MEMORANDUM

To: Royce Huber, Mark Lindvall, and Wayne Stancill
From: Dave Willis and Craig Paukert
Date: February 11, 2000

Re: Federal Aid Completion Report and New Federal Aid Proposal

Good day to everyone. Please find two enclosures with this cover letter.
First, enclosed is a copy of the completion report for the 2-year Federal Aid in Sport Fish Restoration project "Factors Affecting Panfish Populations in Sandhill Lakes." The report includes lakes both on and outside of the Valentine National Wildlife Refuge. There will be numerous, more specific products developed from this information (e.g., journal publications) and we will provide you with reprints of those articles as well.

Second, we have also enclosed the federal aid proposal for the next proposed aspect of research for panfish in Sandhill lakes. We realize that some of you have seen this proposal, and others have not. We apologize for any misunderstandings, and hope that inclusion of the new proposal with mailing of the completion report will result in everyone being "on the same page." We are excited about the new research, and are certain that you will find the results quite useful.

Thank you, once again, for your continued assistance in all aspects of this research. We sincerely appreciate all of your help over the last 2 years, and hope we can maintain our good working relationship.

Please contact us if you have additional questions.
cc: Rick Holland

SOUTH DAKOTA STATE UNIVERSITY DEPARTMENT OF WILDLIFE AND FISHERIES SCIENCES

 ANDSTATE OF NEBRASKA GAME AND PARKS COMMISSION FISHERIES DIVISION

Federal Aid in Sport Restoration

> Dingell - Johnson Project F-118-R

Final Report

Study I
Factors Affecting Panfish Populations in Sandhill Lakes

Job I
Factors Affecting Panfish Populations in Sandhill Lakes
1 March 1998 through 28 February 2000

COMPLETION REPORT

State: Nebraska
Project No: F-118-R
Study Number: I

Segment Number: I

Project Title: Sandhill Lakes Fisheries Management Project
Period Covered: 1 March 1998 through 28 February 2000

Study Title and Objectives:

Factors Affecting Panfish Populations in Sandhill Lakes

1. Determine the physical, chemical, and biological factors that are related to bluegill, black crappie, and yellow perch recruitment, growth, and mortality in Sandhill Lakes.

Introduction: While Sandhill lakes produce quality fishing for a number of species, most anglers fish these lakes to catch large yellow perch Perca flavescens, bluegill Lepomis macrochirus and black crappie Pomoxis nigromaculatus. At this time, factors responsible for the production of high quality yellow perch, bluegill and black crappie populations in Sandhill lakes are unclear. Recently the Nebraska Game and Parks Commission (NGPC) purchased three Sandhill lakes and more purchases are being considered. Thus, there is a need to determine which Sandhill lakes are most likely to produce high-quality panfish.
(1) Job Objective I-1:

Determine the physical, chemical, and biological factors that are related to bluegill, black crappie, and yellow perch recruitment, growth, and mortality in Sandhill Lakes.
(a) Activity.

Fish Population Assessments

Largemouth bass Micropterus salmoides and common carp Cyprinus carpio were sampled by electrofishing, and all other fish species were sampled by trap netting during May through June of 1998 and 1999. Fifteen Sandhill lakes were sampled each year. An attempt was made to electrofish 12 stations along the shoreline or vegetation edge for 10 min each at each lake. Pulsed-DC current with $3-6 \mathrm{~A}$ and $200-250 \mathrm{~V}$ was used to attract fish toward the electrodes and minimize tissue damage. Catch per unit effort (CPUE) by boat electrofishing was expressed as the number of stock-length fish collected per hour of energized field time. Each lake was sampled with overnight sets of double-throated trap (i.e., modified fyke) nets with $16-\mathrm{mm}$ bar measure mesh, 1.1-by 1.5-m frames, and 22-m leads. Catch per unit effort in trap nets was expressed as the number of stock-length fish captured per net night. Total sampling effort was 10 trap net nights in lakes <50 ha and 20 trap net nights in lakes ≥ 50 ha.

Scales or spines were taken from bluegills, black crappies, yellow perch, largemouth bass, northern pike Esox lucius, and black bullheads Ameiurus melas for age and growth analyses. During each sampling period, scales or spines were collected from up to 10 individuals per species per centimeter length group and these fish were weighed to the nearest gram and measured for total length (TL) to the nearest millimeter. All additional fish collected were tallied by centimeter length groups by species.

Fish condition was quantified using relative weight (Wr) and standard weight equations summarized by Anderson and Neumann (1996). Mean Wr values were calculated for the five-cell length category model for various species (Gabelhouse 1984a). We omitted length groups that contained less than three fish.

Size structure of the fish populations was visually assessed using length frequency histograms, and quantified using stock density indices (Gabelhouse 1984a; Anderson and Neumann 1996). Confidence intervals (95\%) were calculated for stock density indices using calculations derived from Gustafson (1988). Stock density indices were calculated only when at least 20 stock-length fish were collected.

Recruitment was quantified using the recruitment variability index (RVI; Guy and Willis 1995). This index used the rationale of a catch curve (Ricker 1975) to quantify fluctuations in year-class strength. The RVI ranged from-1 to 1 , with populations having more stable (consistent) recruitment being closer to 1 . Very inconsistent recruitment would result in an RVI value close to -1. For this analysis, we used only ages that were fully recruited to the gear (i.e., age 2 and older), only used populations that had a minimum of three year classes present, and did not use populations where the number of missing year classes equaled or exceeded the number of year classes present (Guy and Willis 1995).

Biological Assessments

Phytoplankton community biomass was measured in late June and early July 1998 and 1999 at each of the 30 lakes by chlorophyll a extraction using 90% alkalized acetone from filtered water samples. Samples were taken at each of four offshore
sampling stations. Duplicate $100-$ to $300-\mathrm{mL}$ aliquots from the integrated water samples were filtered through glass-fiber filters and extracted by methods described by Lind (1985).

The zooplankton community was sampled during late June and early July using a 2-m integrated tube sampler filtered through a $65-\mu \mathrm{m}$ mesh net. Samples were collected at four offshore sampling stations, and then preserved in a 10% buffered formalin solution. In the laboratory, zooplankton were identified to genus and enumerated. A maximum of 120 individuals of each genus was measured.

Benthos were collected in late June and early July using an Ekman dredge. Composite samples, each consisting of three bottom grabs, were taken at each of four offshore sampling stations. Composite samples were hand seived in the field to condense the volume of each sample, then preserved using a 5% formalin solution. Macroinvertebrates were identified to the lowest necessary taxon and enumerated using a dissecting microscope in the laboratory.

Physical and Chemical Assessments

Physical and chemical parameters were measured during late June and early July at each of four offshore sampling stations in each lake. Water temperature and dissolved oxygen profiles were taken using electronic probes at each sampling station starting at the surface and at $0.5-\mathrm{m}$ depth intervals to the bottom. Secchi disk transparency was measured to the nearest cm . Water samples were collected at the four sampling stations to determine alkalinity, total phosphorus and total dissolved solids.

Topographical maps and aerial photographs were used to calculate the shoreline development index (SDI; Lind 1985) for each lake. Alkalinity, total phosphorus and turbidity analyses were completed with Hach kits. Total dissolved solids and conductivity were determined with an electronic meter.

Vegetation and substrate were quantified on all 30 lakes in July 1999. Five to seven evenly spaced transects across each lake were established. At 50- to 200-m intervals along each transect, vegetation and substrate were classified. Vegetation was classified as either emergent, submergent, or floating at a $1-\mathrm{m}^{2}$ grid along side of the boat. Within each vegetation class, vegetation density was classified as either sparse (stems $>16 \mathrm{~cm}$ apart on average), moderate (stems 5-15 cm apart on average), or dense (stems <5 cm apart on average). Substrate was classified (nearest 10\%) as either sand, muck, gravel, cobble, or other (detritus, woody debris, clay) using an Ekman dredge. Percent coverage of vegetation or substrate classes was calculated as the number of sites of that class divided by the total number of sites in that lake.

Mean depth and maximum depth were calculated using measurements (nearest 0.1 m) taken at each of the above mentioned vegetation and substrate sites. Mean depth was calculated by dividing the sum of all the depth measurement for each lake by the numbers of sites on each lake.

Statistical analysis

Pearson correlation analysis was used to determine bivariate relationships among two variables or, when at least one of the variables was not normally distributed, a Spearman rank correlation was used. Multiple regression was used to determine
what variables were important in predicting panfish size structure (proportional stock density; PSD), growth (mean length at age 3), and condition (mean Wr of stock- to quality- length fish). Mean length at age-3 was used as an index of growth in these models because this was the youngest age that would discriminate between fast and slow growing populations. Older ages were not used because ageing precision may be diminished for older ages when using scales. In all regression analyses, collinearity and influence diagnostics were used (Freund and Littel 1991). To compare variables in lakes with and without common carp, a t-test or, when the assumption of normality was not met, a Wilcoxon rank sum test was used with presence or absence of common carp as the class variable. To reduce the number of variables to interpret from the physicochemical data and vegetation and substrate, principal components analysis was used (Johnson 1998). Because sampling instability may arise when the sample size is less than three times the number of variables (Williams and Titus 1988), we attempted to reduce the number of variables by eliminating one of a set of two variables that were highly correlated with each other (e.g., we used either total dissolved solids or conductivity, not both). Correlations were then determined between fish population indices and the principal component scores.

(b) Target Date for Achievement:

Sampling and data collection for all 30 study lakes were completed in July 1999. All data analysis is complete.
(c) Date of Accomplishment:

Activities are proceeding on schedule.
(d) Significant Deviations:

None.
(e) Remarks:

Physicochemical and Biological Assessments

Physicochemical characteristics (Appendices 1-2). Thirty lakes were selected in Brown, Cherry, Garden, Grant, Holt, and Rock counties in Nebraska. Water chemistry, physical lake features, vegetation and substrate, fish communities, and invertebrates are summarized in appendices beginning on page 73. Surface area of the study lakes ranged from 15 to 907 ha. Most lakes were shallow (maximum depth $1.5-4.0 \mathrm{~m}$) and almost entirely littoral zone (mean depth 1.0-2.9 m). Secchi disk transparency was highly variable (14-258 cm) and most lakes had low to moderate productivity. Alkalinity was moderate to high, with five lakes having $>200 \mathrm{mg} / \mathrm{L}$ total alkalinity.

Vegetation (Appendix 3). All lakes had at least 4.5\% total vegetation coverage. However, 17 lakes had at least 50% total vegetation coverage. All vegetation types (submergent, emergent, and floating) were highly variable among lakes. However, dense submergent vegetation covered $>25 \%$ of seven lakes. Floating vegetation was found in only three lakes (Dewey, Schoolhouse, West Long).

Fish Population Sampling

Black Bullhead (Appendices 5-7). A total of 14,148 black bullheads were collected by trap nets in 25 of the 30 study lakes. Of the 25 lakes, six had CPUE rates that exceeded 50 stock-length fish/net night. Proportional stock density ranged from 0 to 100. Only one lake had an RSD-M value >0 (Hackberry Lake, RSD-M $=10$). A total of 582 black bullheads were aged from spines; maximum age was 8 (Willow and Marsh lakes). Black bullheads in Clear (Brown County), Hackberry, and Schoolhouse lakes reached 300 mm by age 4 .

