we decided to study selenium levels in five passerine bird species along the lower Colorado River.

The objectives of the study were to:

 Evaluate selenium levels in Neotropical migrants and riparian obligate birds on Imperial National Wildlife Refuge (Imperial NWR).

2. Evaluate selenium-induced reproductive impacts on birds along the lower Colorado River.

#### METHODS

#### Sites Sampled and Species Collected

Samples were collected from three sites on Imperial NWR and one site near Mittry Lake Wildlife Management Area (Mittry Lake). Species were collected based on availability across sites. We collected 10 adult individuals from four passerine species at Imperial NWR and one from Mittry. Samples of eggs from the same species were also collected. Species collected included red-winged blackbird (<u>Agelaius phoeniceus</u>), western kingbird (<u>Tyranus verticalis</u>), cliff swallow (<u>Hirundo pyrrhonota</u>), song sparrow (<u>Melospiza melodia</u>), and verdin (<u>Auriparus flaviceps</u>). Inadvertantly a few bank swallows (<u>Riparia riparia</u>) and tree swallows (<u>Iridoprocne bicolor</u>) that were flocking with cliff swallows were also collected.

#### **Sample Collection and Preparation**

Birds were collected throughout the breeding season, April to August 1995. Therefore, we are confident that the levels we measured represent levels acquired on the breeding grounds. One of three collection methods was used; a 20-gauge shotgun loaded with steel shot, a BB gun, or hand capture. Nests from which birds were hand captured were located during the day and then revisited at night and the birds captured on the nest. Specimens were kept on wet ice, for no more than six hours, until dissection. Whole birds (feathers, bill, feet and GI tract removed) were weighed. Livers were removed with a stainless steel scalpel, individually weighed, and individually wrapped in aluminum foil. Between dissections, all instruments were washed with distilled, deionized water and rinsed with hexane to prevent cross contamination. Eggs were measured, the contents removed and placed in chemically cleaned jars, and frozen in accordance with the guidelines of the Patuxent Analytical Control Facility (PACF). Egg shells were not analyzed. Most eggs were collected from nests on Imperial NWR but two song sparrow eggs were obtained from Havasu NWR. Samples were stored in a freezer until analysis at the Research Triangle Institute. Egg collection was completed in 1996.

Overall nest success and incidence of embryo malformations in a colony of cliff swallows was monitored from March to June 1997 at Mittry Lake. We carefully examined all chick mortalities from this population for indications of abnormalities. We also attempted to evaluate nest success and incidence of embryonic malformations for the other four species during March to June 1998. However, nesting was limited during that year and we could not locate sufficient nests for evaluation.

#### Selenium Analysis

Selenium analyses were conducted by Research Triangle Institute (RTI), Research Triangle Park, North Carolina; a contract laboratory of the PACF. Selenium was analyzed using Graphite Furnace Atomic Absorption (GFAA). Tissue samples were homogenized using a food processor. A portion of the tissue sample was freeze-dried for determination of moisture content and ground to 100 mesh. Digestion for GFAA measurement was conducted using a CEM microwave oven. From 0.25 to 0.5 g of freeze-dried sample was heated in a capped 120 ml Teflon vessel in the presence of 5 ml of Baker Instra-Analyzed nitric acid for three minutes at 120 watts, three minutes at 300 watts, and fifteen minutes at 450 watts. The residue was then diluted to 50 ml with laboratory pure water. GFAA measurements were made using a Perkin-Elmer Zeeman 3030 or 4100ZL atomic absorption spectrometer.

#### Quality Assurance/Quality Control

Quality assurance used by RTI for the chemical determinations included the analysis of duplicate samples, procedural blanks, analysis of standard reference materials (i.e., dogfish liver {NRCC DOLT-2} and lobster hepatopancreas {NRCC TORT-1}, and spike recoveries. PACF monitored and approved all quality assurance/quality control methodology.

#### **Statistical Analysis**

Range and standard error of the arithmetic mean are reported as measures of dispersion. Bartlett's test was used to determine if variances were equivalent. Selenium levels in the whole body tissues of the five principle species were analyzed with analysis of

variance (ANOVA) and then by multiple comparisons of means with the Tukey-Kramer procedure (Sokal and Rolf 1981). Selenium levels in the livers (cliff swallow, redwing blackbird and western kingbird) and eggs (verdin, cliff swallow, redwing blackbird, and western kingbird) were analyzed with ANOVA and then by multiple comparisons of means with the Tukey-Kramer procedure. The levels of selenium among tissues (whole body, liver and egg) of each passerine species were analyzed with a t-test (two tissues) or ANOVA followed by multiple comparisons of the means with the Tukey-Kramer procedure (three tissues). All statistical tests were considered significant at  $P \le 0.05$ .

#### **STUDY AREA**

The Lower Colorado River includes approximately 453 km of the Colorado River from Davis Dam to the United States-Mexico international border. Average annual precipitation along the Lower Colorado River is 10-13 cm. Average temperatures ranges from 21.1° C to 4.4°C in the winter and 40.6° C to 22.7° C the summer.

Imperial NWR is one of four national wildlife refuges located along the lower Colorado River. This refuge is located approximately 105 km north of the international boundary and includes the lower Colorado River along the Arizona-California border (Martinez 1994). Imperial NWR encompasses a total of 10,706 ha. Wetlands, lakes and marshes comprise 4,324 hectares, 5,630 ha are associated with desert and mountains, and 96 ha are dedicated to croplands (Lusk 1993). The Refuge was established in 1941 to mitigate the effects of channelization and to manage wildlife attracted to the backwaters formed after the construction of Imperial Dam (Rosenberg et al. 1991). This refuge

protects two unique types of environment: the desert and a variety of wetland and riparian environments associated with the lower Colorado River. The desert areas are characterized by vegetation typical of the Lower Colorado River Valley Sonoran Desert including Velvet Mesquite (<u>Prosopis velutina</u>), Blue Paloverde (<u>Cercidium floridum</u>), Desert Ironwood (<u>Olneya tesota</u>), Creosote (<u>Larrea tridentata</u>), Salt Bush (<u>Atriplex</u> <u>canescens</u>), Graythorn (<u>Ziziphus obtusifolia</u>), Bur Sage (<u>Ambrosia deltoidea</u>), Big Galleta (<u>Hillaria rigida</u>), Beavertail Cactus (<u>Opuntia basilaris</u>), Ocotillo (<u>Fouguieria splendens</u>), Teddybear Cholla (<u>Opuntia bigelovii</u>), Hedgehog Cactus (<u>Echinocerus engelmannii</u>), and Desert Agave (<u>Agave deserti</u>).

#### Description of wetland areas

Backwaters on Imperial NWR have a detrital-silt substrate underlain by sand and gravel and surrounded by dense, monotypic stands of cattail (<u>Typha latifolia</u>.) bulrush (<u>Scirupus validus</u>.) or giant reed (<u>Arundo donaxi</u>) depending on water depth and slope. The predominant submergant is spiny naiad (<u>Najas marina</u>) but sago pondweed (<u>Potamogeton pectinatus</u>), water milfoil (<u>Myriophyllum spp</u>.), macroalgae (<u>Chara spp</u>.) and coontail (<u>Ceratophyllum spp</u>.) are present along the edges of the wetlands. True seeps support no submerged aquatic macrophytes and are lined almost exclusively by cattails.

Almost all underwater surfaces are covered with a layer of yellowish-brown slimy aufwuchs, i.e., the combined assemblage of epipelic, epiphytic, and epizoic periphyton and suctorian cilieates (Cole 1994). During the summer, floating mats of filamentous algae

(mostly cyanophyta) (Kennedy 1979) are present in many of the backwaters. Seep lakes contain benthic algae and freshwater sponges that may be unique to these wetlands (Prieto 1998).

Mittry Lake is an ox-bow lake located between Imperial and Laguna Dams that receives water by way of a diversion from Imperial Reservoir. The lake is located approximately 29 km north of Yuma, Arizona. The Arizona Game and Fish Department, the United States Bureau of Reclamation, and the United States Bureau of Land Management manage Mittry Lake. Mesquite, Arrowweed (<u>Pulchea sercea</u>), Cottonwood (<u>Populus fremontii</u>), and saltcedar (<u>Tamarix pentandra</u>) dominate the riparian vegetation surrounding the lake. Cattails, bulrushes, and saltcedar dominate bank vegetation (Schluesner 1997).

#### RESULTS

Whole body samples were collected from each bird species. However, due to minimum one-gram weight requirements for sample analysis, livers were only collected from cliff swallows, red-winged blackbirds, and western kingbirds. Livers in verdins and song sparrows did not meet the one-gram minimum. Selenium levels are reported on a dry weight basis unless otherwise stated.

Each species accumulated selenium at different rates in individual tissues and eggs. For example, western kingbirds, had the highest levels of selenium in the eggs, while on average they were third in whole body levels and second in liver levels. Red-winged blackbirds had the second highest level in their eggs but had the highest levels in whole

#### bodies and livers (Table 1).

|               |                 |             |      |     | Se D        | ry Wt. (pp | m)  |             |
|---------------|-----------------|-------------|------|-----|-------------|------------|-----|-------------|
| Species       | Collection Site | Date (1996) | Body | (n) | Range       | Liver      | (n) | Range       |
| Cliff Swallow | Backwater       | 7/18 - 8/31 | 2.07 | 9   | 1.15 - 3.33 | 3.86       | 9   | 2.65 - 6.02 |
| Blackbird     | Seep Lake       | 6/2 - 6/12  | 4.67 | 10  | 1.19-4.82   | 12.30      | 10  | 5.05 - 19.2 |
| Song Sparrow  | Seep Lake       | 5/23 - 6/28 | 3.81 | 10  | 2.56-4.81   | N/A        | 10  | N/A         |
| Verdin        | Desert Upland   | 5/22 - 6/28 | 2.32 | 10  | 0.94 - 3.66 | N/A        | 10  | N/A         |
| Kingbird      | Farm Fields     | 5/22 -7/26  | 2.81 | 10  | 1.19 - 4.82 | 6.86       | 10  | 3.9 - 10.44 |
|               |                 |             |      |     |             |            |     |             |

Table 1. Selenium levels in whole bodies and livers of five bird species from Imperial National Wildlife Refuge.

Selenium levels were not significantly different between eggs and whole bodies of verdins (t-test, df=15, P=0.144) and song sparrows (t-test, df=12, P=0878). However, selenium levels were significantly higher in livers than in whole bodies in tree swallows (t-test, df=4, P=0.0002) and bank swallows (t-test, df=2, P=0.372). Selenium levels were also significantly different between livers, whole bodies, and eggs in cliff swallows (ANOVA, P=<0.0002), red-winged blackbirds (ANOVA, P=<0.0001) and between livers and whole bodies in western kingbirds (ANOVA, P=<0.0002).

Selenium levels were generally higher in whole bodies and livers of females than in whole bodies and livers of males (Table 2). Exceptions were in western kingbirds where both levels were higher in males than females and in red-winged blackbirds where whole body levels were higher in males than females.

|                      |              |      |       | V    | Whole Bod | у    |       | Liver |     |
|----------------------|--------------|------|-------|------|-----------|------|-------|-------|-----|
| Species              | <b>F</b> (n) | M(n) | ? (n) | F    | М         | ?    | F     | М     | ?   |
| Cliff Swallow        | 2            | 4    | 3     | 2.46 | 1.72      | 2.27 | 3.83  | 3.71  | 4.1 |
| Red-Winged Blackbird | 3            | 7    | 0     | 4.08 | 4.41      | 0    | 12.53 | 11.92 | 0   |
| Song Sparrow         | 3            | 7    | 0     | 3.91 | 3.77      | 0    | N/A   | N/A   | N/A |
| Verdin               | 2            | 3    | 5     | 3.15 | 1.92      | 2.23 | N/A   | N/A   | N/A |
| Western Kingbird     | 2            | 8    | 0     | 2.54 | 3.9       | 0    | 6.02  | 6.94  | 0   |
|                      |              |      |       |      |           |      |       |       |     |

Table 2. Arithmetic means of selenium concentrations (ppm, dry weight) in adult tissues by species and gender (n = number of birds analyzed, F=females, M=males and ?=birds of unknown sex).

Selenium levels in livers were always higher than those in whole bodies within a given species. Selenium levels in livers of red-winged blackbirds were about three times those in whole bodies.

#### **Among Species Comparisons**

Selenium levels in whole bodies of bank swallows and tree swallows did not differ from those in cliff swallows (t-test, df=9, p=0.306 and t-test, df=9, p=0.456), nor did they differ in livers of cliff swallows and tree swallows (t-test, df=10, P=0.407). Selenium levels were significantly higher in the whole bodies of red-winged blackbirds than those in the other species (ANOVA, P=0.0002). Levels were lowest in cliff swallows but differences were only significantly lower than those in red-winged blackbirds and song sparrows.

Selenium levels in the livers of cliff swallows, red-winged blackbirds, western kingbirds were significantly different (ANOVA, P<0.0001). Levels were significantly

higher in red-winged blackbirds than the other two species, but levels between the other two species were not significantly different from one another.

Eggs

A total of 30 eggs were collected during the early breeding season. Seven eggs were collected from cliff swallows, red-winged blackbirds, verdins, and western kingbirds. No song sparrow nests that contained eggs could be found on Imperial National Wildlife Refuge, but two eggs were obtained from Havasu NWR. All the eggs were near or at the level for chronic toxicity (Table 3).

Table 3. Selenium levels is eggs of five bird species from Imperial National Wildlife Refuge and Havasu National Wildlife Refuge.

|                  | Imperial Nat | ional Wildlife | Refuge | Amt. Se | Havasu Nat | ional Wildlife | Refuge | Amt. Se |
|------------------|--------------|----------------|--------|---------|------------|----------------|--------|---------|
| Species          | Location     | Date           | (n)    | Eggs    | Location   | Date           | (n)    |         |
| Cliff Swallow    | Backwater    | 4/12/96        | 7      | 2.56    | N/A        | N/A            | N/A    | N/A     |
| Red-Winged       | Seep Lake    | 5/1/96         | 7      | 4.54    | N/A        | N/A            | N/A    | N/A     |
| Song Sparrow     | N/A          | N/A            | N/A    | N/A     | Seep Lake  | 6/21/97        | 2      | 3.72    |
| Verdin .         | Desert       | 4/5/96         | 7      | 2.9     | N/A        | N/A            | N/A    | N/A     |
| Western Kingbird | Farm Fields  | 6/21/96        | 7      | 5.99    | N/A        | N/A            | N/A    | N/A     |

Selenium levels in the eggs were significantly different among the five species (ANOVA, P<0.001). Levels were highest in the eggs of western kingbird and redwing blackbird and lowest in cliff swallows.