Black crappie (Appendices 8-11). A total of 737 black crappies were collected in trap nets in 12 of the 30 study lakes. Catch per unit effort was variable, ranging from 0.05 to 21.7 stock-length fish/net night. Five lakes (Big Alkali, Island, Medicine, Shell, and Twin) had memorable-length (30 cm) and longer fish, while Big Alkali was the only lake with trophy-length $(38 \mathrm{~cm})$ and longer fish. Relative stock density of memorable-length fish ranged from 0 (Cozad, Hagan, Schoolhouse, Tower) to 81 (Twin). Relative weight for all populations and length groups was moderate to high (range in mean Wr for various length groups was 82-123). However, longer fish generally had lower condition. A total of 308 black crappies were aged from eight lakes. Maximum age was 11 (Medicine Lake). The Hagan Lake sample was dominated by almost exclusively age-1 fish, indicating either highly erratic recruitment or a newly introduced population.

Bluegill (Appendices 12-15). Twenty-two of the 30 lakes sampled contained bluegills; we collected 12,906 bluegills in trap nets. Catch per unit effort ranged from 0.05 stock-
length fish/net night (Big Alkali) to 232.5 stock-length fish/net night (Cozad). Of the seven lakes producing memorable-length and longer fish, Pelican Lake had the highest CPUE (7.4 memorable-length fish/net night). Condition indices were usually high (mean W>100) in most lakes and length groups. Only two lakes (Cottonwood and Shell) had any length group with a mean Wr below 100. Proportional stock density values were also generally high (16-99), with eight lakes having PSD values between 60 and 80 . Scales were aged for 1,366 bluegills in 20 lakes. Maximum age was 13 (Cottonwood Lake); however, most lakes (17) contained age-7 and older fish. Thirteen bluegill populations attained a mean length of at least 180 mm by age 4. In contrast, Cottonwood Lake bluegill growth was very slow, where they reached 180 mm at age 11.

Common carp (Appendices 16-17). A total of 258 common carp were collected by electrofishing in nine study lakes. Catch per unit effort for stock-length and longer ranged from 0/hr (Cameron Lake, where common carp were collected in trap nets) to 77.1/hr (Home Valley). However, fewer than five common carp were collected in four of the nine lakes. Stock density indices were all high, with four lakes having common carp PSD values of 100. However, only Clear and Dewey lakes contained trophylength (84 cm) and longer fish. Condition of common carp was generally low to moderate (mean Wr range in various length groups was $68-120$).

Green Sunfish Lepomis cyanellus (Appendices 18-19). A total of 6,810 green sunfish were collected in 10 lakes using trap nets. However, 85% of the fish $(5,794)$ were collected in Hagan Lake. Catch per unit effort for stock-length fish ranged from $0.2 /$ trap net night (Cozad Lake) to 1,448.5/trap net night (Hagan Lake). Nine of the 10 lakes
had CPUE values <20 fish/trap net night. Hagan Lake was the only lake where we collected preferred-length (i.e., $\geq 200 \mathrm{~mm}$) fish. No memorable-length (i.e., $\geq 250 \mathrm{~mm}$) fish were collected in any of the study lakes. Stock density indices were generally low, with all lakes having green sunfish PSD values of 35 or less. Relative stock density of preferred-length fish was 0 in all lakes. Condition was usually high, with all but two lakes (Lackaff West and Round) having mean Wr for all length groups ≥ 100.

Largemouth bass (Appendices 20-22). A total of 2,604 largemouth bass were collected by electrofishing in 22 of the 30 study lakes. However, no stock-length fish were collected in Hagan Lake. Few memorable-length (51 cm) were collected in any lake. Relative stock density of memorable-length fish was 0 in all waters except Clear Lake (Brown County; RSD-M=1), Duck (RSD-M=2), Goose (RSD-M=3), Medicine (RSD$M=1$), and West Long (RSD-M=2). Condition was moderate to high in all populations and length groups. The lowest mean Wr value was 95 for Cozad and Alkali lake stockto quality-length fish; the highest was 127 for Dewey, Pelican, and Twin lake preferredto memorable-length fish. Scales were aged from 1,275 largemouth bass from 19 lakes. Maximum age was 13 (Medicine Lake) years; fourteen of the 19 population samples contained fish at least 9 years of age.

Northern pike (Appendices 23-25). Trap netting collected 324 northern pike in 16 of the study lakes. In four of the 16 lakes, we collected fewer than 10 northern pike (Clear on the Valentine National Wildlife Refuge (VNWR), Cottonwood, Marsh, and West Long). Catch per unit effort for stock-length fish was low, ranging from 0.1 to 2.6. Proportional stock density vales were high (>42) for all lakes. However, RSD-M values were 0 in all
lakes except Dewey, (RSD-M=14), Hackberry (RSD-M=15), Shell (RSD-M=3) and Twin Lake (RSD-M=9). Condition was generally low, with the range of mean $W r$ values for all lakes and length groups being 68-102. Scales were aged for 255 northern pike from 11 lakes. Maximum age was 10 (Dewey Lake), and seven of the 11 lakes contained northern pike at least 6 years old.

Pumpkinseed Lepomis gibbosus (Appendices 26-27). A total of 310 pumpkinseed were collected in eight of the 30 lakes. Catch per unit effort for stock-length was low, ranging from 0.55-4.50/trap net night. We sampled no quality-length (i.e., $\geq 150 \mathrm{~mm}$) fish in Clear Lake on the VNWR and Shell Lake. Proportional stock density ranged from 0 (Clear and Shell lakes) to 69 (Medicine Lake). Relative stock density of preferred length fish was 0 in all lakes. Condition was usually high, with all but Shell Lake population samples having mean $W r$ for all length groups >100.

Yellow perch (Appendices 28-31). A total of 8,250 yellow perch were collected from 29 study lakes. No yellow perch were collected from Shoup Lake. Catch per unit effort was highly variable, ranging from 0.05 fish/trap net night (Big Alkali Lake) to 120.8 fish/net (Hagan Lake). Eleven of the lakes had RSD-M values >0, with Marsh Lake (VNWR) having the highest value (RSD-M=31). Scales were aged for 1,644 yellow perch from 24 lakes. Growth was variable, with mean back-calculated length at age 2 ranging from 104 to 186 mm , and mean length at age 6 ranging from 194 to 306 mm . Maximum age was 12 (Marsh Lake), and 21 of 24 population samples contained fish at least age 7.

Invertebrate sampling

Zooplankton- (Appendix 32). Total zooplankton relative abundance ranged from 78 organisms/L (Alkali Lake) to 2,466 organisms/L (Twin Lake). Bosmina were found in 26 of the 30 lakes and relative abundance ranged from 1/L (Alkali Lake) to 630/L (Goose Lake). Daphnia were found in 22 lakes. Of these, nine lakes had >50 Daphnia/L. Copepod nauplii were collected in all lakes, while Keratella and Cyclops were found in 29 lakes.

Benthos (Appendix 33). Benthic invertebrate relative abundance was extremely variable, ranging from 62 organisms $/ \mathrm{m}^{2}$ to 54,275 organisms $/ \mathrm{m}^{2}$. Chironomids were found in all lakes, and relative abundance ranged from $14 / \mathrm{m}^{2}$ (Defair Lake) to $2,493 / \mathrm{m}^{2}$ (Goose Lake). Seventeen lakes had >500 chironomids $/ \mathrm{m}^{2}$. Gastropod relative abundance also varied substantially. Shell Lake had the highest relative abundance ($54,112 / \mathrm{m}^{2}$); however, Alkali, Cottonwood, Defair, Goose, Marsh, Marsh (VNWR), Schoolhouse, and Willow lakes all had $>1,000$ gastropods $/ \mathrm{m}^{2}$.

Panfish Relationships

Bluegill

Few relationships were found between bluegill population parameters and physicochemical variables. However, shoreline development index was positively associated with mean $W r$ of stock- to quality-length bluegill ($r=0.58 P=0.01$; Figure 1). Lakes with a more irregular shoreline had higher bluegill condition. Multiple regression
revealed that bluegill mean length at age 3 increased with higher shoreline development index (SDI) and chlorophyll a concentration [bluegill mean length at age 3 $=79.60+30.24($ SDI $)-1.43$ (chlorophyll a); $\mathrm{P}=0.017$]. However, this model did not have high predictive power $\left(R^{2}=0.36\right)$. Bluegill PSD increased with increasing total alkalinity and decreasing mean lake depth [bluegill PSD $=64.95-16.88$ (mean lake depth) +0.15 (total alkalinity); $\left.\mathrm{R}^{2}=0.41, \mathrm{P}=0.004\right]$. The third eigenvector of the physicochemical principal components analysis revealed that mean lake depth and lake size were associated (Table 1), and bluegill PSD increased with principal component 3 ($\mathrm{r}=0.52$ $P=0.02$; Figure 2). Bluegill $P S D$ tended to be higher in smaller, more shallow lakes. Bluegill PSD was positively related to bluegill mean length at age $3(r=0.70$ $\mathrm{P}<0.01$; Figure 3), indicating that size structure and growth were correlated. There was no inverse relationship between CPUE or relative weight and bluegill PSD, suggesting no density dependence for condition and size structure among all populations. However, in smaller lakes (i.e., <50 ha) mean length at age 2 was lower when bluegill relative abundance was high ($r=-0.82 \mathrm{P}=0.02$; Figure 4). In larger lakes, (i.e., $\geq 50 \mathrm{ha}$) this relationship was not evident ($r=-0.22 P=0.46$; Figure 4).

Relations between bluegill and the two primary predators in these lakes, largemouth bass and northern pike, indicated that largemouth bass was most likely the primary predator even when the two predators coexisted with bluegills. Largemouth bass and bluegill PSD were inversely related ($r=-0.49 P=0.03$; Figure 5), and bluegill PSD increased with higher largemouth bass CPUE ($r=0.52 \mathrm{P}=0.02$; Figure 6). Largemouth bass may influence bluegill size structure by preying on the smaller bluegill in these lakes. Few relationships were evident between bluegill and northern pike.

However, bluegill PSD was positively related to mean Wr for quality- to preferred-length northern pike ($r=0.87 \mathrm{P}=0.003$; Figure 7).

Few relationships were found between bluegill population characteristics and benthic invertebrate abundance. However, there was a positive association between mean Wr of stock- to quality-length bluegills and dipteran abundance ($r=0.50 P=0.02$; Figure 8). This was the only indication that bluegill may be preying on benthic invertebrates. However, bluegill do appear to be preying on zooplankton. Mean Wr of stock- to quality-length bluegills increased with increased Daphnia abundance ($r=0.54$ $\mathrm{P}=0.03$; Figure 9). In addition, high bluegill mean length at age 2 was associated with high Daphnia mean length ($\mathrm{r}=0.51 \mathrm{P}=0.03$; Figure 9). Daphnia are most likely an important food source for bluegill.

Few bivariate relationships existed between bluegill population characteristics and the proportion of the area covered with vegetation. However, mean Wr of preferred- to memorable-length bluegills and mean length at age 4 both increased at more sparse levels of vegetation (r 's ≥ 0.46, P 's ≤ 0.06; Figure 10). In addition CPUE of bluegill decreased when there was a high proportion of sand substrate ($\mathrm{r}=0.66, \mathrm{P}=0.01$; Figure 11). High bluegill relative abundance only occurred when there was a low proportion of sand substrate. Principal components analysis also revealed that high condition, growth, and size structure of bluegill was associated with low submergent vegetation coverage (Figure 12). Therefore, there is an indication that increased vegetation within a lake may lead to lower quality (i.e., low growth, condition, and size structure) bluegill populations.

Bluegill recruitment was relatively consistent. The mean RVI was 0.44 with a range from -0.38 to 0.86 . However, only two lakes (Schoolhouse and Willow) had RVI
values below zero. There were very few missing year classes for bluegill popaultion samples from Sandhill lakes that we sampled.