A total of 94 cliff swallow nests were monitored weekly. Seventy four of these nests contained eggs at some time during the study period. However, chicks were

produced in only seven nests. Many eggs were destroyed before they had the opportunity

to hatch (Table 4). In early June many nests were destroyed during causeway

construction. Only limited nesting occurred after that disturbance. Prior to that date,

mortalities appeared to result from intraspecific interactions.

Table 4. Status of Cliff Swallow Nests on the Mittry Wildlife Management Area during the Spring and Summer of 1997. Numbers refer to numbers of eggs (eg 3e), or fledglings (eg 3f). Additional letters define the special conditions of the eggs or fledglings (eg b=eggs present but broken and d=fledlings present but dead). A zero indicates the nest was empty and a D indicates that the nest that had been at this location during the previous sampling effort had been destroyed during the interval between samples.

| Nest |      |     |      |      | INC  | st Status |      |      |      |
|------|------|-----|------|------|------|-----------|------|------|------|
|      | 3/30 | 4/5 | 4/12 | 4/19 | 4/27 | 5/3       | 5/14 | 5/22 | 6/12 |
| 2    | 0    | 0   | 3e   | 4e   | 0    | 0         | 0    | ő    | 0    |
| 3    | 0    | 0   | 0    | 3e   | 0    | 0         | 0    | 0    | 0    |
| 4    | 0    | 0   | 0    | 3e   | 0    | 0         | 0    | 0    | 0    |
| 5    | 0    | 1e  | 4e   | 4e   | 0    | lf        | 0    | 0    | -    |
| 6    | 0    | 0   | 0    | 3e   | 0    | 0         | 0    | 0    | 0    |
| 7    | 0    | 4e  | 0    | 2e   | 0    | 1e        | 0    | 0    | 0    |
| 8    | 0    | 0   | le   | 0    | le   | 0         | 0    | 0    | D    |
| 9    | 4eb  | 1e  | 0    | le   | le   | 0         | 0    | 0    | D    |
| 11   | 0    | 0   | le   | 0    | 0    | 0         | 0    | 0    | D    |
| 12   | 0.   | 3e  | 0    | 0    | le   | 0         | 0    | 0    | D    |
| 14   | 0    | 0   | 2e   | 0    | 0    | 0         | 0    | 0    | D    |
| 15   | 0    | 0   | le   | 0    | 0    | 0         | 0    | 0    | D    |
| 16   | 0    | 0   | 3e   | 0    | 0    | 1e        | 0    | 0    | D    |
| 17   | 0    | 1e  | 0    | 3e   | 0    | 0         | 0    | 0    | D    |
| 18   | 1e   | 1e  | 2e   | 0    | 0    | 0         | -    | D    | D    |
| 19   | 3e   | 0   | 2e   | 0    | 0    | 0         | 0    | 0    | D    |
| 20   | 3e   | 0   | le   | 0    | 0    | 0         | 0    | 0    | D    |
| 21   | 0    | le  | le   | 0    | 0    | 1e        | 0    | 0    | D    |
| 22   | 0    | 0   | 0    | le   | 0    | 0         | 0    | le   | D    |
| 23   | 1e   | 0   | 3e   | 0    | 0    | 0         | 0    | 0    | D    |

| 24 | 0    | 0  | 2e | 0    | 0 | 1e | 1e | 0   | D |
|----|------|----|----|------|---|----|----|-----|---|
| 25 | 0    | 0  | 4e | 1e   | 0 | 0  | 0  | 0   | D |
| 26 | 1e   | 3e | 3e | 0    | 0 | 0  | 0  | 0   | D |
| 27 | 0    | 3e | 3f | 0    | 0 | 0  | 0  | 0   | - |
| 28 | 0    | 3e | 0  | 0    | - | 0  | 0  | 0   | D |
| 29 | 0    | 0  | 3e | 3f   | - | 0  | 0  | 0   | D |
| 30 | 0    | 0  | 3e | 3e   |   | 0  | -  | D   | D |
| 31 | 0    | 0  | 0  | 1e   | - | 0  | 0  | 0   | D |
| 32 | le   | 0  | le | 0    | - | 0  | 0  | 0   | D |
| 33 | 3e   | 0  | 0  | 0    | - | 0  | 0  | leb | D |
| 34 | 0    | 3e | 0  | 3e   | - | 0  | 0  | 0   | D |
| 35 | 0    | 3e | 0  | 0    | - | 1e | 0  | 0   | D |
| 36 | 0    | 0  | 1e | 0    | - | 0  | 0  | 0   | D |
| 37 | 3e   | le | 3f | 0    | - | 0  | 0  | 0   | D |
| 38 | 0    | 0  | 4e | 0    | - | 0  | 0  | 0   | D |
| 39 | 0    | le | 3e | 0    | - | 0  | 0  | 0   | D |
| 40 | 0    | 0  | 0  | 0    | - | 0  | 0  | 2eb | D |
| 41 | 0    | 0  | 0  | 0    | - | 0  | 2e | 0   | D |
| 43 | le   | 0  | 0  | 0    | - | 0  | 0  | 0   | D |
| 44 | le   | 2e | 2e | 3e   | - | 1e | 0  | 0   | D |
| 45 | 2e . | 4e | 4e | 3f   | - | 0  | 0  | 0   | D |
| 47 | 0    | 2e | 2e | 4e   | - | 0  | 0  | 0   | 0 |
| 48 | 0    | 0  | 0  | 3e   | - | 0  | 0  | 0   | - |
| 49 | 0    | 0  | 0  | 3e   | - | 0  | 0  | 0   | - |
| 50 | 3e   | 3e | 2e | 0    | - | lf | 0  | 0   | 0 |
| 51 | 0    | 0  | le | le   | - | 0  | 0  | 0   | - |
| 52 | 0    | 0  | le | 0    | - | 0  | 0  | 0   | 0 |
| 53 | le   | le | 3e | 0    | - | 0  | 0  | 0   | 0 |
| 55 | 0    | 2e | 0  | 3e   | - | 0  | 0  | 0   | 0 |
| 56 | 0    | 3e | 3e | le2f | - | 0  | 0  | 0   | 0 |
| 57 | 0    | 2e | 0  | 0    | - | le | 0  | 0   | 0 |

| 58  | 0  | 0  | 0  | 0  | - | 0  | 2e | 2e  | 2e |
|-----|----|----|----|----|---|----|----|-----|----|
| 59  | 0  | 4e | 4e | 2f | - | 0  | 0  | 0   | 0  |
| 60  | 0  | 3e | 0  | 3e | - | 0  | 0  | 0   | 0  |
| 61  | 0  | 4e | 0  | 4e | - | 0  | 0  | 0   | 0  |
| 63  | 0  | 0  | 0  | 1c |   | 0  | 0  | 0   | 0  |
| 64  | 0  | 0  | le | 0  | - | 0  | 0  | 0   | 0  |
| 65  | 0  | 0  | 0  | 0  | - | 0  | 0  | 4eb | 0  |
| 66  | 1e | 0  | 0  | 0  | - | 0  | 1e | 0   | 1e |
| 67  | 0  | 0  | le | le | - | 0  | 0  | 0   | 0  |
| 68  | 3e | 0  | le | 1e | - | 0  | 0  | 0   | 0  |
| 69  | 0  | 0  | 3e | 3e | - | 0  | 0  | 0   | 0  |
| 70  | 4e | 0  | le | 0  | - | 0  | 0  | 0_  | 0  |
| 70b | -  | -  | -  |    | - | 0  | 0  | 1e  | 0  |
| 71  | 0  | 0  | 2e | 0  | - | 0  | 0  | 0   | 0  |
| 74  | 0  | 0  | le | 0  | - | le | 0  | 0   |    |
| 77  | 0  | 0  | le | 1e | - | 0  | 0  | 0   |    |
| 79  | 0  | 3e | 0  | 3e | - | 0  | 0  | 1e  | 0  |
| 81  | 0  | 3e | 0  | 0  | - | 0  | 0  | 0   | 0  |
| 83  | 3e | 0  | 4e | 0  | - | 0  | 0  | 0   | -  |
| 85a | -  | -  | -  | -  | - | -  | 0  | 1e  | 0  |
| 87  |    | -  | 0  | -  | - | 0  | 0  | 1e  | 0  |
| 88  | -  | -  | 0  |    |   | 0  | 0  | le  | 0  |

#### DISCUSSION

Selenium was elevated to levels of concern in the tissues and eggs of all five bird species. Previous data has shown elevated selenium levels in fish eating birds and nighthawks. Our data now add red-winged blackbirds, song sparrows, western kingbirds, verdins, and cliff swallows to the list of potential species at risk. The fact that selenium levels were elevated in all of the birds studied, suggest most passerine birds along the

lower Colorado River face some risk of accumulating selenium.

Why are we concerned about the levels of selenium in tissues and eggs of these birds? Selenium levels of 3 ug/g dry weight in bird eggs is considered to be the threshold of concern for teratogenesis and levels in the livers of adults of >10 ug/g dry weight have been associated with adverse biological effects (Lemly 1993). Selenium levels in the livers of the birds we studied ranged from 2.7-10.4 ug/g dry weight and levels in their eggs ranged from 2.6-6.0 ug/g dry weight. Martinez (1994) had previously reported that levels in eggs and egg masses (unlaid eggs taken from the female reproductive tract) of several species of fish eating birds averaged from 8.7 to 10.3 ppm dry weight. It appears from these data that levels of selenium in the eggs of both passerine and fish eating species exceed those where there is risk of teratogenesis.

We had hypothesized that birds that were primarily insectivorous would have higher selenium levels in their tissues and eggs than those that generally feed upon seeds. This hypotheses was based on the assumption that passerine birds in the riparian corridor obtained selenium by feeding on the aerial stage in the life cycle of aquatic insects. Although the pathway through the aerial stage of aquatic insects is still the most plausible route for the entry of selenium into the diet of riparian birds, the hypothesis that birds that were primarily insectivorous would have the highest levels, was not substantiated.

There are several possible reasons why this hypothesis was not supported by the data. First, the source of the selenium could be other than that obtained through the ingestion of aquatic insects. While it is possible that there is a source of selenium, other than insects, there is no obvious alternative source. Soils in the study area are not

seleniferous and irrigation return flows do not contain elevated selenium levels (Welsh and Maughan 1994, Villegas 1997). Selenium levels in the water in the river and plants in the backwater are low and obtaining selenium directly from these sources would not result in the observed elevated levels in the birds. Therefore, it seems probable that aquatic insects are the source from which riparian birds obtain selenium.

Another possibility is that all of the bird species studied may have been primarily insectivorous at the time of the study. The study took place during the breeding season, when there are major energy and protein demands. During the period of egg laying, at least female birds take larger numbers of insects than during other periods because of the need for extra protein (Rosenberg et al. 1991). Since all the species studied were nesting during the study period, they may have been primarily feeding on insects.

A third possibility may be that some of the birds studied may have fed on insects that had lower selenium levels than those that emerged from the connected backwaters. For example, selenium levels in cliff swallows were lower in whole bodies, eggs, and livers than in any other species, even though cliff swallows are primarily insectivorous and were nesting adjacent to an area where the aquatic biota were known to have elevated selenium levels in their tissues (Schleusner 1997, Villegas 1997). We believe these low levels occurred because swallows foraged away from the location where they nested. In the morning, swallows left the nesting area by following a irrigation canal away from the river. In the evening they returned to the nesting area, from across the desert. These observations suggest that the birds from this particular nesting colony did not feed over the backwater areas adjacent to the nesting area and thus, may have minimized their

exposure to the elevated selenium levels in emerging insects.

We had also hypothesized that selenium levels would be highest in birds nesting beside backwater lakes, where there was more potential for exposure to insects that are known to have higher selenium levels in their tissues than those that emerge from seep lakes (Lusk 1993, Prieto 1997). Again the data did not support the hypothesis. Redwinged blackbirds that nested beside a seep lake consistently had higher selenium levels in their tissues than cliff swallows that nested beside a connected backwater lake. We believe these lack of differences in selenium levels result from a combination of the feeding location hypothesis presented for cliff swallows earlier and the fact the insects that emerge from the connected backwater disperse beyond the immediate location of the waters from which they emerge.

We had also hypothesized that birds that nested further from the river would have lower selenium levels in their tissues than those that nested adjacent to the river or the associated backwaters. Again the data did not support the hypothesis. Western kingbirds that nested the fartherest from the river had the highest selenium levels in their eggs. The failure of the data to support the hypothesis suggest either that insects disperse widely after emerging from the backwaters or that all of the birds studied foraged in the riparian corridor even though they nested outside that corridor. It appears that all of the bird species studied were exposed to selenium regardless of where they nested or their primary food source.

Selenium levels in most organisms are generally higher in liver than they are in eggs and higher in eggs than they are in whole bodies (Fairbrother and Fowles 1990,

Heinz et al. 1990, Martinez 1994). We also saw this trend in the birds that we studied. Levels varied among species but they were always highest in livers and lowest in whole bodies. Levels in eggs were generally more comparable to those in livers than those in whole bodies. Selenium levels in tissues generally reflect the rate of metabolic activity (Beilstein and Whagner 1987). The liver is an organ of active metabolism and excretion and thus selenium levels in the liver are generally higher than they are in most other tissues. The high metabolic activity that is required to produce eggs accounts for the high levels of selenium in eggs. Metabolic rates vary greatly in the several tissues of the body. Therefore, selenium levels in the whole bodies are generally lower than they are in the metabolically active tissues such as liver and eggs.

In the five species studied, females generally had higher selenium levels in whole bodies than did males, and in two of the three species where livers were taken, liver levels were also higher in females. However, female red-winged blackbirds had lower whole body selenium levels than did males, but levels in livers were higher. These differences may indicate some differences in foraging pattern or metabolism between the sexes. No doubt there are different metabolic requirements for males and females associated with reproduction. In general, one would expect metabolic requirements to be higher for females and thus one would expect selenium levels to also be higher in females.

Despite elevated selenium levels in the eggs, we failed to see any evidence of selenium induced reproductive failure or abnormality in any of the species studied. It is probable that our sample size was too small to document abnormalities even if they occurred. However, it is also possible that there were no abnormalities even though

selenium levels were high. Selenium in the lower Colorado River originates from cretaceous shale in the upper basin. Origin at this source makes it probable that selenium levels in the lower Colorado River have been chronically elevated perhaps over geological time. Birds nesting in the lower Colorado River could have been exposed to these elevated selenium levels over many generations and may have developed some resistance to the impacts of these levels that are not present in birds from other areas.

We saw no malformed chicks in the cliff swallow colony, but there was very high egg mortality. Destruction of eggs and chicks by conspecifics is a common phenomenon in cliff swallow colonies were there is intraspecific competition for resources (Rosenberg et al. 1991). In addition, virtually all nests were destroyed when causeway construction began in June. However, mortalities that occurred prior to June were not associated with construction.

This study would have been more conclusive if we could have taken more individuals of each species and taken representatives from each species from each habitat type. However, the permitting agencies – the Arizona Game and Fish Department and the U. S. Fish and Wildlife Service – would not permit us to take a larger sample size. We could not compare across habitat types because individual species nested in different habitats and thus we could not take representatives of each species from each habitat. We collected eggs and birds from the same nesting area so that we could directly compare levels in adults and eggs.

#### Literature Cited

Beilstein, M. A. and P. D. Whanger. 1987. Metabolism of selenomethione and effects of interacting compounds by mammalian cells in culture. Journal of Inorganic Biochemistry 29:137-152.

Cole, G. A. 1994. Textbook of Limnology. Fourth Edition, Waveland Press, Inc. Prospect Heights, Illinois. 412 pp.

Fairbrother, A. and J. Fowles. 1990. Subchronic effects of sodium selenite and selenomethionine on several immune functions of mallards. Archives of Environmental Contamination and Toxicology 19:836-844.

Heinz, G. H., D. J. Hoffman, A. J. Krynitsky and D. M. G. Weller. 1987. Reproduction of mallards fed selenium. Environmental Toxicology and Chemistry 6:423-433.

Kennedy, D. M. 1979. Ecological investigations of backwaters of the lower Colorado River. Unpublished Dissertation, University of Arizona, Tucson. 219 pp.

Lemly, A. D. 1993. Guidelines for evaluating selenium data from aquatic monitoring and assessment studies. Environmental Monitoring and Assessment 28:83-100.

Lusk, J. D. 1993. Selenium in aquatic habitats at Imperial National Wildlife Refuge. Unpublished Thesis, The University of Arizona. 150 pp.

Martinez, C. T. 1994. Selenium levels in selected species of aquatic birds on Imperial National Wildlife Refuge. Unpublished Thesis, The University of Arizona. 150 pp.

Ohlendorf, H. M., R. L. Hothem, C. M. Bunck, T. W. Aldrich and J. F. Moore. 1986. Relationships between selenium concentrations and avian reproduction. Transactions of the North American Wildlife and Natural Resources Conference 52:330-342.

Prieto, F. G. 1998. Selenium and water quality in three wetland types along the lower Colorado River, Imperial National Wildlife Refuge, Arizona. Unpublished Thesis, The University of Arizona. 109 pp.

Radtke, D. B., W. G. Kepner, and R. J. Effertz. 1988. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the lower Colorado River Valley, Arizona, California, and Nevada, 1986-1987. U. S. Geological Survey-Water Resources Investigations Report 88-4002.

Rosenberg, V. K., R. D. Ohmart, W. C. Hunter and W. B. Anderson. 1991. Birds of the Lower Colorado River Valley. The University of Arizona Press. 416 pp.

Ruiz, L. D. 1994. Contaminants in water, sediment and biota from the Bill Williams National Wildlife Refuge, Arizona. Unpublished Thesis, The University of Arizona. 160 pp.

Rusk, M. K. 1991. Selenium risk to Yuma clapper rails and other marsh birds of the lower Colorado river. Unpublished Thesis, The University of Arizona. 75 pp.

Schleusner, C. J. 1997. A field investigation of the Mittry Lake bass (*Micropterus salmoides*) fishery including: water quality, community structure, habitat selection, and spinal injury rates associated with electrofishing. Upublished Thesis, The University of Arizona. 145 pp.

Villegas, S. V. 1997. Dynamics of selenium in Cibola Lake, Arizona. Unpublished Dissertation, The University of Arizona. 108 pp.

Welsh, D., and O. E. Maughan. 1994. Concentrations of selenium in biota, sediments, and water at Cibola National Wildlife Refuge. Archives of Environmental Contamination and Toxicology 26:452-458.