Yellow Perch

There were few relationships suggesting that yellow perch population quality in the Nebraska Sandhills is related to productivity. Mean Wr of stock- to quality-length yellow perch decreased with increasing turbidity ($r=0.47, \mathrm{P}=0.02$; Figure 13). Yellow perch PSD increased with increasing alkalinity and decreased mean lake depth [yellow perch $P S D=56.41-20.43$ (mean lake depth) +0.16 (total alkalinity); $R^{2}=0.33, P=0.004$]. Shallow lakes with higher alkalinity were more likely to have high yellow perch size structure. Yellow perch mean length at age 3 was positively related to the physicochemical principal component 2 ($r=0.46, \mathrm{P}=0.03$; Figure 14). Principal component 2 was a gradient of productivity, where more productive lakes scored higher on principal component 2 (Table 1). Yellow perch thus exhibited somewhat faster growth in more productive lakes.

Similar to bluegill, yellow perch exhibited no negative relationship between CPUE and size structure and $W r$ for all population samples combined. In smaller (<50 ha) lakes, yellow perch CPUE was inversely related to yellow perch mean length at age 3 ($r=-0.65, P=0.04$; Figure 15). In the larger lakes (250 ha) this relationship appeared dome-shaped ($\mathrm{r}=0.77, \mathrm{P}=0.001$; Figure 15). In larger lakes, faster growth may occur at intermediate densities. Yellow perch RSD-P increased with increasing mean length at age $3(r=0.51, P=0.01$; Figure 16). Populations of yellow perch that had high size structure generally exhibited faster growth.

Largemouth bass apparently help structure yellow perch populations. High largemouth bass CPUE was positively related to yellow perch PSD ($\mathrm{r}=0.82, \mathrm{P}<0.001$; Figure 17). In addition, yellow perch CPUE and largemouth bass PSD were inversely related ($\mathrm{r}=-0.59, \mathrm{P}=0.007$; Figure 18). Abundant largemouth bass apparently control yellow perch by preying on smaller perch. Very few relationships existed between yellow perch and northern pike. However, an increased abundance of yellow perch was associated with increased mean Wr of stock- to quality-length northern pike ($\mathrm{r}=0.71$, $\mathrm{P}=0.009$; Figure 19), suggesting that 35 - to $53-\mathrm{cm}$ northern pike may prey on yellow perch.

Daphnia and Bosmina appear to be important food sources for yellow perch. Daphnia mean length was positively related to yellow perch mean length at age 3 ($\mathrm{r}=0.63, \mathrm{P}=0.01$; Figure 20). In, addition there was a negative relationship between yellow perch PSD and Bosmina abundance ($r=-0.53, \mathrm{P}=0.01$; Figure 21), and between yellow perch mean $W r$ for preferred- to memorable- length fish and Bosmina mean length ($r=-0.83, P=0.02$; Figure 21). However, there were no significant relationships between benthic invertebrate abundance and yellow perch population characteristics.

No significant bivariate relationships were evident between yellow perch population characteristics and the proportion of vegetation covering the lake area. However, principal components analysis revealed that high yellow perch size structure was associated with a low coverage of submergent vegetation (Figure 22). In contrast, there were some lakes that had high submergent vegetation coverage and high yellow perch condition and growth. Therefore, there is some indication that a high proportion of submergent vegetation was related to low yellow perch size structure.

Yellow perch recruitment was quite consistent, with RVI values ranging from 0.32 to 0.96 . No lakes had negative RVI values, which would suggest that recruitment was relatively stable in all 24 population samples for which RVI was calculated. Although year-class strength varied within lakes, there were few missing yellow perch year classes in any of the Sandhill lake samples.

Black crappie

Limited inferences can be drawn from the black crappie population characteristics because only 12 lakes contained black crappie. Black crappie PSD was inversely related to shoreline development index ($\mathrm{r}=-0.66, \mathrm{P}=0.07$; Figure 23). This relationship appeared to be sigmoidal, with high size structure of black crappies in lakes with more irregular shorelines. In addition, black crappie mean length at age 1 increased with mean lake depth ($r=0.81, \mathrm{P}=0.01$; Figure 24). Black crappie size structure was related to measures of productivity. Multiple regression indicated that black crappie PSD increased with conductivity and decreased with trophic state index and mean lake depth [black crappie PSD $=154.28-73.51$ (mean lake depth) -3.25 (chlorophyll a trophic state index) +0.55 (conductivity); $R^{2}=0.957 P=0.001$]. Shallow lakes with high conductivity and lower trophic state index values had higher black crappie size structure.

As with bluegill and yellow perch, there was no evidence that black crappie size structure and condition were density dependent. Black crappie size structure (i.e., PSD) was positively related to growth (i.e., mean length at age)(Table 2).

Unlike yellow perch and bluegill, black crappie PSD and largemouth bass CPUE were not related ($r=0.43, \mathrm{P}=0.34$). Thus, there was no evidence that largemouth bass
structured black crappie populations. In addition, there were only six lakes that contained both northern pike and black crappie, and no significant bivariate relations between these two species were found.

Smaller black crappie appear to prey on zooplankton and benthic invertebrates. Mean Wr of stock- to quality-length black crappies was positively related to chironomid abundance ($r=0.72, \mathrm{P}=0.04$; Figure 25) and Daphnia abundance ($r=0.89, \mathrm{P}=0.02$; Figure 25). Condition of small (i.e., stock to quality) black crappies increased when chironomids and Daphnia were abundant.

Lake vegetation coverage apparently influenced black crappie growth and size structure. When there was a high proportion of submergent vegetation within a lake, black crappie size structure was low ($\mathrm{r}=-0.75, \mathrm{P}=0.03$; Figure 26). In addition, growth was slower when there was a high proportion of submergent vegetation in a lake ($\mathrm{r}=$ $-0.93, \mathrm{P}=0.003$; Figure 26).

We could only calculate recruitment variability values for six black crappie populations. However, mean RVI was 0.38 . Only one population (Island Lake) had negative RVI value (-0.40). The remaining RVI values ranged from 0.29 (Twin) to 0.79 (Big Alkali). As with bluegill and yellow perch, few missing year classes were evident in any of the populations sampled.

Panfish interspecific relationships

Interspecific competition among bluegill and black crappie and yellow perch was not evident. High quality bluegill populations were associated with high quality yellow perch and black crappie populations. Bluegill PSD was positively related to yellow perch PSD $(r=0.58, P=0.02)$ and black crappie $P S D(r=0.77, P=0.08$; Figure 27): In addition, mean

Wr of stock- to quality-length bluegill was associated with mean $W r$ of stock- to qualitylength yellow perch ($r=0.54, \mathrm{P}=0.03$) and black crappie mean $\mathrm{Wr}(r=0.90, \mathrm{P}=0.01$; Figure 28). In general, when size structure and condition was high for one of the panfish species, it was high for all three.

Common carp effects

Common carp were found in 10 of the 30 lakes sampled. However, indices of relative abundance based on our electrofishing samples may not adequately reflect the abundance of common carp in these lakes. In one instance, we did not collect any common carp during electrofishing (the gear selected to be used to index common carp), but did collect them with trap nets. Therefore, we analyzed all common carp data as presence-absence of carp. A higher proportion of submergent vegetation was found in lakes without common carp compared to lakes with carp ($\mathrm{P}<0.001$). Lakes with common carp had an average of 14% submergent vegetation whereas lakes without carp had an average of 60% vegetation coverage (Table 3). In addition, lakes without common carp had higher secchi depth readings ($\bar{x}=150 \mathrm{~cm}$) compared to lakes with $\operatorname{carp}(\bar{x}=68 \mathrm{~cm} ; P=0.002$). Similarly, turbidity was higher in lakes containing common carp ($P=0.01$). Although maximum lake depth was not different between lakes with and without common carp ($\mathrm{P}=0.148$), mean depth was deeper in lakes containing carp $(P=0.005)$. However, there was no difference in measures of productivity (i.e., alkalinity, phosphorus, chlorophyll a, conductivity, morphoedaphic index) in lakes with and without carp (P 's>0.22) (Table 3).

The presence of common carp did not appear to directly affect panfish
populations. There was no difference in CPUE; mean length at ages 1,2,3, and 4;
mean Wr of stock- to quality-length fish; and PSD for both bluegill and yellow perch sampled from lakes with and without common carp (P 's>0.19). In addition there was also no difference in benthic invertebrate and zooplankton abundance (P 's>0.33). In contrast, lakes with common carp had lower CPUE of largemouth bass ($\bar{x}=27 / \mathrm{hr}$) compared to lakes without carp ($\bar{x}=82 / \mathrm{hr} ; \mathrm{P}=0.02$). In lakes without common carp, largemouth bass CPUE was still positively related to bluegill PSD ($r=0.60, P=0.025$) and yellow perch PSD ($r=0.69, P=0.009$). However, in lakes with common carp present, largemouth bass CPUE was not related to bluegill PSD ($r=0.09, P=0.871$) or yellow perch $\mathrm{PSD}(r=0.70 \mathrm{P}=0.188)$.

Black bullhead effects

Black bullheads were collected in 25 of the 30 study lakes. However, these fish did not appear to adversely affect the panfish populations. In contrast, yellow perch CPUE and black bullhead CPUE were positively related ($r=0.70 \mathrm{P}=0.001$; Figure 29) as were mean Wr of stock- to quality-length black bullheads and yellow perch ($r=0.60 \mathrm{P}=0.017$; Figure 30). Bluegill and black bullhead relationships were not highly correlated; however, there were no significant inverse relationships between bluegill and black bullhead population characteristics. Bluegill growth (i.e., mean length at age) was positively associated with black bullhead growth (i.e., mean length at age)(Table 4). Few relationships were evident between black bullhead and black crappie. Only nine lakes contained both of these species and most of the analyses could be assessed for fewer than six lakes. As with yellow perch and bluegill populations, there was no indication that black bullheads adversely affect black crappie abundance, size structure, condition, or growth.

Discussion

Physicochemical effects- Panfish populations were not substantially related to the physicochemical variables measured. The only significant bivariate relationships has low correlation coefficients and most multiple regression models had low coefficients of determination. However, there was some indication that panfish growth and size structure increased with increasing productivity. Both yellow perch and bluegill size structure were higher in shallow lakes with higher alkalinity. However, black crappie populations did not show these trends, at least in the few populations in our study. In forested watersheds in Mississippi, bluegill abundance increased with conductivity and size structure increased with alkalinity (Jackson and Brown-Peterson 1995). Although limited information exists specifically indicating relationships between panfish size structure and productivity, alkalinity has been associated with high fish productivity and yield (Carlander 1955; Hayes and Anthony 1964). However, Hayes and Anthony (1964) determined that fish productivity increased with lake depth and decreased with alkalinity, which is in contrast to our Nebraska Sandhill lakes study. The difference may be attributed to the wide range of North American lakes they used compared to the limited range found in the Sandhill lakes.

In the Sandhill lakes, bluegill growth increased with increasing chlorophyll a concentrations, and yellow perch growth increased with increasing measures of productivity (i.e., chlorophyll a and phosphorus). Similarly, bluegill growth in Minnesota lakes was also faster in shallow, more alkaline lakes (Tomcko 1997). Black crappie first-year growth did increase in deeper Minnesota lakes as chlorophyll a concentrations increased up to $100 \mathrm{mg} / \mathrm{L}$ (Mcinerny and Cross 1999). However, groेwth was reduced
in lakes with $\geq 100 \mathrm{mg} / \mathrm{L}$ of chlorophyll a. DiCenzo et al. (1995) also found faster growth of spotted bass Micropterus punctulatus in Alabama reservoirs with high chlorophyll a. In contrast, Theiling (1990) found no relationship between primary productivity and bluegill growth in Michigan natural lakes. In our study lakes, higher phytoplankton production most likely resulted in increased invertebrate production, which led to increased bluegill and yellow perch growth.

More irregular shorelines were related to high $W r$ values of smaller bluegills and a higher size structure of black crappie. Guy and Willis (1995) suggested that South Dakota waters with low shoreline development allowed wind and wave action to affect the black crappie reproductive process, destabilizing recruitment. In our study, recruitment was relatively consistent for all panfish species. In addition, no physicochemical variables were related to the recruitment variability index. Mitzner (1991) found that abundance of larval crappies (both species combined) was reduced in areas with increased turbidity in an lowa reservoir. If higher shoreline development decreases the influence of wind and wave action, invertebrate abundance may be higher because of lower wind-caused turbidity. Therefore, bluegill and black crappie may be more efficient in foraging for zooplankton and thus increase their condition, growth, and size structure. Tomcko (1997) also found that shoreline development was related to bluegill populations in Minnesota lakes; growth increased with increasing shoreline development index and decreased with increasing secchi transparency.

There was no evidence of a density-dependent relationship with condition or size structure for any of the three panfish species. Even when bluegill, black crappie, and yellow perch CPUE indicated high abundance, the populations still often exhibited high size structure and condition. However, the nature of these relations was confounded by
lake area. In lakes <50 ha, there was a density-dependent relationship evident for yellow perch and bluegill growth. However, this relationship was not as evident in larger lakes. In larger lakes, the environment may regulate panfish recruitment more than intraspecific competition. Novinger and Legler (1978) found an inverse relationship between bluegill biomass and PSD in Midwestern impoundments. However, these impoundments were all <2.4 ha. Hill and Willis (1993) found similar relationships with largemouth bass biomass and size structure in South Dakota impoundments. Other studies have suggested that growth was reduced with higher panfish density (black crappie: Guy and Willis 1995, McInerny and Cross 1999; bluegill: Weiner and Hanneman 1982). However, Tomcko (1997) did not find an inverse relationship in Minnesota bluegill populations.

Largemouth bass appear to be the key predator in these Sandhill lakes. Yellow perch and bluegill size structure increased with largemouth bass relative abundance. Similar relationships have been shown in Midwestern small impoundments (Novinger and Legler 1978; Guy and Willis 1990, 1991a). Largemouth bass feed on smaller bluegills and yellow perch, thus decreasing intraspecific competition and increasing panfish growth and population size structure. In contrast, black crappie size structure was not related to largemouth bass abundance in our study, at least in the few Sandhill study lakes that contained both species. However, other studies have shown that largemouth bass will effectively prey on small black crappies (Gabelhouse 1984b; Boxrucker 1987). In the Sandhills, every study lake that contained black crappie also contained yellow perch, and all but one lake that contained black crappie contained bluegill. Therefore, yellow perch and possibly bluegill may be selected for by largemouth bass over black crappie. Stronger relationships betweer yellow perch and
largemouth bass suggest that the bass may select the more fusiform yellow perch over bluegill and black crappie.

Few relationships existed between northern pike and panfish. Although some studies have shown that northern pike consume panfish (Sammons et al. 1994; Gurtin et al. 1996), little evidence suggest that they are able to control overabundant panfish (Beyerle 1971). We did find that condition of larger (i.e., quality length) northern pike increased with high bluegill size structure. The mechanism for this relationship is unclear. However, it is possible that larger northern pike may be preying on small (i.e., stock- to quality- length) bluegills.

Although there is some evidence that bluegills and black crappies consume benthic invertebrates, zooplankton appears to be important prey for panfish in these lakes. Daphnia and Bosmina are probably the primary invertebrates that panfish consume. In the Sandhill lakes, lakes with larger Daphnia had faster bluegill and yellow perch growth. This relation was also reported for bluegill in Michigan lakes (Theiling 1990). In our study, inverse relationships were evident between yellow perch size structure and Bosmina abundance, as well as yellow perch condition and Bosmina mean length. Fish communities, including panfish, can reduce abundance and decrease the size structure of the invertebrate community (Mills et al. 1987; Mills and Schiavone 1992). Bluegill growth in other Midwestern lakes has been inversely related to zooplankton abundance (Theiling 1990). In addition, larger bluegill (>203 mm) growth was higher in Michigan lakes with high densities of Daphnia as well as chironomids (Schneider 1999). Panfish may consume the largest invertebrates (Mittlebach 1988; Olson et al. 1995), thus reducing the size structure of the invertebrates. Although Noble (1975) found that yellow perch may after the Daphnia
populations in New York lakes, he cautioned that invertebrate populations fluctuated more with environmental conditions than yellow perch populations. Keast and Fox (1992) found that bluegills in a mesotrophic Ontario lake consumed primarily zooplankton and some benthic invertebrates. In addition, Theiling (1990) did not find any relationships between bluegill growth and benthic invertebrates. However, Lott et al. (1996) found that fast-growing adult yellow perch were associated with a diet dominated by macroinvertebrates in eastern South Dakota glacial lakes. However, Lott et al. (1998) did report that yellow perch populations with high size structure were found in lakes with larger zooplankton. Yellow perch consumed almost exclusively benthic invertebrates (Keast and Fox 1992) in Lake Opinicon, Ontario, whereas black crappies consumed primarily Chaoborus and chironomids. In some Wisconsin lakes, bluegills were zooplanktivorus until about 200 mm total length, but they also consumed chironomids and gastropods (Engel 1987, 1988), and consumed age-0 fish when they attained 240 mm . Food habit studies of panfish may be valuable to corroborate our speculations on prey selectivity in Nebraska Sandhill lakes.

Common carp and vegetation effects-Common carp apparently did not directly affect the panfish populations in the Sandhill lakes. Panfish population characteristics were not significantly different in lakes with and without common carp. However, lakes with common carp had increased turbidity and reduced vegetation. Other studies have also suggested that common carp may reduce vegetation abundance (Crivelli 1983; Kolterman 1990). Invertebrate size structure and abundance were not altered by the presence of common carp in these Sandhill lakes. However, there was higher largemouth bass relative abundance in lakes without common carp. In these highly
vegetated lakes, there was an adequate number of largemouth bass to control the panfish populations. In contrast, lakes with common carp had largemouth bass relative abundance that was too low to help structure panfish communities. Largemouth bass recruitment may increase with increased vegetation abundance (Durocher 1984; Guy and Willis 1991b). There was no relationship (linear or dome-shaped) evident between largemouth bass CPUE and submergent vegetation coverage in our study. However, it appears that common carp may decrease submergent vegetation abundance in these Sandhill lakes, thus reducing recruitment of largemouth bass to low enough numbers where they cannot control panfish.

Panfish, in particular bluegill and black crappie, respond to changes in vegetation coverage. Panfish quality (growth, condition, or size structure) in these Nebraska Sandhill lakes declined when there was more submergent vegetation within a lake. For bluegill, black crappie, and yellow perch, size structure was reduced when there was a high proportion of vegetation coverage in a lake. In addition, growth of bluegill and black crappie was lower in lakes with more vegetation. However, vegetation coverage had little effect on growth and condition of yellow perch and vegetation coverage in these lakes. The literature regarding the influence of vegetation coverage on panfish populations is quite mixed. Bluegill growth was reduced at high levels of macrophyte abundance in Michigan (Theiling 1990) and Wisconsin (Trebitz et al. 1997). However, removal of excessive macrophytes (e.g., $>50 \%$) also led to slower growth (Trebitz and Nibbelink 1996). Therefore, bluegill growth was best at moderate macrophyte coverage in these lakes. Crowder and Cooper (1982) also suggested that intermediate macrophytes densities were better for bluegill growth. In an experimental study in Wisconsin, removal of macrophytes increased bluegill growth (Olsoniet al. 1998).

Similar results were shown after chemical removal of vegetation in Minnesota lakes (Pothoven et al. 1999). Little information exists on growth-vegetation relationships for black crappies and yellow perch. In eastern South Dakota lakes, Lott (1991) found higher relative abundance and slower growth of yellow perch in lakes with submerged macrophytes compared to lakes without submerged macrophytes. Our results suggest that black crappies and yellow perch respond to vegetation coverage in a similar manner to bluegills, at least in Nebraska Sandhill lakes.

Although there is little evidence regarding the impact of vegetation on size structure and condition of panfish, size structure was reduced in Sandhill lakes that had a higher proportion of submergent vegetation. Hinch and Collins (1993) suggested that higher abundance of Lepomis species was associated with higher macrophyte coverage. In contrast, bluegill and black crappie abundance and biomass was reduced after removal of vegetation in Lake Conroe, Texas (Bettoli et al. 1993). After an increase in submergent vegetation in a Florida lake, the abundance or harvestablesized bluegill was reduced, but black crappie populations remained unchanged (Colle et al. 1987). This was most likely due to the reduced effectiveness of predation by largemouth bass. However, Radomski et al. (1995) found no effect on bluegill abundance after vegetation removal in a Minnesota lake. Yellow perch abundance in eastern South Dakota lakes increased with increased submergent macrophytes (Lucchesi 1991). However, this regression model had low predictive capabilities ($R^{2}=$ $0.24, P=0.04)$.

Although indirect evidence suggests that vegetation influences abundance and size structure of panfish communities in natural lakes, the most predominant influence of vegetation appears to be reduction in growth of intermediate-agedfish. However,

Schneider (1999) suggested that vegetation may not be severely detrimental to bluegill populations if harvest is kept low and there is an adequate food supply.

Management Implications

High quality panfish populations existed throughout the Nebraska Sandhill region. In contrast to many other Midwestern fisheries, there were few low quality panfish populations in Sandhill lakes. Although many interrelated factors contribute to the structure and dynamics of these populations, generalizations about the high quality bluegill, black crappie, and yellow perch populations in this study can be made.

Limnological variables measured during this study appeared to have relatively little influence on the panfish populations in these lakes, perhaps at least partially because of the narrow range of many measured variables. However, lakes with more irregular shorelines and higher productivity will most likely be better candidates to produce high quality panfish populations. In addition, shallower Sandhill lakes likely will produce higher yellow perch and bluegill size structure.

Panfish density within large (250 ha) lakes appeared not to influence panfish quality. However, our data suggest that smaller lakes (<50 ha) are more susceptible to density-dependent detrimental effects on bluegill and yellow perch growth. In smaller lakes, high panfish density may result in slower growth. In addition, we found little evidence of substantial interspecific competition among panfish species in the Sandhill lakes. Whatever factors created high quality bluegill fisheries also produced high quality black crappie and yellow perch fisheries. Similar results were found with black bullhead populations. Surprisingly, high black bullhead relative abundance did not
adversely affect panfish populations. Few relations were evident between black bullhead and panfish population parameters. Therefore, black bullheads to not appear to be a primary competitor or predator in these Sandhill lakes.

Largemouth bass apparently control size structure of bluegill and yellow perch populations in Sandhill lakes. When relative abundance of largemouth bass was high, they consume the smaller bluegill and yellow perch, thus increasing panfish size structure. Interestingly, these relationships were evident in larger lakes as well as the smaller water bodies. Evidence for largemouth bass influence on black crappie populations was limited, perhaps because all the lakes that contain black crappie also contained other panfish. Although northern pike were sampled in 16 of the 30 study lakes, we found no evidence that they were an influential factor in structuring panfish populations. Undoubtedly they consume panfish (especially yellow perch) in these simple fish communities, but not to the extent apparent for largemouth bass, at least based on our abundance and size structure analyses. This may occur, in part, because northern pike appeared to exist in lower densities than largemouth bass in these lakes. However, our summer trap netting may not have effectively sampled these northern pike populations. More research is needed on the ecological role that northern pike play in these shallow, productive lakes, including food-habits assessments.