## APPENDIX A. STATISICAL ANALYSIS OF SELENIUM LEVELS AMONG TISSUES AND SPECIES

| 0                                                                                                                                                                                                                                                           | t By Bird                                                                                                                                                                               |                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                      |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------|
| 8                                                                                                                                                                                                                                                           |                                                                                                                                                                                         |                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                      |                      |
| 7-                                                                                                                                                                                                                                                          |                                                                                                                                                                                         | •                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                      |                      |
| -                                                                                                                                                                                                                                                           |                                                                                                                                                                                         |                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                      |                      |
| 6-                                                                                                                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                      | $\bigcirc$           |
| _ 1                                                                                                                                                                                                                                                         |                                                                                                                                                                                         | Å                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                      |                      |
| ubia 5-                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                       | $\rightarrow$ :                                                                                                                                                                           |                                                                                                                                                                                                    | :                                                                    | $\left( \right)$     |
| × 4                                                                                                                                                                                                                                                         |                                                                                                                                                                                         |                                                                                                                                                                                           | 1                                                                                                                                                                                                  | -                                                                    | X                    |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                         |                                                                                                                                                                                           | 7 .                                                                                                                                                                                                |                                                                      | V                    |
| й з-                                                                                                                                                                                                                                                        | *                                                                                                                                                                                       |                                                                                                                                                                                           | A                                                                                                                                                                                                  | AN                                                                   | XX                   |
| V                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                       |                                                                                                                                                                                           | $\left( + \right)$                                                                                                                                                                                 |                                                                      |                      |
| 2                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                      |                                                                                                                                                                                           | $\sim$                                                                                                                                                                                             | ÷                                                                    |                      |
| 1-                                                                                                                                                                                                                                                          | ¥                                                                                                                                                                                       | •                                                                                                                                                                                         | Ī                                                                                                                                                                                                  | •                                                                    |                      |
| · T                                                                                                                                                                                                                                                         |                                                                                                                                                                                         |                                                                                                                                                                                           |                                                                                                                                                                                                    | -                                                                    | All Pairs            |
| C                                                                                                                                                                                                                                                           | liff Sw Red                                                                                                                                                                             | -Wing Song                                                                                                                                                                                | Spar Verdin                                                                                                                                                                                        | Westernk                                                             | strate in the second |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                         | Bir                                                                                                                                                                                       | d                                                                                                                                                                                                  |                                                                      | Tukey-Kramer<br>0.05 |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                         | Dir                                                                                                                                                                                       | u                                                                                                                                                                                                  |                                                                      | 0.05                 |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                         |                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                      |                      |
| Dneway And                                                                                                                                                                                                                                                  |                                                                                                                                                                                         |                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                      |                      |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                         |                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                      | -                    |
| Summary o                                                                                                                                                                                                                                                   | f Fit                                                                                                                                                                                   |                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                      |                      |
| RSquare                                                                                                                                                                                                                                                     |                                                                                                                                                                                         | 0.38                                                                                                                                                                                      | 5024                                                                                                                                                                                               |                                                                      |                      |
|                                                                                                                                                                                                                                                             | 45                                                                                                                                                                                      | 0.32                                                                                                                                                                                      | 9117                                                                                                                                                                                               |                                                                      |                      |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                         |                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                      |                      |
| Root Mean                                                                                                                                                                                                                                                   | Square Erro                                                                                                                                                                             | or 1.28                                                                                                                                                                                   | 0268                                                                                                                                                                                               |                                                                      |                      |
| Root Mean<br>Mean of Re                                                                                                                                                                                                                                     | Square Erro<br>sponse                                                                                                                                                                   | or 1.28<br>3.1                                                                                                                                                                            | 0268<br>5551                                                                                                                                                                                       |                                                                      |                      |
| Root Mean<br>Mean of Re                                                                                                                                                                                                                                     | Square Erro<br>sponse                                                                                                                                                                   | or 1.28<br>3.1                                                                                                                                                                            | 0268                                                                                                                                                                                               |                                                                      |                      |
| Root Mean<br>Mean of Re                                                                                                                                                                                                                                     | Square Erro<br>sponse<br>as (or Sum V                                                                                                                                                   | or 1.28<br>3.1                                                                                                                                                                            | 0268<br>5551                                                                                                                                                                                       |                                                                      |                      |
| Root Mean<br>Mean of Re<br>Observation                                                                                                                                                                                                                      | Square Erro<br>sponse<br>as (or Sum V<br>Variance                                                                                                                                       | or 1.28<br>3.1                                                                                                                                                                            | 0268<br>5551                                                                                                                                                                                       | e F Ratio                                                            |                      |
|                                                                                                                                                                                                                                                             | Square Erro<br>sponse<br>as (or Sum V<br>Variance                                                                                                                                       | or 1.28<br>3.1<br>Vgts)                                                                                                                                                                   | 0268<br>5551<br>49                                                                                                                                                                                 |                                                                      | 11                   |
| Root Mean<br>Mean of Re<br>Observation<br>Analysis of<br>Source<br>Model                                                                                                                                                                                    | Square Erro<br>sponse<br>is (or Sum V<br>Variance)<br>DF Sum                                                                                                                            | or 1.28<br>3.1<br>Vgts)<br>of Squares                                                                                                                                                     | 0268<br>5551<br>49<br>Mean Square                                                                                                                                                                  | 6.8869                                                               |                      |
| Root Mean<br>Mean of Re<br>Observation<br>Analysis of<br>Source                                                                                                                                                                                             | Square Erro<br>sponse<br>as (or Sum V<br>Variance)<br>DF Sum<br>4                                                                                                                       | or 1.28<br>3.1<br>Vgts)<br>of Squares<br>45.15265                                                                                                                                         | 0268<br>5551<br>49<br>Mean Square<br>11.2882                                                                                                                                                       | 2 6.8869<br>1 Prob>F                                                 |                      |
| Root Mean<br>Mean of Re<br>Observation<br>Analysis of<br>Source<br>Model<br>Error<br>C Total                                                                                                                                                                | Square Erro<br>sponse<br>as (or Sum V<br>Variance)<br>DF Sum<br>4<br>44<br>48                                                                                                           | or 1.28<br>3.1<br>Vgts)<br>of Squares<br>45.15265<br>72.11976<br>117.27241                                                                                                                | 0268<br>5551<br>49<br>Mean Squard<br>11.288<br>1.639                                                                                                                                               | 2 6.8869<br>1 Prob>F                                                 |                      |
| Root Mean<br>Mean of Re<br>Observation<br>Analysis of<br>Source<br>Model<br>Error<br>C Total<br>Means for O                                                                                                                                                 | Square Erro<br>sponse<br>as (or Sum V<br>Variance)<br>DF Sum<br>4<br>44<br>48<br>Oneway And                                                                                             | or 1.28<br>3.1<br>Vgts)<br>of Squares<br>45.15265<br>72.11976<br>117.27241                                                                                                                | 0268<br>5551<br>49<br>Mean Squard<br>11.288<br>1.639<br>2.443                                                                                                                                      | 2 6.8869<br>1 Prob>F                                                 |                      |
| Root Mean<br>Mean of Re<br>Observation<br>Analysis of<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level                                                                                                                                        | Square Erro<br>sponse<br>as (or Sum V<br>Variance)<br>DF Sum<br>4<br>44<br>48<br>Oneway And<br>Number                                                                                   | of Squares<br>45.15265<br>72.11976<br>117.27241<br>wa<br>Mean                                                                                                                             | 0268<br>5551<br>49<br>Mean Squard<br>11.288<br>1.639<br>2.443<br>Std Error                                                                                                                         | 2 6.8869<br>1 Prob>F                                                 |                      |
| Root Mean<br>Mean of Re<br>Observation<br>Analysis of<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Sw                                                                                                                            | Square Erro<br>sponse<br>as (or Sum V<br>Variance)<br>DF Sum<br>4<br>44<br>48<br>Oneway And<br>Number<br>9                                                                              | or 1.28<br>3.1<br>Vgts)<br>of Squares<br>45.15265<br>72.11976<br>117.27241<br>iva<br>Mean<br>2.07333                                                                                      | 0268<br>5551<br>49<br>Mean Squard<br>11.288<br>1.639<br>2.443<br>Std Error<br>0.42676                                                                                                              | 2 6.8869<br>1 Prob>F                                                 |                      |
| Root Mean<br>Mean of Re<br>Observation<br>Analysis of<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Sw<br>Red-Wing                                                                                                                | Square Erro<br>sponse<br>as (or Sum V<br>Variance)<br>DF Sum<br>4<br>44<br>48<br>Oneway And<br>Number<br>9<br>10                                                                        | or 1.28<br>3.1<br>Vgts)<br>of Squares<br>45.15265<br>72.11976<br>117.27241<br>117.27241<br>Mean<br>2.07333<br>4.64700                                                                     | 0268<br>5551<br>49<br>Mean Squard<br>11.288<br>1.639<br>2.443<br>Std Error<br>0.42676<br>0.40486                                                                                                   | 2 6.8869<br>1 Prob>F                                                 |                      |
| Root Mean<br>Mean of Re<br>Observation<br>Analysis of<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Sw<br>Red-Wing<br>Song Spar                                                                                                   | Square Erro<br>sponse<br>is (or Sum V<br>Variance)<br>DF Sum<br>4<br>44<br>48<br>Oneway And<br>Number<br>9<br>10<br>10                                                                  | or 1.28<br>3.1<br>Vgts)<br>of Squares<br>45.15265<br>72.11976<br>117.27241<br>Wa<br>Mean<br>2.07333<br>4.64700<br>3.81100                                                                 | 0268<br>5551<br>49<br>Mean Square<br>11.288<br>1.639<br>2.443<br>Std Error<br>0.42676<br>0.40486<br>0.40486                                                                                        | 2 6.8869<br>1 Prob>F                                                 |                      |
| Root Mean<br>Mean of Re<br>Observation<br>Analysis of<br>Source<br>Model<br>Error<br>C Total<br>Means for C<br>Level<br>Cliff Sw<br>Red-Wing<br>Song Spar<br>Verdin                                                                                         | Square Erro<br>sponse<br>is (or Sum V<br>Variance)<br>DF Sum<br>4<br>44<br>48<br>Oneway And<br>Number<br>9<br>10<br>10<br>10                                                            | or 1.28<br>3.1<br>Vgts)<br>of Squares<br>45.15265<br>72.11976<br>117.27241<br>Va<br>Mean<br>2.07333<br>4.64700<br>3.81100<br>2.32500                                                      | 0268<br>5551<br>49<br>Mean Squard<br>11.288<br>1.639<br>2.443<br>Std Error<br>0.42676<br>0.40486<br>0.40486<br>0.40486                                                                             | 2 6.8869<br>1 Prob>F                                                 |                      |
| Root Mean<br>Mean of Re<br>Observation<br>Analysis of<br>Source<br>Model<br>Error<br>C Total<br>Means for C<br>Level<br>Cliff Sw<br>Red-Wing<br>Song Spar<br>Verdin<br>Westernk                                                                             | Square Erro<br>sponse<br>is (or Sum V<br>Variance)<br>DF Sum<br>4<br>44<br>48<br>Oneway And<br>Number<br>9<br>10<br>10<br>10                                                            | or 1.28<br>3.1<br>Vgts)<br>of Squares<br>45.15265<br>72.11976<br>117.27241<br>iva<br>Mean<br>2.07333<br>4.64700<br>3.81100<br>2.32500<br>2.81300                                          | 0268<br>5551<br>49<br>Mean Squard<br>11.288<br>1.639<br>2.443<br>Std Error<br>0.42676<br>0.40486<br>0.40486<br>0.40486                                                                             | 2 6.8869<br>1 Prob>F                                                 |                      |
| Root Mean<br>Mean of Re<br>Observation<br>Analysis of<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Sw<br>Red-Wing<br>Song Spar<br>Verdin<br>Westernk<br>Std Error us                                                             | Square Erro<br>sponse<br>is (or Sum V<br>Variance)<br>DF Sum<br>4<br>44<br>48<br>Oneway And<br>Number<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                    | or 1.28<br>3.1<br>Vgts)<br>of Squares<br>45.15265<br>72.11976<br>117.27241<br>NVa<br>Mean<br>2.07333<br>4.64700<br>3.81100<br>2.32500<br>2.81300<br>estimate of e                         | 0268<br>5551<br>49<br>Mean Squard<br>11.288<br>1.639<br>2.443<br>Std Error<br>0.42676<br>0.40486<br>0.40486<br>0.40486<br>0.40486                                                                  | 2 6.8869<br>1 Prob>F                                                 |                      |
| Root Mean<br>Mean of Re<br>Observation<br>Analysis of<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Sw<br>Red-Wing<br>Song Spar<br>Verdin<br>Westernk<br>Std Error us                                                             | Square Erro<br>sponse<br>is (or Sum V<br>Variance)<br>DF Sum<br>4<br>44<br>48<br>Oneway And<br>Number<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                    | or 1.28<br>3.1<br>Vgts)<br>of Squares<br>45.15265<br>72.11976<br>117.27241<br>NVa<br>Mean<br>2.07333<br>4.64700<br>3.81100<br>2.32500<br>2.81300<br>estimate of e                         | 0268<br>5551<br>49<br>Mean Squard<br>11.288<br>1.639<br>2.443<br>Std Error<br>0.42676<br>0.40486<br>0.40486<br>0.40486<br>0.40486                                                                  | 2 6.8869<br>1 Prob>F                                                 |                      |
| Root Mean<br>Mean of Re<br>Observation<br>Analysis of<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Sw<br>Red-Wing<br>Song Spar<br>Verdin<br>Westernk<br>Std Error us<br>Means and S                                              | Square Erro<br>sponse<br>is (or Sum V<br>Variance)<br>DF Sum<br>4<br>44<br>48<br>Oneway And<br>Number<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                    | or 1.28<br>3.1<br>Vgts)<br>of Squares<br>45.15265<br>72.11976<br>117.27241<br>NVa<br>Mean<br>2.07333<br>4.64700<br>3.81100<br>2.32500<br>2.81300<br>estimate of e                         | 0268<br>5551<br>49<br>Mean Squard<br>11.288<br>1.639<br>2.443<br>Std Error<br>0.42676<br>0.40486<br>0.40486<br>0.40486<br>0.40486                                                                  | 2 6.8869<br>1 Prob>F<br>2 0.0002                                     |                      |
| Root Mean<br>Mean of Re<br>Observation<br>Analysis of<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Sw<br>Red-Wing<br>Song Spar<br>Verdin<br>Westernk<br>Std Error us<br>Means and S<br>Level                                     | Square Erro<br>sponse<br>as (or Sum V<br>Variance)<br>DF Sum<br>4<br>44<br>48<br>Oneway And<br>Number<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>20<br>5td Deviation                   | or 1.28<br>3.1<br>Vgts)<br>of Squares<br>45.15265<br>72.11976<br>117.27241<br>Wa<br>Mean<br>2.07333<br>4.64700<br>3.81100<br>2.32500<br>2.81300<br>estimate of e                          | 0268<br>5551<br>49<br>Mean Squard<br>11.288<br>1.639<br>2.443<br>Std Error<br>0.42676<br>0.40486<br>0.40486<br>0.40486<br>0.40486<br>error variance                                                | 2 6.8869<br>1 Prob>F<br>2 0.0002                                     |                      |
| Root Mean<br>Mean of Re<br>Observation<br>Analysis of<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Sw<br>Red-Wing<br>Song Spar<br>Verdin<br>Westernk<br>Std Error us<br>Means and S<br>Level<br>Cliff Sw                         | Square Erro<br>sponse<br>is (or Sum V<br>Variance)<br>DF Sum<br>4<br>44<br>48<br>Dneway And<br>Number<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>5td Deviation<br>Number   | or 1.28<br>3.1<br>Vgts)<br>of Squares<br>45.15265<br>72.11976<br>117.27241<br>va<br>Mean<br>2.07333<br>4.64700<br>3.81100<br>2.32500<br>2.81300<br>estimate of e<br>Mean                  | 0268<br>5551<br>49<br>Mean Squard<br>11.288<br>1.639<br>2.443<br>Std Error<br>0.42676<br>0.40486<br>0.40486<br>0.40486<br>0.40486<br>0.40486<br>error variance                                     | 2 6.8869<br>1 Prob>F<br>2 0.0002                                     |                      |
| Root Mean<br>Mean of Re<br>Observation<br>Analysis of<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Sw<br>Red-Wing<br>Song Spar<br>Verdin<br>Westernk                                                                             | Square Erro<br>sponse<br>as (or Sum V<br>Variance)<br>DF Sum<br>4<br>44<br>48<br>Dneway And<br>Number<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>std Deviation<br>Number<br>9          | or 1.28<br>3.1<br>Vgts)<br>of Squares<br>45.15265<br>72.11976<br>117.27241<br>Wa<br>Mean<br>2.07333<br>4.64700<br>3.81100<br>2.32500<br>2.81300<br>estimate of e<br>ms<br>Mean<br>2.07333 | 0268<br>5551<br>49<br>Mean Squard<br>11.288<br>1.639<br>2.443<br>Std Error<br>0.42676<br>0.40486<br>0.40486<br>0.40486<br>0.40486<br>0.40486<br>error variance<br>Std Dev St<br>0.83531            | 2 6.8869<br>1 Prob>F<br>2 0.0002                                     |                      |
| Root Mean<br>Mean of Re<br>Observation<br>Analysis of<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Sw<br>Red-Wing<br>Song Spar<br>Verdin<br>Westernk<br>Std Error us<br>Means and S<br>Level<br>Cliff Sw<br>Red-Wing<br>Red-Wing | Square Erro<br>sponse<br>is (or Sum V<br>Variance)<br>DF Sum<br>4<br>44<br>48<br>Oneway And<br>Number<br>9<br>10<br>10<br>10<br>10<br>es a pooled<br>Std Deviation<br>Number<br>9<br>10 | or 1.28<br>3.1<br>Vgts)<br>of Squares<br>45.15265<br>72.11976<br>117.27241<br>Wa<br>Mean<br>2.07333<br>4.64700<br>2.81300<br>estimate of e<br>Mean<br>2.07333<br>4.64700                  | 0268<br>5551<br>49<br>Mean Squard<br>11.288<br>1.639<br>2.443<br>Std Error<br>0.42676<br>0.40486<br>0.40486<br>0.40486<br>0.40486<br>0.40486<br>error variance<br>Std Dev St<br>0.83531<br>2.04185 | 2 6.8869<br>1 Prob>F<br>2 0.0002<br>d Err Mean<br>0.27844<br>0.64569 |                      |

Table 1 - Statistical analysis of whole body selenium levels among species.

| Dif=Mean[i]-Mean[j]                  | Red-\  | Ning | Song   | Spar | West  | ernk | Ve    | erdin | Cliff Sw              |
|--------------------------------------|--------|------|--------|------|-------|------|-------|-------|-----------------------|
| Red-Wing                             | 0.00   | 0000 | 0.83   | 3600 | 1.83  | 3400 | 2.32  | 200   | 2.57367               |
| Song Spar                            | -0.83  | 3600 | 0.00   | 0000 | 0.99  | 0080 | 1.48  | 3600  | 1.73767               |
| Westernk                             | -1.83  | 3400 | -0.99  | 9800 | 0.00  | 0000 | 0.48  | 3800  | 0.73967               |
| Verdin                               | -2.32  | 2200 | -1.48  | 3600 | -0.48 | 800  | 0.00  | 0000  | 0.25167               |
| Cliff Sw                             | -2.57  | 7367 | -1.73  | 3767 | -0.73 | 967  | -0.25 | 5167  | 0.00000               |
| Comparisons for all<br>q*<br>2.84411 |        | 3.5  |        |      |       |      |       |       |                       |
| Abs(Dif)-LSD Re                      | d-Wing | Song | g Spar | Wes  | ternk | V    | erdin | Clif  | fSw                   |
| Red-Wing -1                          | .62840 | -0.7 | 79240  | 0.2  | 0560  | 0.6  | 9360  | 0.90  | 0064                  |
| Song Spar -0                         | .79240 | -1.6 | 52840  | -0.6 | 3040  | -0.1 | 4240  | 0.06  | 6464                  |
| Westernk (                           | .20560 | -0.6 | 53040  | -1.6 | 2840  | -1.1 | 4040  | -0.93 | 3336                  |
| Verdin (                             | .69360 | -0.  | 14240  | -1.1 | 4040  | -1.6 | 2840  | -1.42 | 2136                  |
| · or ann                             |        |      |        |      | 3336  |      | 2136  | -1.71 | CONTRACTOR CONTRACTOR |

#### Table 1 - Continuation




Table 2 - Statistical analysis of selenium levels in livers among species.

| (Summary of                | f Fit  |            |                     |      |        |       |          |
|----------------------------|--------|------------|---------------------|------|--------|-------|----------|
| RSquare                    |        |            | 0.607               | 7013 |        |       |          |
| RSquare Ac                 | ij     |            | 0.576               | 5784 |        |       |          |
| Root Mean                  | Squa   | re Error   | 2.889               | 9157 |        |       |          |
| Mean of Rea                | spons  | e          | 7.706               | 6207 |        |       |          |
| Observation                | s (or  | Sum Wgts   | )                   | 29   |        |       |          |
| Analysis of                | Variar | nce        |                     |      |        |       |          |
| Source                     | DF     | Sum of S   | quares              | Mean | Squar  | е     | F Ratio  |
| Model                      | 2      | 335        | .22472              |      | 167.61 | 2     | 20.0800  |
| Error                      | 26     | 217        | .02797              |      | 8.34   | 7     | Prob>F   |
| C Total                    | 28     | 552        | 2.25268             |      | 19.72  | 3     | <.0001   |
| (Means for C               | newa   | ay Anova   | ) .                 |      |        | )     |          |
| Level                      | P      | lumber     | Mean                | Std  | Error  |       |          |
| Cliff Swall2               |        | 9          | 3.8678              | 0.9  | 6305   |       |          |
| Redwing B                  |        | 10         | 12.1070             | 0.9  | 1363   |       |          |
| WesternKin<br>Std Error us | 9      | 10.070     | 6.7600<br>mate of e |      |        |       |          |
|                            | _      |            |                     |      |        |       |          |
| Means and S                | Std De | eviations) |                     |      |        |       |          |
| Level                      | N      | umber      | Mean                | Std  | Dev    | Std I | Err Mean |
| Cliff Swall2               |        | 9          | 3 8678              | 0.8  | 3350   |       | 0 2945   |

| Level        | Number | Mean    | Std Dev | Std Err Mean |
|--------------|--------|---------|---------|--------------|
| Cliff Swall2 | 9      | 3.8678  | 0.88350 | 0.2945       |
| Redwing B    | 10     | 12.1070 | 4.33430 | 1.3706       |
| WesternKing  | 10     | 6.7600  | 2.15273 | 0.6808       |