Zooplankton, particularly Daphnia and Bosmina, may be a very important food source for all panfish in these lakes. Although some evidence suggests that black crappie and, to some extent, bluegills, consume benthic invertebrates, zooplankton appear to be more vital in the growth and condition of panfish. High abundance and size structure of Bosmina and Daphnia likely would be beneficial for creating high
quality panfish fisheries. All these speculations are based on our correlation analyses, and food habits should be assessed to confirm our suppositions.

A high proportion of submergent vegetation coverage in these lakes apparently was at least somewhat detrimental to panfish quality. Size structure for all panfish species was reduced with high submergent vegetation coverage. In addition, reduced bluegill and black crappie growth was evident in lakes with a high coverage of submergent vegetation. If submergent vegetation in overly abundant within a lake, some aspect (growth or size structure) of panfish quality may be sacrificed.

Although common carp in these lakes did not directly influence panfish populations, indirect evidence suggests that common carp may be detrimental to panfish quality. In lakes without common carp, vegetation was more abundant and, thus, these lakes had higher recruitment of largemouth bass. When largemouth bass abundance was high (as a result of high recruitment), they were able to effectively prey on the small panfish, increasing panfish size structure. Therefore, lakes with common carp may lead to lower size structure of panfish because largemouth bass recruitment will be lower.

Acknowledgments

We would like to thank Phil Chvala, Howard Fullhart, Brian Heikes, Stephen Wilson, Jennifer Harrington, and Josh Boldenow (South Dakota State University) for field and laboratory assistance. Joel Klammer, Andy Glidden, Matt Wilson, and Jeff Schuckman (Nebraska Game and Parks Commission) conducted the electrofishing on these lakes. The Valentine State Fish Hatchery (Nebraska Game and Parks Commission) personnel provided facilities and equipment. Crescent Lake and Valentine National Wildlife Refuges provided facilities and graciously allowed access to refuge lakes. Wayne Stancill (Great Plains Fish and Wildlife Management Assistance Office, Pierre, South Dakota) provided partial funding for this project through United States Fish and Wildlife Service Appropriation Number 64310-1261-6056 (FY 98).

Literature Cited

Anderson, R.O., and R.M. Neumann. 1996. Length, weight, and associated structural indices. Pages 447-482 in B.R. Murphy and D.W. Willis, editors. Fisheries techniques, second edition. American Fisheries Society, Bethesda, Maryland.

Bettoli, P. W., M. J. Maceina, R. L. Noble, and 1993. Response of a reservoir fish community to aquatic vegetation removal. North American Journal of Fisheries Management 13:110-124.

Beyerle, G. B. 1971. A study of two northern pike-bluegill populations. Transactions of the American Fisheries Society 100:69-73.

Boxrucker, J. 1987. Largemouth bass influence on size structure of crappies in small Oklahoma impoundments. North American Journal of Fisheries Management 7:273-278.

Carlander, K. D. 1955. The standing crop of fish in lakes. Journal of the Fisheries Research Board of Canada 12:543-570.

Colle, D. E., J. V. Shireman, W. T. Haller, J. C. Joyce, and D. E. Canfield, Jr. 1987. Influence of hydrilla on harvestable sport-fish populations, angler use, and angler expenditures at Orange Lake, Florida. North American Journal of Fisheries Management 7:410-417.

Crivelli, A. J. 1983. The destruction of aquatic vegetation by carp. Hyrdobiologia 106:37-41.

Crowder, L. B., and W. E. Cooper. 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63:1802-1813.

DiCenzo , V. J., M. J. Maceina, and W. C. Reeves. 1995. Factors related to growth and condition of the Alabama subspecies of spotted bass in reservoirs. North American Journal of Fisheries Management 15:794-798.

Durocher, P. P., W. C. Provine, J. E. Kraai. 1984. Relationship between abundance of largemouth bass and submerged vegetation in Texas reservoirs. North American Journal of Fisheries Management 4:84-88.

Engel, S. 1987. Impact of submerged macrophytes on largemouth bass and bluegills. Lake and Reservoir Management 3:227-234.

Engel, S. 1988. The role and interactions of submerged macrophytes in a shallow Wisconsin lake. Journal of Freshwater Ecology 4:329-341.

Freund, R. J., and R. C. Littel. 1991. SAS system for regression, $2^{\text {nd }}$, edition. SAS Institute, Cary, North Carolina.

Gabelhouse, D.W., Jr. 1984a. A length-categorization system to assess fish stocks. North American Journal of Fisheries Management 4:273-285.

Gabelhouse, D.W., Jr. 1984b. An assessment of crappie stocks in small Midwestern private impoundments. North American Journal of Fisheries Management 4:371384.

Gurtin, S. D., M. L. Brown, and C. G. Scalet. 1996. Food habits of northern pike and largemouth bass in small prairie impoundments. Pages 73-85 in R. Soderberg, editor, Warmwater Workshop Proceeding: Esocid Management and Culture. Northeast Division, American Fisheries Society, Bethesda, Maryland.

Gustafson, K.A. 1988. Approximating confidence intervals for indices of fish population size structure. North American Journal of Fisheries Management 8:139-141.

Guy, C. S., and D. W. Willis. 1990. Structural relationships of largemouth bass and bluegill populations in South Dakota ponds. North American Journal of Fisheries Management 10:338-343.

Guy, C. S., and D. W. Willis. 1991a. Evaluation of largemouth bass-yellow perch communities in small South Dakota impoundments. North American Journal of Fisheries Management 11:43-49.

Guy, C. S., and D. W. Willis. 1991b. Relationships between environmental variables and density of largemouth bass in South Dakota ponds. Proceedings of the South Dakota Academy of Sciences 70:109-117.

Guy, C. S. and D. W. Willis. 1995. Population characteristics of black crappies in South Dakota waters: a case for ecosystem-specific management. North American Journal of Fisheries Management 15:754-765.

Hayes, F. R., and E. H. Anthony. 1964. Productive capacity of North American lakes as related to the quantity and the trophic level of fish, the lake dimensions, and the water chemistry. Transactions of the American Fisheries Society 93:53-57.

Hill, T. D., and D. W. Willis. 1993. Largemouth bass biomass, density, and size structure in small South Dakota impoundments. Proceedings of the South Dakota Academy of Sciences 72:31-39.

Hinch, S. G., and N. C. Collins. 1993. Relationships of littoral fish abundance to water chemistry and macrophyte variables in central Ontario lakes. Canadian Journal of Fisheries and Aquatic Sciences $50: 1870-1878$.

Jackson, D. C., and N. J. Brown-Peterson. 1995. Habitat, accessibility, and watershed variables as they relate to largemouth bass and bluegill in Mississippi national forest impoundments. Proceedings of the Southeastern Association of Fish and Wildlife Agencies 49:26-36.

Johnson, D. E. 1998. Applied multivariate methods for data analysis. Duxbury Press, Pacific Grove, California.

Keast, A., and M. G. Fox. 1992. Space use and feeding patterns of an offshore fish assemblage in a shallow mesotrophic lake. Environmental Biology of Fishes 34:159-170.

Kolterman, B. F. 1990. Effects of common carp and black bullheads on sago pondweed. M. S. Thesis, South Dakota State University, Brookings.

Lind, O.T. 1985. Handbook of common methods in limnology, second edition. Kendall Hunt, Dubuque, Iowa.

Lott, J. P. 1991. Food habits of yellow perch in Eastern South Dakota lakes. Master's thesis, South Dakota State University, Brookings.

Lott, J. P., D. W. Willis, and D. O. Lucchesi. 1996. Relationship of food habits to yellow perch growth and population structure in South Dakota lakes. Journal of Freshwater Ecology 11:27-37.

Lott, J. P., D. W. Willis, and D. O. Lucchesi. 1998. Zooplankton structural indices as indicators of yellow perch population characteristics. The Prairie Naturalist 30:111-122.

Lucchesi, D. O. 1991. Investigation of yellow perch population dynamics in eastern South Dakota lakes. South Dakota Department of Game, Fish, and Parks, Fisheries Completion Report 92-1, Pierre.

McInerny, M. C., and T. K. Cross. 1999. Effects of lake productivity, climate warming, and intraspecific density on growth and growth patterns of black crappie in southern Minnesota lakes. Journal of Freshwater Ecology 14:255-264.

Mills, E. L., D. M. Green, and A. Schiavone, Jr. 1987. Use of zooplankton size to assess the community structure of fish populations. North American Journal of Fisheries Management 7:369-378.

Mills, E. L., and A. Schiavone, Jr. 1982. Evaluation of fish communities through assessment of zooplankton populations and measures of lake productivity. North American Journal of Fisheries Management 2:14-27.

Mittlebach, G. G. 1988. Competition among refuging sunfishes and the effects of fish density on littoral zone invertebrates. Ecology 69:614-623.

Mitzner, L. 1991. Effects of environmental variables upon crappie young, year-class strength, and the sport fishery. North American Journal of Fisheries Management 11:534-542.

Noble, R. L. 1975. Growth of young yellow perch (Perca flavescens) in relation to zooplankton populations. Transactions of the American Fisheries Society 104:731-741.

Novinger, G. D., and R. E. Legler. 1978. Bluegill population structure and dynamics. Pages 37-49 in G. D. Novinger and J. G. Dillard, editors. New approaches to the management small impoundments. North central Division, American Fisheries Society, Special Publication 5, Bethesda, Maryland.

Olson, M. H., G. G. Mittlebach, C. W. Osenberg. 1995. Competition between predator and prey: resource-based mechanisms and implications for stage-structured dynamics. Ecology 76:1758-1771.

Olson, M. H., and nine coauthors. 1998. Managing macrophytes to improve fish growth: a multi-lake experiment. Fisheries 23:6-12.

Pothoven, S. A., B. Vondracek, and D. L. Pereira. 1999. Effects of vegetation removal on bluegill and largemouth bass in two Minnesota lakes. North American Journal of Fisheries Management 19:748-757.

Radomski, P. J., T. J. Goeman, and P. D. Spencer. The effects of chemical control of submerged vegetation on the fish community of a small Minnesota centrarchid lake. Minnesota Department of Natural Resources, Section of Fisheries Investigational Report Number 442, St. Paul.

Ricker, W. L. 1975. Computation and interpretation of biological statistics of fish populations. Fisheries Research Board of Canada, Bulletin 191, Ottawa.

Sammons, S. M., C. G. Scalet, and R. M. Neumann. 1994. Seasonal and size-related changes in the diet of northern pike from a shallow prairie lake. Journal of Freshwater Ecology 9:321-329.

Schneider, J. C. 1999. Dynamics of quality bluegill populations in two Michigan lakes with dense vegetation. North American Journal of Fisheries Management 19:97109.

Theiling, C. H. 1990. The relationships between several limnological factors and bluegill growth in Michigan lakes. M. S. Thesis, University of Michigan, Ann Arbor.

Tomcko, C. M. 1997. Bluegill growth rates in Minnesota. Minnesota Department of Natural Resources, Section of Fisheries Investigational Report Number 458, St. Paul.

Trebitz, A. S., and N. Nibbelink. Effect of pattern of vegetation removal on growth of bluegill: a simple model. Canadian Journal of Fisheries and Aquatic Sciences 53:1844-1851.

Trebitz, A. S., and eleven coauthors. 1997. A model of bluegill-largemouth bass interactions in relation to aquatic vegetation and its management. Ecological Modelling 94:139-156.

Weiner, J. G., and W. R. Hanneman, 1982. Growth and condition of bluegills in Wisconsin lakes: effects of population density and lake pH . Transactions of the American Fisheries Society 111:761-767.

Wiley, M. J., R. W. Gorden, S. W. Waite, and T. Powless. 1984. The relationship between aquatic macrophytes and sport fish production in Illinois ponds: a simple model. North American Journal of Fisheries Management 4:111-119.

Williams, B. K., and K. Titus. 1988. Assessment of sampling stability in ecological applications of discriminant analysis. Ecology 69:1275-1286.

Table 1. Variable eigenvectors for the principal components analysis for the water chemistry analysis in the Nebraska Sandhill lakes, 1998 and 1999.

Variable	Principal component 1	Principal component 2	Principal component 3
Mean depth	0.179	-0.291	-0.432
Lake size	0.352	0.288	-0.493
Shoreline development index	0.259	0.115	-0.107
Secchi depth	-0.085	-0.602	0.402
Total alkalinity	0.520	0.175	0.343
Phosphorus	-0.390	0.309	0.135
Chlorophyll a	-0.344	0.546	0.144
Conductivity	0.479	0.182	0.492
Variance explained (\%)	32.9	19.3	13.8

Table 2. Correlations between black crappie proportional stock density (PSD) and black crappie mean total length at ages 2-6 from Nebraska Sandhill lakes sampled in 1998 and 1999.

Age (years)	r	P	N
2	0.78	0.04	7
3	0.85	0.03	6
4	0.85	0.03	6
5	0.87	0.02	6
6	0.86	0.02	6

Table 3. Comparisons of water chemistry and habitat variables between Nebraska Sandhill lakes with and without common carp. Standard errors are in parentheses and an asterisk indicates a significant difference ($\mathrm{P}<0.05$).

Common carp	Submergent vegetation $(\%)^{*}$	Secchi depth $(\mathrm{cm})^{*}$	Phosphorus $(\mathrm{mg} / \mathrm{L})$	Chlorophyll a $(\mathrm{mg} / \mathrm{L})$	Total alkalinity $(\mathrm{mg} / \mathrm{L})$
Yes	$13.7(4.6)$	$68(11)$	$0.34(0.08)$	$5.48(2.71)$	$148(18)$
No	$57.9(6.2)$	$150(16)$	$0.46(0.12)$	$7.00(1.84)$	$148(20)$

Table 4. Correlation coefficients (r) for relationships between black bullhead and bluegill mean total length (mm) at age for fish from Nebraska Sandhill lakes sampled in 1998 and 1999. Coefficients marked with an asterisk are significant at and \propto level of 0.10 (*) or $^{*} 0.05$ (**).

	Bluegill age 2	Bluegill age 3	Bluegill age 4	Bluegill age 5
Black bullhead age 2	0.31	$0.66^{\star *}$	$0.70^{\star \star}$	$0.73^{\star *}$
Black bullhead age 3	0.38	$0.65^{\star *}$	$0.70^{\star *}$	$0.72^{\star \star}$
Black bullhead age 4	0.41	0.62^{\star}	$0.69^{\star \star}$	$0.72^{\star \star}$
Black bullhead age 5	0.42	0.60^{*}	$0.67^{\star *}$	$0.68^{\star *}$

Figure 1. Relationship between mean Wr of stock- to quality-length of bluegills and shoreline development index in Nebraska Sandhill lakes sampled in 1998 and 1999..

Figure 2. Relationship between bluegill proportional stock density (PSD) and principal component 3 of Nebraska Sandhill lakes sampled in 1998 and 1999. Small, shallow lakes scored high on principal component 3. The principal components analysis is summarized in Table 1.

Figure 3. Correlation between bluegill proportional stock density (PSD) and mean total length at age 3 in Nebraska Sandhill lakes sampled in 1998 and 1999..

Figure 4. Relationship between bluegill catch per unit effort (CPUE; number of stocklength fish per trap net night) and mean length at age 2 in small ($<50 \mathrm{ha}$) and large (≥ 50 ha) Nebraska Sandhill lakes sampled in 1998 and 1999.

Figure 6. The relationship between largemouth bass catch per unit effort (CPUE; number of stock-length fish per hour of electrofishing) and bluegill proportional stock density (PSD) in Nebraska Sandhill lakes sampled in 1998 and 1999:

Figure 7. Correlation between bluegill proportional stock density (PSD) and mean relative weight ($W r$) of quality- to preferred-length northern pike in Nebraska Sandhill lakes sampled in 1998 and 1999.

Figure 8. Relationship between mean relative weight ($W r$) of stock- to quality-length bluegill and dipteran abundance in the Nebraska Sandhill lakes sampled during 1998 and 1999.

Figure 9. Relationships between bluegill condition (relative weight, Wr) and growth with Daphnia abundance and mean length in Nebraska Sandhill lakes sampled in 1998 and 1999.

Proportion of lake area covered by sparse vegetation

Figure 10. Relationship between the proportion of sparse vegetation within a lake and mean relative weight ($W r$) of preferred- to- memorable-length bluegills and mean total length at age 4 of bluegills.

Figure 11. Relationship between the proportion of sand substrate within a lake and bluegill catch per unit effort (CPUE; number of stock-length fish collected per trap net night) in Nebraska Sandhill lakes sampled in 1998 and 1999.

Figure 12. Scores of the first two components of a principal components analysis of bluegill quality and vegetation coverage in Nebraska Sandhill lakes sampled in 1998 and 1999. Lakes with high bluegill quality (i.e., high proportional stock density (PSD), mean relative weight ($W r$) of stock- to quality-length fish, and mean total length at age 3) and low proportion of submergent vegetation scored high on principal component 1. Lakes with a high proportion of sand and clay substrate scored low on principal component 2.

Figure 13. Relationship between mean relative weight $(W r)$ for stock to quality-length yellow perch and turbidity (Jackson turbidity units) for Nebraska Sandhill lakes sampled in 1998 and 1999.

Figure 14. Relationship between yellow perch mean length at age 3 and principal component 2 of the physicochemical principal component analysis summarized in Table 1 for Nebraska Sandhill lakes sampled in 1998 and 1999. Highly productive lakes (i.e., high chlorophyll a and phosphorus) scored high on principal component 2.

Figure 15. Relationships between yellow perch catch per unit effort (CPUE; number of stock-length fish per trap net night) and mean length at age 3 in small ($<50 \mathrm{ha}$) and large ($\geq 50 \mathrm{ha}$) Nebraska Sandhill lakes sampled in 1998 and 1999. :

Figure 16. Correlation between relative stock density of preferred-length yellow perch (RSD-P) and mean total length at age 3 In Nebraska Sandhill lakes sampled in 1998 and 1999.

Figure 17. The relationship between largemouth bass catch per unit effort (CPUE; number of stock-length fish per hour of electrofishing) and yellow perch proportional stock density (PSD) in Nebraska Sandhill lakes sampled in 1998 and 1999.

Figure 18. The relationship between largemouth bass proportional stock density (PSD) and yellow perch catch per unit effort (CPUE; number of stock-length fish per trap net night) in Nebraska Sandhill lakes sampled in 1998 and 1999.

Figure 19. Relationship between mean relative weight (Wr) of stock- to quality-length northern pike and yellow perch catch per unit effort (CPUE; number of stock-length fish per trap net night) in Nebraska Sandhill lakes sampled in 1998 and 1999.

Figure 20. The relationship between yellow perch mean length at age 3 and Daphnia mean length in Nebraska Sandhill lakes sampled in 1998 and 1999.

Figure 21. Relationships between yellow perch proportional stock density (PSD) and mean relative weight ($W r$) of preferred- to memorable-length fish with Bosmina abundance and mean length in Nebraska Sandhill lakes sampled in 1998 and 1999.

Figure 22. Scores of the first two components of a principal components analysis of yellow perch quality and vegetation coverage in Nebraska Sandhill lakes sampled in 1998 and 1999. Lakes with high yellow perch size structure and a low proportion of submergent vegetation scored high on principal component 1 . Lakes with high yellow perch mean length at age 3 and mean relative weight ($W r$) of stock to quality length fish scored high on principal component 2.

Figure 23. Correlation between black crappie proportional stock density (PSD) and shoreline development index of Nebraska Sandhill lakes sampled in 1998 and 1999.

Figure 24. Relationship between black crappie mean total length (mm) at age 1 and mean lake depth (m) in Nebraska Sandhill lakes sampled in 1998 and 1999.

Figure 25. Correlations between mean relative weight (Wr) of stock- to quality-length black crappies and chironomid and Daphnia abundance in Nebraska-Sandhill lakes sampled in 1998 and 1999.

Figure 26. Relationship between submergent vegetation abundance and black crappie mean length at age 3 and proportional stock density (PSD) in Nebraska Sandhill lakes sampled in 1998 and 1999.

Figure 27. Relationship among proportional stock density (PSD) values for bluegill, black crappie, and yellow perch collected from Nebraska Sandhill lakes sampled in 1998 and 1999.

Figure 28. Relationships between mean relative weight ($W r$) of stock- to quality-length bluegill, black crappie, and yellow perch in Nebraska Sandhill lakes sampled in 1998 and 1999.

Figure 29. Relationship between black bullhead catch per unit effort (CPUE; number of stock-length fish per trap net night) and yellow perch CPUE (number of stock-length fish per trap net night) for Nebraska Sandhill lakes sampled in 1998 and 4999.

Figure 30. Correlation between mean relative weight (Wr) of stock- to quality-length black bullheads and yellow perch in Nebraska Sandhill lakes sampled in 1998 and 1999.

Prepared by:

Craig P. Paukert and David W. Willis, South Dakota State University 29 February 2000

Approved By:
Appendix 1. Legal description and physical characteristics of 30 Nebraska Sandhill Lakes sampled in 1998-1999.

Lake	County	Legal description	Surface area (ha)	Shoreline development index	Mean depth (m)	Maximum depth (m)
Alkali	Cherry	T26N, R40W,S10,11,12	154	2.33	1.8	2.6
Big Alkali	Cherry	T30N, R28W, S27-28,32,33	341	1.37	2.4	3.3
Cameron	Rock	T28N,R18W, S21	66	1.99	1.8	2.9
Clear	Brown	T26N R23W S6,31,36	79	1.57	2.1	3.4
Clear (VNWR ${ }^{1}$)	Cherry	T30N R28W S19,20,21	172	1.83	2.9	4.3
Cottonwood	Cherry	T37N R34W S21	15	1.54	2.3	3.4
Cozad	Brown	T28N R20W S26	32	1.80	1.9	3.2
DeFair	Grant	T23N, R38W, S15	24	1.80	1.0	1.5
Dewey	Cherry	T30N,R28W,S28,29,30	223	2.14	1.9	2.8
Duck	Cherry	T30N,R29W,S28	27	1.21	1.7	3.3
Goose	Holt	T25N,R11W,S26	81	1.98	2.2	2.8
Hackberry	Cherry	T19-30N R29W S14,15,22,23	275	1.82	1.5	2.1
; Hagan	Brown	T27N R20W S10,11	126	2.36	2.4	3.3
Home Valley	Cherry	T27N R37W S5,6	97	1.81	3.0	4.3
Island	Garden	T20N,R44W,S3, T21N,R44W,S35	283	1.80	1.4	3.7
Lackaff West	Rock	T28N,R19W,S15,16	69	2.84	1.4	2.8
Marsh	Cherry	T27N,R32W,S23,24	33	1.66	1.5	2.3
Marsh (VNWR ${ }^{1}$)	Cherry	T29N R27W S29-32,5,6,8,9	907	2.63	1.8	2.6

Appendix 1 continued.