| Dif=Mean[i]-Mean                                 | n[j] Redw                   | ing B  | Westerr              | King     | Cliff Swall2 |
|--------------------------------------------------|-----------------------------|--------|----------------------|----------|--------------|
| Redwing B                                        | 0.0                         | 0000   | 5.3                  | 4700     | 8.23922      |
| WesternKing                                      | -5.3                        | 4700   | 0.0                  | 0000     | 2.89222      |
| Cliff Swall2                                     | -8.2                        | 3922   | -2.8                 | 9222     | 0.00000      |
| Alpha= 0.05<br>Comparisons for :                 | all pairs usir              | na Tuk | ev-Krame             | HSD      | )            |
| Comparisons for a<br>q*<br>2.48489               | all pairs usir              | ng Tuk | ey-Krame             | er HSD   | )            |
| Comparisons for a<br>q*<br>2.48489               | all pairs usir<br>Redwing B |        | ey-Krame<br>ternKing |          | )<br>Swall2  |
| Comparisons for a<br>q*<br>2.48489               |                             | West   |                      | Cliff \$ |              |
| Comparisons for<br>q*<br>2.48489<br>Abs(Dif)-LSD | Redwing B                   | West   | ternKing             | Cliff S  | Swall2       |

| T                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                           |              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|
| 8-                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :                           |              |
| 7-                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                           | $\frown$     |
| -                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A                           |              |
| = 6-                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\leftrightarrow$           | (            |
| - eig                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                            | ~                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\forall \downarrow$        | $\times$     |
| \$ 5-                                                                                                                                                                                                                                                                            | /                                                                                                                                                                                                                                                                                                          | Ŧ .                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | 1            |
|                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                          | TA                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                           | $\bigwedge$  |
| x 4                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                            | ▼ (ま                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | TX           |
| 3-                                                                                                                                                                                                                                                                               | A                                                                                                                                                                                                                                                                                                          | $\forall$                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | V            |
| Ĩ                                                                                                                                                                                                                                                                                | $ \rightarrow $                                                                                                                                                                                                                                                                                            | v                                                                                                                                                                                                                                   | J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | N            |
| 2-                                                                                                                                                                                                                                                                               | $\forall$                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                     | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |              |
|                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                   | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | All Pairs    |
| Cli                                                                                                                                                                                                                                                                              | ff Swall3 Re                                                                                                                                                                                                                                                                                               | dwing3 Song                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Western                     | Tukey-Kramer |
|                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                            | Bird                                                                                                                                                                                                                                | Verdin3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | 0.05         |
|                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                            | vocad5                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |              |
|                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |              |
| neway Ano                                                                                                                                                                                                                                                                        | va)                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |              |
|                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |              |
| Summary of                                                                                                                                                                                                                                                                       | FR                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |              |
| RSquare                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                            | 0 6606                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | 1            |
|                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                            | 0.6685                                                                                                                                                                                                                              | 5255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |              |
| RSquare Ad                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                          | 0.619                                                                                                                                                                                                                               | 939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |              |
| RSquare Ad<br>Root Mean S                                                                                                                                                                                                                                                        | Square Error                                                                                                                                                                                                                                                                                               | 0.619                                                                                                                                                                                                                               | 939<br>762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |              |
| RSquare Ad<br>Root Mean S<br>Mean of Res                                                                                                                                                                                                                                         | Square Error<br>sponse                                                                                                                                                                                                                                                                                     | 0.619<br>0.9967<br>3.9759                                                                                                                                                                                                           | 939<br>762<br>938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |              |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations                                                                                                                                                                                                                         | Square Error<br>sponse<br>s (or Sum W                                                                                                                                                                                                                                                                      | 0.619<br>0.9967<br>3.9759                                                                                                                                                                                                           | 939<br>762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |              |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations                                                                                                                                                                                                                         | Square Error<br>sponse<br>s (or Sum W                                                                                                                                                                                                                                                                      | 0.619<br>0.9967<br>3.9759                                                                                                                                                                                                           | 939<br>762<br>938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | )            |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of V                                                                                                                                                                                                        | Square Error<br>sponse<br>s (or Sum W<br>/ariance                                                                                                                                                                                                                                                          | 0.619<br>0.9967<br>3.9759<br>(gts)                                                                                                                                                                                                  | 939<br>762<br>938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F Ratio                     |              |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of V<br>Source<br>Model                                                                                                                                                                                     | Square Error<br>sponse<br>s (or Sum W<br>variance)<br>DF Sum o                                                                                                                                                                                                                                             | 0.619<br>0.9967<br>3.9759<br>(gts)                                                                                                                                                                                                  | 939<br>762<br>938<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.6120                     |              |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of V<br>Source<br>Model<br>Error                                                                                                                                                                            | Square Error<br>sponse<br>s (or Sum W<br>/ariance)<br>DF Sum of<br>4 5<br>27                                                                                                                                                                                                                               | 0.619<br>0.9967<br>3.9759<br>(gts)<br>of Squares 1<br>54.096115<br>26.825457                                                                                                                                                        | 939<br>762<br>938<br>32<br>Mean Square<br>13.5240<br>0.9935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.6120<br>Prob>F           |              |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of V<br>Source<br>Model<br>Error                                                                                                                                                                            | Square Error<br>sponse<br>s (or Sum W<br>/ariance)<br>DF Sum of<br>4 5<br>27                                                                                                                                                                                                                               | 0.619<br>0.9967<br>3.9759<br>(gts)<br>of Squares                                                                                                                                                                                    | 939<br>762<br>938<br>32<br>Mean Square<br>13.5240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.6120<br>Prob>F           |              |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of V<br>Source<br>Model<br>Error<br>C Total                                                                                                                                                                 | Square Error<br>sponse<br>s (or Sum W<br>/ariance)<br>DF Sum of<br>4 5<br>27 5<br>31 6                                                                                                                                                                                                                     | 0.619<br>0.9967<br>3.9759<br>(gts)<br>of Squares<br>54.096115<br>26.825457<br>80.921572                                                                                                                                             | 939<br>762<br>938<br>32<br>Mean Square<br>13.5240<br>0.9935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.6120<br>Prob>F           |              |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of V<br>Source<br>Model<br>Error<br>C Total<br>Means for O                                                                                                                                                  | Square Error<br>sponse<br>s (or Sum W<br>/ariance)<br>DF Sum of<br>4 5<br>27 5<br>31 6<br>0neway Anov                                                                                                                                                                                                      | 0.619<br>0.9967<br>3.9759<br>(gts)<br>of Squares 1<br>54.096115<br>26.825457<br>80.921572                                                                                                                                           | Mean Square<br>13.5240<br>0.9935<br>2.6104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.6120<br>Prob>F           |              |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of V<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level                                                                                                                                         | Square Error<br>sponse<br>s (or Sum W<br>/ariance)<br>DF Sum of<br>4 9<br>27 2<br>31 8<br>0neway Anov<br>Numbe                                                                                                                                                                                             | 0.619<br>0.9967<br>3.9759<br>(gts)<br>of Squares 1<br>54.096115<br>26.825457<br>80.921572<br>/a                                                                                                                                     | 939<br>762<br>938<br>32<br>Mean Square<br>13.5240<br>0.9935<br>2.6104<br>Std Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.6120<br>Prob>F           |              |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of V<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Swall3                                                                                                                         | Square Error<br>sponse<br>s (or Sum W<br>/ariance)<br>DF Sum (<br>4<br>27<br>31<br>31<br>31<br>Numbe                                                                                                                                                                                                       | 0.619<br>0.9967<br>3.9759<br>(gts)<br>of Squares 1<br>54.096115<br>26.825457<br>80.921572<br>//a<br>er Mean<br>7 2.56000                                                                                                            | 939<br>762<br>938<br>32<br>Mean Square<br>13.5240<br>0.9935<br>2.6104<br>Std Error<br>0.37674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.6120<br>Prob>F           |              |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of V<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Swall3<br>Redwing3                                                                                                             | Square Error<br>sponse<br>s (or Sum W<br>/ariance)<br>DF Sum o<br>4 (<br>27 2<br>31 4<br>0neway Anov<br>Numbe                                                                                                                                                                                              | 0.619<br>0.9967<br>3.9759<br>(gts)<br>of Squares 1<br>54.096115<br>26.825457<br>80.921572<br>/a<br>er Mean<br>7 2.56000<br>7 4.54429                                                                                                | 939<br>762<br>938<br>32<br>Mean Square<br>13.5240<br>0.9935<br>2.6104<br>Std Error<br>0.37674<br>0.37674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.6120<br>Prob>F           |              |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of V<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Swall3<br>Redwing3<br>SongSpar3                                                                                                | Square Error<br>sponse<br>s (or Sum W<br>/ariance)<br>DF Sum o<br>4 9<br>27 2<br>31 8<br>0neway Anov<br>Numbe                                                                                                                                                                                              | 0.619<br>0.9967<br>3.9759<br>(gts)<br>of Squares 1<br>54.096115<br>26.825457<br>80.921572<br>/a<br>er Mean<br>7 2.56000<br>7 4.54429<br>4 3.75000                                                                                   | Mean Square<br>13.5240<br>0.9935<br>2.6104<br>Std Error<br>0.37674<br>0.37674<br>0.49838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.6120<br>Prob>F           |              |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of V<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Swall3<br>Redwing3<br>SongSpar3<br>Verdin3                                                                                     | Square Error<br>sponse<br>s (or Sum W<br>/ariance)<br>DF Sum (<br>4 5<br>27 5<br>31 6<br>0neway Anov<br>Numbe                                                                                                                                                                                              | 0.619<br>0.9967<br>3.9759<br>(gts)<br>of Squares 1<br>54.096115<br>26.825457<br>80.921572<br>//a<br>er Mean<br>7 2.56000<br>7 4.54429<br>4 3.75000<br>7 2.90000                                                                     | 239<br>762<br>338<br>32<br>Mean Square<br>13.5240<br>0.9935<br>2.6104<br>Std Error<br>0.37674<br>0.37674<br>0.49838<br>0.37674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.6120<br>Prob>F           |              |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of V<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Swall3<br>Redwing3<br>SongSpar3<br>Verdin3<br>WesternKing                                                                      | Square Error<br>sponse<br>s (or Sum W<br>/ariance)<br>DF Sum (<br>4 5<br>27 2<br>31 8<br>Dneway Anov<br>Numbe                                                                                                                                                                                              | 0.619<br>0.9967<br>3.9759<br>(gts)<br>of Squares 1<br>54.096115<br>26.825457<br>80.921572<br>//a<br>er Mean<br>7 2.56000<br>7 4.54429<br>4 3.75000<br>7 2.90000                                                                     | 239<br>762<br>338<br>32<br>Mean Square<br>13.5240<br>0.9935<br>2.6104<br>Std Error<br>0.37674<br>0.37674<br>0.49838<br>0.37674<br>0.37674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.6120<br>Prob>F           |              |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of V<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Swall3<br>Redwing3<br>SongSpar3<br>Verdin3<br>WesternKing                                                                      | Square Error<br>sponse<br>s (or Sum W<br>/ariance)<br>DF Sum (<br>4 5<br>27 2<br>31 8<br>Dneway Anov<br>Numbe                                                                                                                                                                                              | 0.619<br>0.9967<br>3.9759<br>(gts)<br>of Squares 1<br>54.096115<br>26.825457<br>80.921572<br>//a<br>er Mean<br>7 2.56000<br>7 4.54429<br>4 3.75000<br>7 2.90000<br>7 6.02857                                                        | 239<br>762<br>338<br>32<br>Mean Square<br>13.5240<br>0.9935<br>2.6104<br>Std Error<br>0.37674<br>0.37674<br>0.49838<br>0.37674<br>0.37674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.6120<br>Prob>F           |              |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of M<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Swall3<br>Redwing3<br>SongSpar3<br>Verdin3<br>WesternKing<br>Std Error use                                                     | Square Error<br>sponse<br>s (or Sum W<br>/ariance)<br>DF Sum o<br>4 9<br>27 2<br>31 4<br>27 2<br>31 4<br>0neway Anov<br>Numbe                                                                                                                                                                              | 0.619<br>0.9967<br>3.9759<br>(gts)<br>of Squares 1<br>54.096115<br>26.825457<br>80.921572<br>/a<br>er Mean<br>7 2.56000<br>7 4.54429<br>4 3.75000<br>7 4.54429<br>4 3.75000<br>7 6.02857<br>estimate of err                         | 239<br>762<br>338<br>32<br>Mean Square<br>13.5240<br>0.9935<br>2.6104<br>Std Error<br>0.37674<br>0.37674<br>0.49838<br>0.37674<br>0.37674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.6120<br>Prob>F           |              |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of V<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Swall3<br>Redwing3<br>SongSpar3<br>Verdin3<br>WesternKing<br>Std Error use<br>Means and S                                      | Square Error<br>sponse<br>s (or Sum W<br>/ariance)<br>DF Sum o<br>4 9<br>27 2<br>31 4<br>27 2<br>31 4<br>0neway Anov<br>Numbe                                                                                                                                                                              | 0.619<br>0.9967<br>3.9759<br>(gts)<br>of Squares 1<br>54.096115<br>26.825457<br>80.921572<br>/a<br>7 2.56000<br>7 4.54429<br>4 3.75000<br>7 4.54429<br>4 3.75000<br>7 6.02857<br>estimate of err                                    | Mean Square<br>13.5240<br>0.9935<br>2.6104<br>Std Error<br>0.37674<br>0.49838<br>0.37674<br>0.37674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.6120<br>Frob>F<br><.0001 |              |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of V<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Swall3<br>Redwing3<br>SongSpar3<br>Verdin3<br>WesternKing<br>Std Error use<br>Means and S<br>evel                              | Square Error<br>sponse<br>s (or Sum W<br>/ariance)<br>DF Sum G<br>4 9<br>27 2<br>31 4<br>27 2<br>31 4<br>0neway Anov<br>Numbe                                                                                                                                                                              | 0.619<br>0.9967<br>3.9759<br>(gts)<br>of Squares 1<br>54.096115<br>26.825457<br>80.921572<br>/a .<br>er Mean<br>7 2.56000<br>7 4.54429<br>4 3.75000<br>7 4.54429<br>4 3.75000<br>7 6.02857<br>estimate of err<br>s<br>m Mean        | 939<br>762<br>938<br>32<br>Mean Square<br>13.5240<br>0.9935<br>2.6104<br>Std Error<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.6120<br>Frob>F<br><.0001 | × 1          |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of V<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Swall3<br>Redwing3<br>SongSpar3<br>Verdin3<br>WesternKing<br>Std Error use<br>Means and S<br>Level<br>Cliff Swall3             | Square Error<br>sponse<br>s (or Sum W<br>/ariance)<br>DF Sum (<br>4<br>27<br>31<br>31<br>27<br>31<br>31<br>27<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31                                                                                                                | 0.619<br>0.9967<br>3.9759<br>(gts)<br>of Squares 1<br>54.096115<br>26.825457<br>80.921572<br>//a<br>er Mean<br>7 2.56000<br>7 4.54429<br>4 3.75000<br>7 2.90000<br>7 6.02857<br>estimate of err<br>s<br>Mean<br>2.56000             | 239<br>762<br>338<br>32<br>Mean Square<br>13.5240<br>0.9935<br>2.6104<br>Std Error<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.6120<br>Prob>F<br><.0001 | 1            |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of V<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Swall3<br>Redwing3<br>SongSpar3<br>Verdin3<br>WesternKing                                                                      | Square Error<br>sponse<br>s (or Sum W<br>/ariance)<br>DF Sum (<br>4<br>27<br>31<br>27<br>31<br>27<br>31<br>31<br>27<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31                                                                                                          | 0.619<br>0.9967<br>3.9759<br>(gts)<br>of Squares 1<br>54.096115<br>26.825457<br>80.921572<br>(a) .<br>er Mean<br>7 2.56000<br>7 4.54429<br>4 3.75000<br>7 6.02857<br>estimate of err<br>s<br>Mean<br>2.56000<br>4.54429             | 239<br>762<br>338<br>32<br>Mean Square<br>13.5240<br>0.9935<br>2.6104<br>Std Error<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Std Err Mear<br>0.1596      | 1            |
| RSquare Ad<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis of V<br>Source<br>Model<br>Error<br>C Total<br>Means for O<br>Level<br>Cliff Swall3<br>Redwing3<br>SongSpar3<br>Verdin3<br>WesternKing<br>Std Error use<br>Means and S<br>Level<br>Cliff Swall3<br>Redwing3 | Square Error<br>sponse<br>s (or Sum W<br>/ariance)<br>DF Sum Q<br>4 9<br>27 2<br>31 4<br>27 2<br>31 4<br>27 2<br>31 4<br>0<br>neway Anov<br>Number<br>32<br>8<br>33 a pooled e<br>34<br>35 a pooled e<br>35 a pooled e<br>36<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37 | 0.619<br>0.9967<br>3.9759<br>(gts)<br>of Squares 1<br>54.096115<br>26.825457<br>80.921572<br>/a<br>er Mean<br>7 2.56000<br>7 4.54429<br>4 3.75000<br>7 6.02857<br>estimate of err<br>s<br>Mean<br>7 2.56000<br>7 4.54429<br>3.75000 | 239<br>762<br>338<br>32<br>Mean Square<br>13.5240<br>0.9935<br>2.6104<br>Std Error<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37674<br>0.37672<br>0.37674<br>0.37672<br>0.37672<br>0.37672<br>0.57729<br>0.49729 | Std Err Mear<br>0.1596*     | 1<br>5<br>5  |

Table 3 - Statistical analysis of selenium levels in eggs among species.

| Dif=Mean[i]-Mean[j]                                                                                             | WesternKi                                | 0.03           | Redw        | ina?       | SongS          | 2223  | Va     | rdin3     | Cliff Swall3   |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------|-------------|------------|----------------|-------|--------|-----------|----------------|
| 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 |                                          |                |             | · ·        |                |       | 00.000 |           |                |
| WesternKing3                                                                                                    | 0.00                                     | 000            | 1.48        | 3429       | 2.27           | 857   | 3.1    | 2857      | 3,46857        |
| Redwing3                                                                                                        | -1.484                                   | 429            | 0.00        | 0000       | 0.79           | 429   | 1.6    | 4429      | 1.98429        |
| SongSpar3                                                                                                       | -2.27                                    | 857            | -0.79       | 429        | 0.00           | 000   | 0.8    | 5000      | 1.19000        |
| Verdin3                                                                                                         | -3.12                                    | 857            | -1.64       | 429        | -0.85          | 000   | 0.0    | 0000      | 0.34000        |
| Cliff Swall3                                                                                                    | -3.46                                    | 857            | -1.98       | 3429       | -1.19          | 000   | -0.34  | 4000      | 0.00000        |
| Alpha= 0.05<br>Comparisons for all  <br>q*<br>2.92068                                                           | pairs using Tu                           | key-K          | iramer      | HSD        |                |       |        |           |                |
| Abs(Dif)-LSD We                                                                                                 | esternKing3                              | Redw           | ing3        | Song       | Spar3          | Ve    | rdin3  | Cliff     | Swall3         |
|                                                                                                                 |                                          |                |             |            | 15000          | 1 5   | 7245   | 1         |                |
| WesternKing3                                                                                                    | -1.55612                                 | -0.07          | 7183        | 0.         | 45386          | 1.5   | 240    |           | 91245          |
| WesternKing3<br>Redwing3                                                                                        | -1.55612<br>-0.07183                     |                | 183<br>5612 | 0.20       | 45386<br>03042 | 19673 | 8817   | 20        | 91245<br>42817 |
| nashqonsa nashna <u>s</u> ta                                                                                    | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | -1.58          | 1000        | -1.        | 0.000.00       | 0.0   | 1.11   | 0.        |                |
| Redwing3                                                                                                        | -0.07183                                 | -1.58<br>-1.03 | 5612        | -1.<br>-2. | 03042          | 0.08  | 8817   | 0.<br>-0. | 42817          |

# Table 3 - Continuation

| Dry We                    | ight By Bird                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 3.5                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 3.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 5.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7      |
| f                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 2.5 Dry Weight<br>2.0 2.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| \$                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 2.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Š                         | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| 1.5                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 1.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 1.0                       | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
|                           | TTT Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                           | WB Egg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
|                           | Bird                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _      |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Oneway                    | Anova                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| _                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                           | iry of Fit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| RSquar                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| RSquar                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                           | ean Square Error 0.757111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                           | f Response 2.561765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| Observ                    | ations (or Sum Wgts) 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| (t-Test                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                           | Difference t-Test DF Prob>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Iti    |
| Estimat                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7107.  |
| Std Err                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·      |
|                           | -1.37026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
|                           | 0.22026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                           | g equal variances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| <u> </u>                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                           | s of Variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| Source                    | and an and an and a second sec |        |
| Model                     | 1 1.3613971 1.36140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.3750 |
| Error                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prob>F |
| C Total                   | 16 9.9596471 0.62248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1441 |
| Means                     | for Oneway Anova                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| Level                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| WB                        | 10 2.32500 0.23942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| Egg                       | 7 2.90000 0.28616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|                           | or uses a pooled estimate of error variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _      |
|                           | and Std Deviations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| Level                     | Number Mean Std Dev Std Err Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ean    |
| WB                        | 10 2.32500 0.895088 0.283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 05     |
| Egg                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |

Table 4 - Statistical analysis of selenium levels between tissues in verdins.

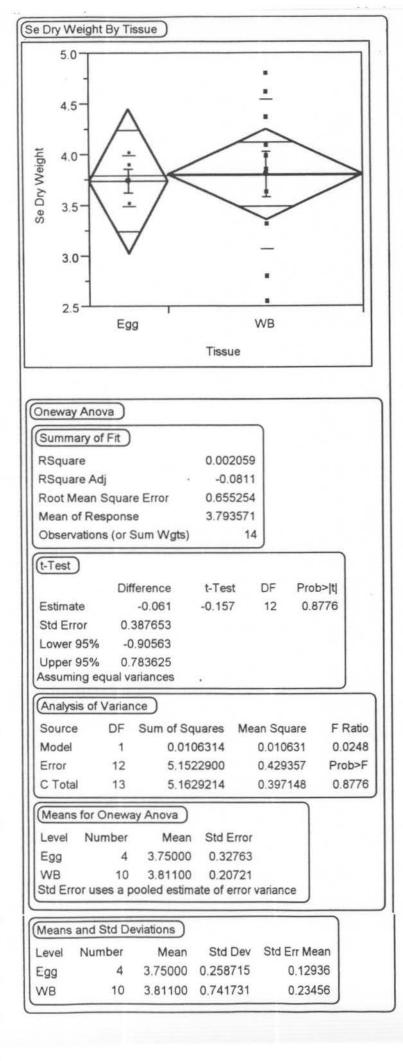



Table 5 - Statistical analysis of selenium levels between tissues in song sparrows.

| e Dr          | y Weig                 | ht By Tis  | sue                |            |            |                          |        | _    |
|---------------|------------------------|------------|--------------------|------------|------------|--------------------------|--------|------|
|               | 4.5                    | /          | Â                  | _          |            |                          |        | ]    |
|               | 1                      | $\leq$     | 1                  | $\geq$     |            |                          |        |      |
|               | 4.0-                   |            | ~                  |            |            |                          |        |      |
| /eight        | 3.5-                   |            |                    |            |            |                          |        |      |
| Se Dry Weight | 3.0-                   |            |                    |            |            |                          |        | 1    |
| Se            | 2.5-                   |            |                    |            |            |                          |        |      |
|               | 2.0-                   |            |                    |            |            | ÷                        |        |      |
|               | 1.5                    |            |                    | <          |            | 1                        | /      | 2    |
|               | 1.5                    |            | Liver              |            |            | WB                       |        |      |
|               |                        |            |                    | Tissue     | e          |                          |        |      |
|               |                        |            |                    |            |            |                          |        |      |
| One           | eway Ar                | nova       |                    |            |            |                          |        | _    |
| C             | ummary                 |            |                    |            |            |                          |        |      |
| -             |                        | OFFIC      |                    | 0.977      | 262        |                          |        |      |
|               | Square                 | A di       |                    | 0.977      |            |                          |        |      |
|               | Square                 |            | - Error            | 0.240      |            |                          |        |      |
|               |                        | n Squar    |                    | 3.041      | 1000       |                          |        |      |
| L             |                        | espons     | e<br>Sum Wgts)     | 3.041      | 6          |                          |        |      |
| 2             | _                      | 5115 (01 0 | un tigu)           |            | <u> </u>   |                          |        |      |
| (t-T          | rest)                  |            |                    |            |            |                          |        |      |
|               |                        | Diff       | erence             | t-Test     | DF         | Pro                      | b> t   |      |
| Es            | stimate                | 2          | 57667              | 13.141     | 4          | 0.0                      | 002    |      |
| St            | d Error                | 0          | .19607             |            |            |                          |        |      |
| Lo            | wer 95                 | % 2        | .03229             |            |            |                          |        |      |
| Up            | oper 95                | % 3        | .12104             |            |            |                          |        |      |
| As            | suming                 | equal va   | ariances           | •          |            |                          |        |      |
| A             | nalysis (              | of Varian  | ce                 |            |            |                          |        |      |
| Sc            | ource                  | DF         | Sum of So          | quares     | Mean So    | uare                     | FR     | atio |
| M             | odel                   | 1          | 9.9                | 58817      | 9.9        | 5882                     | 172.69 | 62   |
| Er            | ror                    | 4          | 0.2                | 30667      | 0.0        | 5767                     | Prob   | >F   |
| C             | Total                  | 5          | 10.1               | 89483      | 2.0        | 3790                     | 0.00   | 002  |
| M             | leans fo               | r Onewa    | y Anova)           |            |            |                          |        |      |
| Le            | evel N                 | lumber     | Mean               | Std E      | rror       |                          |        |      |
| Liv           | ver                    | 3          | 4.33000            | 0.138      | 364        |                          |        |      |
|               | /B                     | 3          | 1.75333            | 0.138      | 364        |                          |        |      |
| W             | d Error                | uses a p   | ooled estin        | nate of er | ror variar | nce                      |        |      |
|               |                        |            |                    |            |            |                          | _      | -    |
| Ste           |                        | d Std De   | viations           |            |            |                          | 1      |      |
| (Me           | eans an                |            | eviations)<br>Mean | Std D      | hts va     | Frr Me                   | an     |      |
| Me            | eans an<br>vel N       | umber      | Mean               | Std D      | 2202       | Err Me                   | 1.00   |      |
| (Me           | eans an<br>vel N<br>er | umber      |                    | 0.2847     | 81         | Err Me<br>0.164<br>0.106 | 42     |      |

Table 6 - Statistical analysis of selenium levels between tissues in tree swallows.

| e Dry                                    | Weight            | By Ti          | ssue              |                |                   |                |               |
|------------------------------------------|-------------------|----------------|-------------------|----------------|-------------------|----------------|---------------|
|                                          | 3.5-              | /              | Ī                 | $\rightarrow$  |                   |                |               |
|                                          | 3.0-              | $\backslash$   | <u>+</u>          | /              |                   |                |               |
| Se Dry Weight                            | 2.5-              |                | $\forall$         |                |                   | Α              |               |
| Se Dr                                    | 2.0-              |                | v                 |                | /                 | _              | $\setminus$   |
|                                          | 1.5-              |                |                   |                |                   | 1              | $\rightarrow$ |
|                                          | 1.0               |                | Liver             |                | /                 | ↓<br>WB        |               |
|                                          |                   |                | LIVEI             | Tissu          | le                | 110            |               |
|                                          |                   |                |                   |                |                   |                |               |
| Onev                                     | vay Ano           |                |                   |                |                   |                |               |
|                                          |                   |                |                   |                |                   |                |               |
|                                          | nmary o           |                |                   | 0.004          | 8015              |                |               |
| 1                                        | luare<br>luare Ac | 4i             |                   | 0.926          |                   |                |               |
|                                          | t Mean            |                | e Error           | 0.38           | Second Contractor |                |               |
| 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | in of Re          |                |                   |                | 2.375             |                |               |
|                                          |                   |                | Sum Wgts)         |                | 4                 |                |               |
| G                                        |                   |                |                   |                |                   |                |               |
| (t-Te                                    | st                | 0.0            |                   |                |                   |                |               |
| Estin                                    | moto              |                | ference<br>.96000 | t-Tes<br>5.036 |                   |                | b> t <br>)372 |
| 1 VERENCE DA                             | mate<br>Error     |                | .38917            | 5.030          | , 2               | 0.0            | 1372          |
| 1.6                                      | er 95%            |                | .28554            |                |                   |                |               |
|                                          | er 95%            |                | .63446            |                |                   |                |               |
|                                          |                   |                | ariances          | 4              |                   |                |               |
| Ana                                      | alysis of         | Varian         | ice)              |                |                   |                |               |
|                                          | rce               |                | Sum of S          | quares         | Mean S            | Square         | F Ratio       |
| Mod                                      | lel               | 1              |                   | 16000          |                   | 84160          | 25.3655       |
| Erro                                     | r                 | 2              | 0.30              | 29000          | 0.                | 15145          | Prob>F        |
| СТ                                       | otal              | 3              | 4.14              | 45000          | 1.3               | 38150          | 0.0372        |
| Mea                                      | ans for (         | Onewa          | ay Anova )        |                |                   |                |               |
| _                                        | el Nu             |                |                   | n Std E        | rror              |                |               |
| Live                                     | r                 | 2              | 3.35500           |                |                   |                |               |
| WB                                       |                   | 2              |                   |                |                   |                |               |
| Std B                                    | Error us          | es a p         | ooled estin       | nate of e      | rror varia        | ince           |               |
| -                                        | ns and 9          | Std De         | eviations)        |                |                   |                | $\neg$        |
| Mear                                     | is and a          |                |                   | C+4 (          |                   | d Err Me       |               |
|                                          | NIL               | hor            |                   |                |                   | 1 MILET BACO   | CAPL I        |
| Level                                    |                   | nber<br>2      | Mean<br>3 35500   |                |                   |                |               |
|                                          |                   | nber<br>2<br>2 |                   | 0.3747         | 767               | 0.265<br>0.285 | 00            |

Table 7 - Statistical analysis of selenium levels between tissues in bank swallows.