		Legal description	Surface area (ha)	Shoreline development index	Mean depth (m)	Maximum depth (m)
Lake	County	Cherry	T32N R35W S27,28	45	1.74	1.2
Medicine	Cherry	T29,30N R28,29W S16,34-36	332	2.02	1.9	
Pelican	Cherry	T28N R35W S25,30	33	2.01	1.6	2.8
Roseberry	Rock	T28N,R18W,S18	17	1.18	1.4	2.0
Round	Cherry	T31N R33W S25,30	42	1.84	1.0	1.6
Schoolhouse	T34N,R40W,S16	66	1.27	2.2	3.3	
Shell	Cherry	T32N,R34W,S33	19	1.24	1.6	2.7
Shoup	T28N,R22W,S35,36	123	2.92	1.4	1.9	
Tower	T27N R19W S12,13	65	1.70	1.7	4.0	
Twin	Rock	Therry	T30N,R29W,S13,14,15	93	1.99	2.1

${ }^{1}$ Valentine National Wildlife Refuge
Appendix 2. Physical and chemical characteristics of 30 Sandhill Lakes sampled in 1998-1999.

Lake	Secchi depth (cm)	Turbidity (NTU)	$\begin{aligned} & \text { TDS }^{1} \\ & (\mu \mathrm{~S} / \mathrm{cm}) \end{aligned}$	$\begin{aligned} & \text { Conduct- } \\ & \text { ivity } \\ & (\mu \mathrm{S} / \mathrm{cm}) \end{aligned}$	Total alkalinity (mg/L)	Phenolphthalein alkalinity (mg/L)	Phosphorus (mg/L)	Chlorophyll a ($\mathrm{mg} / \mathrm{m}^{3}$)
Alkali	103	5.00	559.0	1120.75	446.75	0.00	0.050	1.40
Big Alkali	14	70.00	234.5	471.00	243.00	0.00	0.093	3.13
Cameron	48	20.00	137.3	273.50	101.25	0.00	0.658	29.51
Clear	182	1.25	212.5	233.25	111.75	23.00	0.115	2.53
Clear (VNWR ${ }^{\text {2 }}$)	96	5.00	340.0	379.50	198.25	0.00	0.085	3.84
Cottonwood	249	0.00	252.5	279.75	127.50	0.00	0.010	2.09
Cozad	213	0.00	210.0	242.00	116.00	0.00	0.065	2.66
Defair	110	0.00	214.8	430.75	118.75	47.50	0.430	1.76
Dewey	83	13.75	169.8	338.25	129.25	0.00	0.350	2.42
Duck	64	7.50	108.5	215.75	85.75	0.00	1.250	23.61
Goose	73	15.00	210.3	420.25	164.75	0.00	0.240	5.83
- Hackberry	111	8.75	305.0	338.50	164.25	0.00	0.040	2.06
Hagan	235	0.00	227.5	267.50	123.50	0.00	0.085	1.80
Home Valley	27	27.5	180.5	205.00	104.50	0.00	0.105	1.14
Island	20	70.0	181.0	365.50	314.25	44.50	0.198	6.66
Lackaff West	83	13.8	142.8	285.75	131.50	0.00	0.175	14.41
Marsh	179	0.00	154.0	308.75	142.25	0.00	.	13.32

Appendix 2 continued.

	Secchi depth (cm)	Turbidity (NTU)	TDS ${ }^{1}$ $(\mu \mathrm{~S} / \mathrm{cm})$	Conduct- ivity $(\mu \mathrm{S} / \mathrm{cm})$	Total alkalinity $(\mathrm{mg} / \mathrm{L})$	Phenol- phthalein alkalinity $(\mathrm{mg} / \mathrm{L})$	Phos- phorus $(\mathrm{mg} / \mathrm{L})$	Chloro- phyll a $\left(\mathrm{mg} / \mathrm{m}^{3}\right)$
Lake	82	7.50	182.5	452.25	224.75	0.00	0.125	3.70
Marsh $\left(\mathrm{VNWR}^{2}\right)$	132	5.00	172.5	177.00	84.75	5.75	0.030	1.14
Medicine	132	180.0	200.25	100.50	0.00	0.057	2.55	
Pelican	38	41.25	182.5	187.75	84.75	0.00	0.105	
Roseberry	87	10.00	182.5	0.00	0.233	11.99		
Round	95	10.00	135.5	271.00	100.50	0.05		
Schoolhouse	219	0.00	210.0	224.75	107.25	37.75	0.190	0.86
Shell	225	0.00	147.3	300.25	121.50	0.00	0.060	1.03
Shoup	95	0.00	106.5	212.75	93.50	0.00	1.790	28.73
Tower	101	10.00	111.5	222.50	120.00	0.00	0.703	4.17
Twin	225	0.00	430.0	457.75	250.50	0.00	0.100	5.00
Watts	123	10.00	107.3	213.25	93.50	0.00	0.450	7.55
Willow	258	0.00	157.5	187.75	91.50	0.00	0.280	0.66
West Long	109	5.00	280.0	309.25	138.50	0.00	0.505	2.30

[^0]Appendix 3. Percent of different vegetation coverages in 30 Nebraska Sandhill lakes sampled in 1998 and 1999.

Lake	Sites	Total vegetation	Sparse emergent	Moderate emergent	Dense emergent	Sparse submergent	Moderate submergent	Dense submergent	Sparse floating	Moderate floating	Dense floating
Alkali	47	53.2	14.9	0.0	0.0	21.3	14.9	2.1	0.0	0.0	0.0
Big Alkali	38	7.9	5.3	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cameron	40	57.5	17.5	10.0	0.0	17.5	10.0	2.5	0.0	0.0	0.0
Clear	38	76.3	0.0	0.0	0.0	18.4	36.8	21.1	0.0	0.0	0.0
Clear (VNWR ${ }^{1}$)	44	4.5	4.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cottonwood	35	97.1	0.0	0.0	0.0	5.7	28.6	62.9	0.0	0.0	0.0
Cozad	38	94.7	0.0	0.0	0.0	7.9	26.3	60.5	0.0	0.0	0.0
Defair	32	100.0	0.0	0.0	6.3	9.4	28.1	56.3	0.0	0.0	0.0
Dewey	38	10.5	5.3	2.6	0.0	0.0	0.0	0.0	0.0	0.0	2.6
Duck	42	47.6	11.9	7.1	0.0	11.9	9.5	7.1	0.0	0.0	0.0
Goose	46	47.8	2.2	0.0	2.2	34.8	8.7	0.0	0.0	0.0	0.0
Hackberry	42	38.1	19.0	0.0	2.4	7.1	2.4	0.0	0.0	0.0	0.0
Hagan	56	50.0	17.9	0.0	0.0	21.4	8.9	1.8	0.0	0.0	0.0
${ }_{s}$ Home Valley	43	11.6	0.0	0.0	0.0	4.7	2.3	4.7	0.0	0.0	0.0
Island	62	22.6	9.7	3.2	3.2	6.5	0.0	0.0	0.0	0.0	0.0
Lackaff West	36	72.2	8.3	0.0	0.0	25.0	27.8	11.1	0.0	0.0	0.0
Marsh	35	88.6	0.0	0.0	8.6	0.0	34.3	45.7	0.0	0.0	0.0
Marsh (VNWR ${ }^{1}$)	50	14.0	4.0	0.0	2.0	6.0	2.0	0.0	0.0	0.0	0.0
Medicine	37	62.2	16.2	5.4	2.7	13.5	13.5	10.8	0.0	0.0	0.0
Pelican	44	36.4	9.1	2.3	2.3	13.6	4.5	4.5	0.0	0.0	0.0

Appendix 3 continued.

Lake	Sites	Total vegetation	Sparse emergent	Moderate emergent	Dense emergent	Sparse submergent	Moderate submergent	Dense submergent	Sparse floating	Moderate floating	Dense floating
Roseberry	40	32.5	17.5	2.5	2.5	7.5	2.5	0.0	0.0	0.0	0.0
Round	31	87.1	3.2	0.0	0.0	19.4	35.5	29.0	0.0	0.0	0.0
Schoolhouse	39	97.4	10.3	5.1	0.0	30.8	30.8	12.8	0.0	0.0	7.7
Shell	50	54.0	2.0	0.0	0.0	4.0	14.0	34.0	0.0	0.0	0.0
Shoup	39	53.8	2.6	0.0	2.6	33.3	7.7	7.7	0.0	0.0	0.0
Tower	53	69.8	0.0	0.0	0.0	22.6	26.4	20.8	0.0	0.0	0.0
Twin	50	46.0	0.0	12.0	0.0	12.0	14.0	8.0	0.0	0.0	0.0
Watts	38	71.8	7.7	2.6	5.1	10.3	30.8	15.4	0.0	0.0	0.0
West Long	25	96.0	4.0	8.0	0.0	16.0	4.0	60.0	0.0	0.0	4.0
Willow	43	7.0	0.0	2.3	0.0	0.0	4.7	0.0	0.0	0.0	0.0