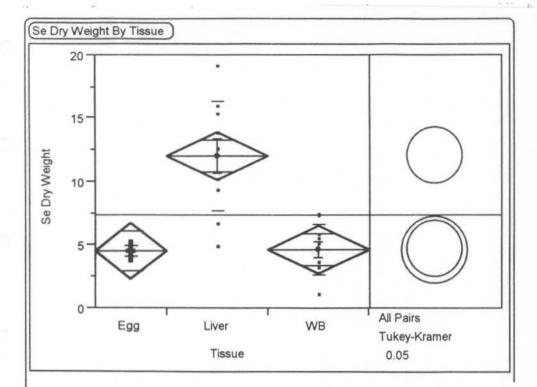



Table 8 - Statistical analysis of selenium levels among tissues in redwinged blackbirds.

| Onewa  | ay Anova )    |              |          |      |            |         |
|--------|---------------|--------------|----------|------|------------|---------|
| Sum    | nary of Fit   | )            |          |      |            |         |
| RSqu   | are           |              | 0.63     | 0083 | 3          |         |
| RSqu   | are Adj       |              | 0.59     | 9257 |            |         |
| Root   | Mean Squa     | re Error     | 2.94     | 4495 | 5          |         |
| Mean   | of Respons    | se           | 7.38     | 3333 | 3          |         |
| Obser  | vations (or   | Sum Wgts)    |          | 27   | 7          |         |
| Analy  | sis of Variar | nce          |          |      |            |         |
| Sourc  | e DF          | Sum of Sq    | uares    | Me   | an Square  | F Ratio |
| Mode   | 2             | 354.4        | 2681     |      | 177.213    | 20.4397 |
| Error  | 24            | 208.0        | 8119     |      | 8.670      | Prob>F  |
| C Tota | al 26         | 562.5        | 0800     |      | 21.635     | <.0001  |
| Mean   | s for Onewa   | ay Anova     | •        |      |            |         |
| Level  | Number        | Mean         | Std E    | rror |            |         |
| Egg    | 7             | 4.5443       | 1.1      | 129  |            |         |
| Liver  | 10            | 12.1070      | 0.9      | 311  |            |         |
| WB     | 10            | 4.6470       |          |      |            |         |
| Std Er | ror uses a p  | ooled estima | ate of e | rror | variance   |         |
| Means  | and Std De    | eviations)   |          |      |            |         |
| _evel  | Number        | Mean         | Std [    | Dev  | Std Err Me | an      |
| Egg    | 7             | 4.5443       | 0.497    | 29   | 0.18       | 80      |
| _iver  | 10            | 12.1070      | 4.334    | 130  | 1.37       | 06      |
| WB     | 10            | 4.6470       | 2.041    | 0.0  | 0.64       | 57      |

| DY 14            |                 | Sec.    |        | 14/10  | <b>F</b> = = |  |
|------------------|-----------------|---------|--------|--------|--------------|--|
| Dif=Mean[i]-Mean | י נטר           | Liver   | -      | WB     | Egg          |  |
| Liver            | 0.00            | 0000    | 7.46   | 000    | 7.56271      |  |
| WB               | -7.46           | 000     | 0.00   | 0000   | 0.10271      |  |
| Egg              | -7.56           | 271     | -0.10  | 271    | 0.00000      |  |
| Alpha= 0.05      | all mains units | - Tul   | au Vee | mar Li | 20           |  |
| Comparisons for  | all pairs usir  | ig i uk | ey-Kra | mer H  | 50           |  |
| q*<br>2.49729    |                 |         |        |        |              |  |
| Abs(Dif)-LSD     | Liver           |         | WB     |        | Egg          |  |
| Liver            | -3.28847        | 4.1     | 7153   | 3.93   | 3899         |  |
| WB               | 4.17153         | -3.2    | 8847   | -3.52  | 2101         |  |
| Egg              | 3.93899         | -3.5    | 2101   | -3.93  | 3048         |  |
| -33              |                 |         |        |        |              |  |

| E. E                                                                                                                                                                                  | ht By Bird                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                        |                                        |                |                                                                                                            | 1                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| <sup>5.5</sup> T                                                                                                                                                                      |                                                                                                                                                                                  |                                                                                                                                                                    |                                                                                                                                                        |                                        |                |                                                                                                            | T                                                |
| 5.0-                                                                                                                                                                                  |                                                                                                                                                                                  |                                                                                                                                                                    | •                                                                                                                                                      |                                        |                |                                                                                                            |                                                  |
| 4.5-                                                                                                                                                                                  |                                                                                                                                                                                  |                                                                                                                                                                    | •                                                                                                                                                      |                                        |                |                                                                                                            |                                                  |
|                                                                                                                                                                                       |                                                                                                                                                                                  | /                                                                                                                                                                  | $\Rightarrow$                                                                                                                                          |                                        | 1 (            |                                                                                                            |                                                  |
| 4.0-<br>E                                                                                                                                                                             |                                                                                                                                                                                  | $\leftarrow$                                                                                                                                                       | $\rightarrow$                                                                                                                                          |                                        |                | )                                                                                                          |                                                  |
| Se Dry Weight                                                                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                                    | $\checkmark$                                                                                                                                           |                                        |                |                                                                                                            |                                                  |
| S 3.0-                                                                                                                                                                                | •                                                                                                                                                                                |                                                                                                                                                                    | -                                                                                                                                                      | $\triangle$                            | 1              | $\frown$                                                                                                   |                                                  |
| e D                                                                                                                                                                                   | -                                                                                                                                                                                |                                                                                                                                                                    |                                                                                                                                                        | / ÷ \                                  |                | $ \neg \top$                                                                                               |                                                  |
| ° 2.5-                                                                                                                                                                                | A                                                                                                                                                                                |                                                                                                                                                                    |                                                                                                                                                        | <u> </u>                               | 1 V            | VI                                                                                                         |                                                  |
| 2.0-                                                                                                                                                                                  | $\leftarrow +$                                                                                                                                                                   | $\geq$                                                                                                                                                             |                                                                                                                                                        | $\forall$                              |                | 1                                                                                                          |                                                  |
|                                                                                                                                                                                       |                                                                                                                                                                                  |                                                                                                                                                                    |                                                                                                                                                        |                                        |                |                                                                                                            |                                                  |
| 1.5-                                                                                                                                                                                  | <u>+</u>                                                                                                                                                                         |                                                                                                                                                                    |                                                                                                                                                        |                                        |                | _                                                                                                          |                                                  |
| 1.0                                                                                                                                                                                   |                                                                                                                                                                                  | 1                                                                                                                                                                  |                                                                                                                                                        | 1                                      | All Pairs      |                                                                                                            |                                                  |
|                                                                                                                                                                                       | WB                                                                                                                                                                               | L                                                                                                                                                                  | iver                                                                                                                                                   | Egg                                    | Tukey-K        | ramer                                                                                                      |                                                  |
|                                                                                                                                                                                       | MD                                                                                                                                                                               | Bi                                                                                                                                                                 |                                                                                                                                                        |                                        | 0.05           |                                                                                                            |                                                  |
|                                                                                                                                                                                       |                                                                                                                                                                                  |                                                                                                                                                                    |                                                                                                                                                        |                                        |                |                                                                                                            | 11                                               |
| RSquare<br>RSquare A                                                                                                                                                                  | of Fit                                                                                                                                                                           |                                                                                                                                                                    | 43262<br>50174                                                                                                                                         |                                        |                | Dif=Mean[i]-M<br>Liver<br>Egg                                                                              | eanij                                            |
| RSquare<br>RSquare A<br>Root Mear<br>Mean of R<br>Observation                                                                                                                         | Adj<br>n Square Erro<br>Response<br>ons (or Sum V<br>of Variance)<br>DF Sum                                                                                                      | 0.<br>or 0.70<br>2<br>Wgts)                                                                                                                                        | 50174<br>65642<br>2.8556<br>25<br>Mean Sq                                                                                                              |                                        |                | Liver<br>Egg<br>WB<br>Alpha= 0.05<br>Comparisons fo<br>q*<br>2.51206<br>Abs(Dif)-LSD                       | or all pairs                                     |
| RSquare<br>RSquare A<br>Root Mear<br>Mean of R<br>Observation                                                                                                                         | Adj<br>n Square Erro<br>Response<br>ons (or Sum V<br>of Variance)<br>DF Sum<br>2                                                                                                 | 0.<br>or 0.70<br>2<br>Wgts)                                                                                                                                        | 50174<br>65642<br>2.8556<br>25<br>Mean Sq<br>7.66                                                                                                      | uare F Ra<br>9983 13.08<br>3621 Prob-  | 38             | Liver<br>Egg<br>WB<br>Alpha= 0.05<br>Comparisons fo<br>q*<br>2.51206<br>Abs(Dif)-LSD<br>Liver              | or all pairs<br>Live<br>-0.900                   |
| RSquare<br>RSquare A<br>Root Mear<br>Mean of R<br>Observation<br>(Analysis o<br>Source<br>Model                                                                                       | Adj<br>n Square Erro<br>Response<br>ons (or Sum V<br>of Variance)<br>DF Sum<br>2                                                                                                 | 0.<br>or 0.76<br>2<br>Wgts)<br>of Squares<br>15.339660                                                                                                             | 50174<br>65642<br>2.8556<br>25<br>Mean Sq<br>7.66<br>0.58                                                                                              | 983 13.08                              | 38<br>>F       | Liver<br>Egg<br>WB<br>Alpha= 0.05<br>Comparisons fo<br>q*<br>2.51206<br>Abs(Dif)-LSD<br>Liver<br>Egg       | Dr all pairs<br>Live<br>-0.906<br>0.336          |
| RSquare<br>RSquare A<br>Root Mean<br>Mean of R<br>Observatio<br>Analysis o<br>Source<br>Model<br>Error<br>C Total                                                                     | Adj<br>n Square Erro<br>Response<br>ons (or Sum V<br>of Variance<br>DF Sum<br>2<br>22<br>24                                                                                      | 0.<br>or 0.70<br>2<br>Wgts)<br>of Squares<br>15.339660<br>12.896556<br>28.236216                                                                                   | 50174<br>65642<br>2.8556<br>25<br>Mean Sq<br>7.66<br>0.58                                                                                              | 6983 13.08<br>621 Prob                 | 38<br>>F       | Liver<br>Egg<br>WB<br>Alpha= 0.05<br>Comparisons fo<br>q*<br>2.51206<br>Abs(Dif)-LSD<br>Liver<br>Egg<br>WB | Dr all pairs<br>Live<br>-0.900<br>0.336<br>0.88  |
| RSquare<br>RSquare A<br>Root Mean<br>Mean of R<br>Observation<br>Analysis o<br>Source<br>Model<br>Error<br>C Total                                                                    | Adj<br>n Square Erro<br>Response<br>ons (or Sum V<br>of Variance)<br>DF Sum<br>2<br>22<br>24<br>24                                                                               | 0.<br>or 0.76<br>Wgts)<br>of Squares<br>15.339660<br>12.896556<br>28.236216                                                                                        | 50174<br>65642<br>2.8556<br>25<br>Mean Sq<br>7.66<br>0.58<br>1.17                                                                                      | 3983 13.083<br>3621 Prob<br>7651 0.000 | 38<br>>F       | Liver<br>Egg<br>WB<br>Alpha= 0.05<br>Comparisons fo<br>q*<br>2.51206<br>Abs(Dif)-LSD<br>Liver<br>Egg       | Dr all pairs<br>Live<br>-0.900<br>0.336<br>0.88  |
| RSquare<br>RSquare A<br>Root Mean<br>Mean of R<br>Observatio<br>Analysis o<br>Source<br>Model<br>Error<br>C Total<br>Means for<br>Level                                               | Adj<br>n Square Erro<br>Response<br>ons (or Sum V<br>of Variance)<br>DF Sum<br>2<br>22<br>24<br>r Oneway And<br>Number                                                           | 0.<br>or 0.70<br>2<br>Wgts)<br>of Squares<br>15.339660<br>12.896556<br>28.236216<br>ova                                                                            | 50174<br>65642<br>2.8556<br>25<br>Mean Sq<br>7.66<br>0.58<br>1.17<br>Std Error                                                                         | 3983 13.083<br>3621 Prob<br>7651 0.000 | 38<br>>F       | Liver<br>Egg<br>WB<br>Alpha= 0.05<br>Comparisons fo<br>q*<br>2.51206<br>Abs(Dif)-LSD<br>Liver<br>Egg<br>WB | Dr all pairs<br>Live<br>-0.900<br>0.336<br>0.88  |
| RSquare<br>RSquare A<br>Root Mear<br>Mean of R<br>Observation<br>Analysis o<br>Source<br>Model<br>Error<br>C Total<br>Means for<br>Level<br>WB                                        | Adj<br>n Square Erro<br>Response<br>ons (or Sum V<br>of Variance)<br>DF Sum<br>2<br>22<br>24<br>r Oneway Ano<br>Number<br>9                                                      | 0.<br>or 0.70<br>2<br>Wgts)<br>of Squares<br>15.339660<br>12.896556<br>28.236216<br>28.236216<br>0va<br>Mean<br>2.07333                                            | 50174<br>65642<br>2.8556<br>25<br>Mean Sq<br>7.66<br>0.58<br>1.17<br>Std Error<br>0.25521                                                              | 3983 13.083<br>3621 Prob<br>7651 0.000 | 38<br>>F       | Liver<br>Egg<br>WB<br>Alpha= 0.05<br>Comparisons fo<br>q*<br>2.51206<br>Abs(Dif)-LSD<br>Liver<br>Egg<br>WB | br all pairs<br>Live<br>-0.900<br>0.33<br>0.88   |
| RSquare<br>RSquare A<br>Root Mean<br>Mean of R<br>Observation<br>Analysis o<br>Source<br>Model<br>Error<br>C Total<br>Means for<br>Level<br>WB<br>Liver                               | Adj<br>n Square Erro<br>Response<br>ons (or Sum V<br>of Variance)<br>DF Sum<br>2<br>22<br>24<br>r Oneway And<br>Number<br>9<br>9                                                 | 0.<br>or 0.76<br>Wgts)<br>of Squares<br>15.339660<br>12.896556<br>28.236216<br>0va<br>Mean<br>2.07333<br>3.86778                                                   | 50174<br>65642<br>2.8556<br>25<br>Mean Sq<br>7.66<br>0.58<br>1.17<br>Std Error<br>0.25521<br>0.25521                                                   | 3983 13.083<br>3621 Prob<br>7651 0.000 | 38<br>>F       | Liver<br>Egg<br>WB<br>Alpha= 0.05<br>Comparisons fo<br>q*<br>2.51206<br>Abs(Dif)-LSD<br>Liver<br>Egg<br>WB | Dr all pairs<br>Live<br>-0.90<br>0.33<br>0.88    |
| RSquare<br>RSquare A<br>Root Mean<br>Mean of R<br>Observation<br>Analysis o<br>Source<br>Model<br>Error<br>C Total<br>Means for<br>Level<br>WB<br>Liver<br>Egg                        | Adj<br>n Square Erro<br>Response<br>ons (or Sum V<br>of Variance)<br>DF Sum<br>2<br>22<br>24<br>r Oneway And<br>Number<br>9<br>9<br>7                                            | 0.<br>or 0.7<br>2<br>Wgts)<br>of Squares<br>15.339660<br>12.896556<br>28.236216<br>0va<br>Mean<br>2.07333<br>3.86778<br>2.56000                                    | 50174<br>65642<br>2.8556<br>25<br>Mean Sq<br>7.66<br>0.58<br>1.17<br>Std Error<br>0.25521<br>0.25521<br>0.28939                                        | 3983 13.083<br>3621 Prob<br>7651 0.000 | 38<br>>F       | Liver<br>Egg<br>WB<br>Alpha= 0.05<br>Comparisons fo<br>q*<br>2.51206<br>Abs(Dif)-LSD<br>Liver<br>Egg<br>WB | Live<br>-0.90<br>0.33<br>0.88                    |
| RSquare<br>RSquare A<br>Root Mean<br>Mean of R<br>Observation<br>Analysis o<br>Source<br>Model<br>Error<br>C Total<br>Means for<br>Level<br>WB<br>Liver<br>Egg                        | Adj<br>n Square Erro<br>Response<br>ons (or Sum V<br>of Variance)<br>DF Sum<br>2<br>22<br>24<br>r Oneway And<br>Number<br>9<br>9                                                 | 0.<br>or 0.7<br>2<br>Wgts)<br>of Squares<br>15.339660<br>12.896556<br>28.236216<br>0va<br>Mean<br>2.07333<br>3.86778<br>2.56000                                    | 50174<br>65642<br>2.8556<br>25<br>Mean Sq<br>7.66<br>0.58<br>1.17<br>Std Error<br>0.25521<br>0.25521<br>0.28939                                        | 3983 13.083<br>3621 Prob<br>7651 0.000 | 38<br>>F       | Liver<br>Egg<br>WB<br>Alpha= 0.05<br>Comparisons fo<br>q*<br>2.51206<br>Abs(Dif)-LSD<br>Liver<br>Egg<br>WB | Dr all pairs<br>Live<br>-0.90<br>0.33<br>0.88    |
| RSquare<br>RSquare A<br>Root Mean<br>Mean of R<br>Observation<br>Analysis o<br>Source<br>Model<br>Error<br>C Total<br>Means for<br>Level<br>WB<br>Liver<br>Egg<br>Std Error u         | Adj<br>n Square Erro<br>Response<br>ons (or Sum V<br>of Variance)<br>DF Sum<br>2<br>22<br>24<br>r Oneway And<br>Number<br>9<br>9<br>7                                            | 0.<br>or 0.76<br>2<br>Ngts)<br>of Squares<br>15.339660<br>12.896556<br>28.236216<br>28.236216<br>0va<br>Mean<br>2.07333<br>3.86778<br>2.56000<br>estimate of       | 50174<br>65642<br>2.8556<br>25<br>Mean Sq<br>7.66<br>0.58<br>1.17<br>Std Error<br>0.25521<br>0.25521<br>0.28939                                        | 3983 13.083<br>3621 Prob<br>7651 0.000 | 38<br>>F       | Liver<br>Egg<br>WB<br>Alpha= 0.05<br>Comparisons fo<br>q*<br>2.51206<br>Abs(Dif)-LSD<br>Liver<br>Egg<br>WB | Dr all pairs<br>Live<br>-0.90<br>0.33<br>0.88    |
| RSquare<br>RSquare A<br>Root Mean<br>Mean of R<br>Observation<br>Analysis o<br>Source<br>Model<br>Error<br>C Total<br>Means for<br>Level<br>WB<br>Liver<br>Egg<br>Std Error u         | Adj<br>n Square Erro<br>Response<br>ons (or Sum V<br>of Variance)<br>DF Sum<br>2<br>22<br>24<br>r Oneway And<br>Number<br>9<br>9<br>7<br>uses a pooled                           | 0.<br>or 0.70<br>2<br>Wgts)<br>of Squares<br>15.339660<br>12.896556<br>28.236216<br>28.236216<br>0va<br>Mean<br>2.07333<br>3.86778<br>2.56000<br>estimate of       | 50174<br>65642<br>2.8556<br>25<br>Mean Sq<br>7.66<br>0.58<br>1.17<br>Std Error<br>0.25521<br>0.25521<br>0.25521<br>0.28939<br>error varian             | 5983 13.083<br>3621 Prob<br>7651 0.000 | 38<br>>F<br>02 | Liver<br>Egg<br>WB<br>Alpha= 0.05<br>Comparisons fo<br>q*<br>2.51206<br>Abs(Dif)-LSD<br>Liver<br>Egg<br>WB | Dr all pairs<br>Live<br>-0.900<br>0.336<br>0.88  |
| RSquare<br>RSquare A<br>Root Mean<br>Mean of R<br>Observation<br>Source<br>Model<br>Error<br>C Total<br>Means for<br>Level<br>WB<br>Liver<br>Egg<br>Std Error u<br>Means and<br>Level | Adj<br>n Square Erro<br>Response<br>ons (or Sum V<br>of Variance)<br>DF Sum<br>2<br>22<br>24<br>r Oneway And<br>Number<br>9<br>9<br>7<br>uses a pooled                           | 0.<br>or 0.76<br>2<br>Ngts)<br>of Squares<br>15.339660<br>12.896556<br>28.236216<br>0va<br>Mean<br>2.07333<br>3.86778<br>2.56000<br>estimate of<br>Mean            | 50174<br>65642<br>2.8556<br>25<br>Mean Sq<br>7.66<br>0.58<br>1.17<br>Std Error<br>0.25521<br>0.25521<br>0.25521<br>0.28939<br>error varian             | 5983 13.083<br>3621 Prob<br>7651 0.000 | 38<br>F<br>02  | Liver<br>Egg<br>WB<br>Alpha= 0.05<br>Comparisons fo<br>q*<br>2.51206<br>Abs(Dif)-LSD<br>Liver<br>Egg<br>WB | Dr all pairs<br>Live<br>-0.906<br>0.338<br>0.887 |
| RSquare<br>RSquare A<br>Root Mean<br>Mean of R<br>Observatio<br>Analysis o<br>Source<br>Model<br>Error<br>C Total<br>Means for<br>Level<br>WB<br>Liver<br>Egg<br>Std Error u          | Adj<br>n Square Erro<br>Response<br>ons (or Sum V<br>of Variance)<br>DF Sum<br>2<br>22<br>24<br>r Oneway And<br>Number<br>9<br>9<br>7<br>uses a pooled<br>Std Deviatio<br>Number | 0.<br>or 0.76<br>2<br>Ngts)<br>of Squares<br>15.339660<br>12.896556<br>28.236216<br>0va<br>Mean<br>2.07333<br>3.86778<br>2.56000<br>estimate of<br>Mean<br>2.07333 | 50174<br>65642<br>2.8556<br>25<br>Mean Sq<br>7.66<br>0.58<br>1.17<br>Std Error<br>0.25521<br>0.25521<br>0.28939<br>error varian<br>Std Dev<br>0.835314 | 5983 13.083<br>3621 Prob<br>7651 0.000 | 38<br>>F<br>02 | Liver<br>Egg<br>WB<br>Alpha= 0.05<br>Comparisons fo<br>q*<br>2.51206<br>Abs(Dif)-LSD<br>Liver<br>Egg<br>WB | Dr all pairs<br>Live<br>-0.906<br>0.338<br>0.887 |

1

Table 9 - Statistical analysis of selenium levels among tissues in cliff swallows.

| Dif=Mean[i]-Mean[j]                     | Live          | -      | -          |           | WB      |
|-----------------------------------------|---------------|--------|------------|-----------|---------|
|                                         |               |        |            | 3g        |         |
| Liver                                   | 227.5         | 0000   | 1.30       | 0778      | 1.79444 |
| Egg                                     | -1.30         | 778    | 0.00       | 0000      | 0.48667 |
| WB                                      | -1.79         | 444    | -0.48      | 667       | 0.00000 |
| Alpha= 0.05                             |               |        |            |           |         |
| Comparisons for all p                   | airs using    | g Tuke | y-Kram     | er HSI    | D       |
| q*                                      |               |        |            |           |         |
| ч                                       |               |        |            |           |         |
| 2.51206                                 |               |        |            |           |         |
| 2.51206                                 | iver          | E      | eg i       | V         | V₿      |
| 2.51206<br>Abs(Dif)-LSD L:              | iver<br>90667 |        | gg<br>3851 | V<br>0.88 |         |
| 2.51206<br>Abs(Dif)-LSD Li<br>Liver -0. |               | 0.3    |            |           | 777     |

| Se Dry Weight By Tissue)           11           10           9                                                                                                                                                   | Table 10 - Statistical<br>analysis of<br>selenium leve<br>among tissues |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| B<br>T<br>B<br>T<br>C<br>B<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                      | Western kingb                                                           |
| Tissue                                                                                                                                                                                                           | 0.05                                                                    |
| Oneway Anova                                                                                                                                                                                                     | (Means Comparisons)                                                     |
| Summary of Fit                                                                                                                                                                                                   | Dif=Mean[i]-Mean[j] Liver Egg WB                                        |
| RSquare 0.513906                                                                                                                                                                                                 | Liver 0.00000 0.73143 3.94700                                           |
| RSquare Adj 0.473398                                                                                                                                                                                             | Egg -0.73143 0.00000 3.21557                                            |
| Root Mean Square Error 1.839892                                                                                                                                                                                  | WB -3.94700 -3.21557 0.00000                                            |
| Mean of Response 5.108519                                                                                                                                                                                        | Alpha= 0.05                                                             |
| Observations (or Sum Wgts) 27                                                                                                                                                                                    | Comparisons for all pairs using Tukey-Kramer HSD                        |
| (Analysis of Variance)                                                                                                                                                                                           | 2.49729                                                                 |
| Source DF Sum of Squares Mean Square F Ratio                                                                                                                                                                     | Abs(Dif)-LSD Liver Egg WB                                               |
| Model 2 85.89345 42.9467 12.6866                                                                                                                                                                                 | Liver -2.05483 -1.53288 1.89217                                         |
| Error 24 81.24490 3.3852 Prob>F                                                                                                                                                                                  | Egg -1.53288 -2.45599 0.95126                                           |
| C Total 26 167.13834 6.4284 0.0002                                                                                                                                                                               |                                                                         |
| (Means for Oneway Anova )                                                                                                                                                                                        | Positive values show pairs of means that are significantly different    |
|                                                                                                                                                                                                                  |                                                                         |
| Level Number Mean Std Error<br>Egg 7 6.02857 0.69541                                                                                                                                                             |                                                                         |
| Liver 10 6.76000 0.58183                                                                                                                                                                                         |                                                                         |
| WB 10 2.81300 0.58183                                                                                                                                                                                            |                                                                         |
| Std Error uses a pooled estimate of error variance                                                                                                                                                               |                                                                         |
| Means and Std Deviations                                                                                                                                                                                         | Ţ,                                                                      |
| Level Number Mean Std Dev Std Err Mean                                                                                                                                                                           |                                                                         |
|                                                                                                                                                                                                                  |                                                                         |
| Egg 7 6.02857 1.94436 0.73490                                                                                                                                                                                    |                                                                         |
| Egg         7         6.02857         1.94436         0.73490           Liver         10         6.76000         2.15273         0.68075           WB         10         2.81300         1.36843         0.43274 |                                                                         |

able 10 - Statistical analysis of selenium levels among tissues in western kingbirds.