[^1]```
Appendix 4. Presence or absence of fishes sampled by electrofishing and trap netting in 30 Nebraska Sandhill lakes, 1998-1999. Goldfish were found only in DeFair Lake. Grass carp were only found in Goose Lake. Saugeye were only found only in DeFair Lake. Grass carp were only found in Goose Lake. Saugeye were only found in Watts Lake. Walleye were only found in lale lake
```


Appendix 4 continued.

| Lake | Black bullhead | Black crappie | Bluegill | Common carp | Golden shiner | Green sunfish | Grass pickerel | Hybrid sunfish | Largemouth bass | Northern pike | Pumpkinseed | Yellow perch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Medicine |  | X | X |  |  |  |  |  | X |  | X | X |
| Pelican | X |  | X | X | X |  |  |  | X | X |  | X |
| Roseberry |  |  |  |  |  |  |  |  |  | X |  | $x$ |
| Round | X |  |  |  | X | X |  |  |  | X |  | X |
| Schoolhouse | X | X | X |  | X |  |  |  | x | x | $x$ | $x$ |
| Shell | X | X | X |  |  |  | X | X | X | X | X | X |
| Shoup | x |  | $x$ |  |  |  |  |  | X |  | X |  |
| Tower |  | X | X |  | X | x |  | X | X |  |  | X |
| Twin | X | X | X |  | X | X |  | X | X | X |  | X |
| Watts | X |  | X |  | X |  |  | X | X |  |  | X |
| West Long | X |  | $x$ |  |  |  |  |  | X | X |  | $x$ |
| Willow | X | X | X | X |  | X |  | X | X |  |  | X |

${ }^{1}$ Valentine National Wildlife Refuge
No trophy length ( 2460 mm TL ) black bullhead were collected in any of the lakes. Standard errors are in parentheses. $\mathrm{S}=\mathrm{stock}(\geq 150 \mathrm{~mm})$; $Q=$ quality $(z 230 \mathrm{~mm}) ; P=$ preferred $(\geq 300 \mathrm{~mm}) ; M=$ memorable $(z 380 \mathrm{~mm})$.

| Lake | Total caught | CPUE (all sizes) | $\begin{gathered} \text { CPUE } \\ \text { ZS } \end{gathered}$ | $\begin{gathered} \text { CPUE } \\ \geq Q \end{gathered}$ | $\begin{gathered} \text { CPUE } \\ 2 P \end{gathered}$ | CPUE <br> 2M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alkali | 647 | 32.35(6.55) | 32.30(6.55) | 32.05(6.52) | 29.00(5.72) | 0.00(0.00) |
| Big Alkali | 2 | 0.10(0.07) | 0.10(0.07) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) |
| Cameron | 1,470 | 147.00(26.64) | 89.7(16.39) | 34.00(6.23) | 4.60(1.00) | 0.00(0.00) |
| Clear | 22 | 1.10(0.54) | 1.10(0.54) | 0.65(0.33) | 0.40(0.21) | 0.00(0.00) |
| Cottonwood | 12 | 1.20(0.36) | 1.20(0.36) | 0.50(0.17) | 0.00(0.00) | 0.00(0.00) |
| Cozad | 1 | 0.10(0.10) | 0.10(0.10) | 0.10(0.10) | 0.00(0.00) | 0.00(0.00) |
| Defair | 109 | 10.90(4.38) | 10.90(4.38) | 9.00(3.54) | $0.30(0.15)$ | 0.00(0.00) |
| Dewey | 5 | 0.25(0.16) | 0.25(0.16) | 0.10(0.07) | 0.00(0.00) | 0.00(0.00) |
| Duck | 2 | 0.20(0.13) | 0.20(0.13) | 0.20(0.13) | 0.00(0.00) | 0.00(0.00) |
| Goose | 104 | 5.20(0.70) | 4.90(0.71) | 3.05(0.64) | 0.90(0.26) | 0.00(0.00) |
| Hackberry | 136 | 6.80(1.30) | 2.95(0.38) | 1.35(0.32) | 1.05(0.32) | 0.30(0.18) |
| Hagan | 2,259 | 564.75(174.58) | 540.25(158.10) | 15.75(9.68) | 0.00(0.00) | 0.00(0.00) |
| Home Valley | 71 | $3.55(0.86)$ | $3.55(0.86)$ | 3.55(0.86) | $0.35(0.15)$ | 0.00(0.00) |
| Lackaff West | 4,560 | 228.00(40.10) | 188.85(33.19) | 3.45(0.82) | 0.00(0.00) | 0.00(0.00) |
| Marsh | 607 | 60.70(19.63) | 60.70(19.63) | 4.80(1.66) | 0.00(0.00) | 0.00(0.00) |
| Marsh(VNWR ${ }^{1}$ ) | 1,551 | 77.55(20.37) | 20.15(5.41) | 1.30(0.37) | $0.10(0.07)$ | 0.00(0.00) |
| Pelican | 4 | 0.20(0.16) | 0.20(0.16) | 0.15(0.11) | 0.00(0.00) | 0.00(0.00) |
| Round | 2,173 | 217.30(70.97) | 201.30(66.21) | 0.60(0.97) | 0.00(0.00) | 0.00(0.00) |

Appendix 5 continued.

| Lake | Total caught | CPUE (all sizes) | CPUE <br> $2 S$ | CPUE <br> 2 Q | CPUE <br> $2 P$ | CPUE <br> 2 M |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Schoolhouse | 239 | $23.90(6.42)$ | $22.70(6.11)$ | $3.50(1.51)$ | $1.90(1.10)$ | $0.00(0.00)$ |
| Shell | 2 | $0.10(0.07)$ | $0.10(0.07)$ | $0.10(0.07)$ | $0.00(0.00)$ | $0.00(0.00)$ |
| Shoup | 36 | $3.60(1.52)$ | $3.60(1.52)$ | $1.90(0.77)$ | $0.90(0.43)$ | $0.00(0.00)$ |
| Twin | 74 | $3.70(1.50)$ | $2.25(0.56)$ | $0.10(0.07)$ | $0.00(0.00)$ | $0.00(0.00)$ |
| Watts | 3 | $0.15(0.08)$ | $0.15(0.08)$ | $0.10(0.07)$ | $0.05(0.05)$ | $0.00(0.00)$ |
| Willow | 28 | $1.40(0.34)$ | $1.40(0.34)$ | $1.40(0.34)$ | $1.30(0.33)$ | $0.00(0.00)$ |
| West Long | 31 | $3.10(0.62)$ | $3.10(0.62)$ | $2.90(0.55)$ | $0.70(0.15)$ | $0.00(0.00)$ |

${ }^{1}$ Valentine National Wildlife Refuge
Appendix 6. Stock density indices and mean Wr values for black bullhead collected in Nebraska Sandhill Lakes, 1998 and 1999. Confidence intervals (95\%) for stock density indices and standard errors for the $\underline{\mathrm{Wr}}$ values are in parentheses. No trophy length ( 2460 mm TL) black bullhead were collected in any of the lakes. PSD=proportional stock density; RSD$P=$ relative stock density of preferred length fish; RSD-M=relative stock density of memorable length fish.

| Lake | PSD | RSD-P | RSD-M | $\begin{gathered} W r \\ z S \end{gathered}$ | $\begin{aligned} & \mathrm{Wr} \\ & \mathrm{~S}-\mathrm{Q} \end{aligned}$ | $\begin{aligned} & \text { Wr } \\ & \text { Q-P } \end{aligned}$ | $\begin{aligned} & \mathrm{Wr} \\ & \mathrm{P}-\mathrm{M} \end{aligned}$ | Wr $\mathrm{M}-\mathrm{T}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alkali | 99(1) | 90(3) | 0 | 98(1.1) | 92(0.0) | 115(2.6) | 97(1.2) |  |
| Big Alkali ${ }^{1}$ |  |  |  | 88(0.0) | 88(0.0) |  |  |  |
| Cameron | 38(3) | 5(2) | 0 | 93(1.3) | 93(2.0) | 92(1.5) | 103(1.6) |  |
| Clear | 59 (22) | 36 (22) | 0 | 92(0.5) | 78(4.5) | 91(8.1) | 107(1.5) |  |
| Cottonwood | 42 (32) | 0 | 0 | 95(1.5) | 98(1.3) | 90(1.3) |  |  |
| Defair | 83(8) | 3(3) | 0 | 97(0.8) | 101(2.1) | 96(1.0) | 92(8.0) |  |
| Dewey ${ }^{2}$ |  |  |  | 97(5.7) | 96(8.8) | 99(9.4) |  |  |
| Duck ${ }^{1}$ |  |  |  | 122(12.9) | 122(12.9) |  |  |  |
| Goose | 62(10) | 18(8) | 0 | 89(1.4) | 84(0.2) | 85(3.1) | 107(2.2) |  |
| Hackberry | 46 (13) | 36 (12) | 10 (8) | 88(0.9) | 82(1.5) | 92(2.9) | 96(1.8) | 94(2.4) |
| Hagan | 3 (1) | 0 | 0 | 93(2.3) | 93(2.4) | 95(1.2) |  |  |
| Home Valley | 100 (100) | 10 (7) | 0 | 83(1.2) |  | 82(1.4) | 89(0.9) |  |
| Lackaff West | 2(1) | 0 | 0 | 90(2.5) | 90(1.1) | 93(0.6) |  |  |
| Marsh | 8(2) | 0 | 0 | 91(2.0) | 92(2.1) | 81(2.1) |  |  |
| Marsh (VNWR ${ }^{3}$ ) | 6 (2) | 0 (1) | 0 | 91(1.2) | 91(1.3) | 96(0.3) |  |  |

Appendix 6 continued.

|  |  |  |  | $W r$ | | | | |
|---|---|---|---|---|---|---|---|---|
| Lake | PSD | RSD-P | RSD-M | $2 S$ | S-Q | Q-P | P-M | $M-T$ |
| Pelican ${ }^{1}$ |  |  |  |  |  |  |  |  |
| Round | 0 | 0 | 0 | $88(1.5)$ | $88(1.5)$ | $80(1.1)$ |  |  |
| Schoolhouse | $15(5)$ | $8(4)$ | 0 | $96(1.4)$ | $96(1.7)$ | $96(1.1)$ | $94(2.9)$ |  |
| Shell ${ }^{1}$ |  |  |  | $78(3.0)$ |  | $78(3.0)$ |  |  |
| Shoup | $53(17)$ | $25(15)$ | 0 | $96(1.3)$ | $88(2.7)$ | $102(1.2)$ | $105(1.9)$ |  |
| Twin | $4(7)$ | 0 | 0 | $90(1.4)$ | $90(1.4)$ |  |  |  |
| Watts ${ }^{4}$ |  |  |  | $97(6.0)$ |  |  |  |  |
| Willow | $100(100)$ | $93(10)$ | 0 | $108(1.3)$ |  |  | $108(1.4)$ |  |
| West Long | $94(10)$ | $23(15)$ | 0 | $104(0.6)$ |  | $105(0.9)$ | $103(4.6)$ |  |

[^2]Appendix 7. Mean back calculated total length (mm) at age for black bullheads collected in Nebraska Sandhill Lakes, 1998 and 1999. Standard errors are in parenthesis.

| Lake | Number aged | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alkali | 52 | 112(9) | 206(9) | 267(9) | 295(9) | 314(9) | 326(1) | 348 |  |
| Cameron | 69 | 84(3) | 156(7) | 206(8) | 242(7) | 275(3) | 297(4) | 326 |  |
| Clear | 17 | 88(10) | 174(9) | 233(13) | 300(5) | 323 |  |  |  |
| Cottonwood | 10 | 57(6) | 128(12) | 167(18) | 191(26) | 198(10) | 227 |  |  |
| Defair | 39 | 95(6) | 179(9) | 223(5) | 253(0) | 282 |  |  |  |
| Goose | 64 | 92(9) | 157(7) | 208(3) | 249(2) | 278(2) | 305 |  |  |
| Hackberry | 28 | 107(10) | 178(17) | 244(17) | 307(17) | 350(5) | 366(4) | 380 |  |
| Hagan | 30 | 83(10) | 158(20) | 194(17) | 227(15) | 255 |  |  |  |
| Home Valley | 24 | 91(10) | 173(12) | 223(11) | 248(13) | 266(12) | 282(13) | 289 |  |
| Lackaff West | 54 | 73(6) | 129(8) | 166(6) | 190(9) | 198 |  |  |  |
| Marsh | 37 | 76(4) | 137(9) | 188(12) | 217(14) | 240(25) | 283 |  |  |
| Marsh(VNWR ${ }^{1}$ ) | 19 | 101(5) | 185(14) | 226(26) | 280(13) | 321 | 340 | 357 | 371 |
| Round | 49 | 75(5) | 125(7) | 165(5) | 196(10) | 228 |  |  |  |
| , Schoolhouse | 16 | 100(11) | 179(11) | 260(14) | 311 | 326 |  |  |  |
| Shoup | 30 | 123(12) | 236(2) | 313 |  |  |  |  |  |
| Twin | 15 | 88(9) | 144(17) | 181(24) | 202(29) | 208 | 222 |  |  |
| Willow | 17 | 86(13) | 152(21) | 221(29) | 265(25) | 307(14) | 325(12) | 348(20) | 349 |
| West Long | 12 | 89(13) | 167(23) | 257(9) | 293(15) | 339 |  |  |  |

'Valentine National Wildlife Refuge

Appendix 9. Stock density indices and mean $\underline{W r}$ values of black crappies collected in Nebraska Sandhill Lakes, 1998 and 1999 Confidence intervals ( $95 \%$ ) for stock density indices and standard errors for mean relative weight values are in parentheses. PSD=proportional stock density; RSD-P=relative stock density of preferred length fish; RSD-M=relative stock density of memorable length fish; RSD-T=relative stock density of trophy length fish.

| Lake | PSD | RSD-P | RSD-M | RSD-T | Wr $\geq S$ | Wr $S-Q$ | $\begin{aligned} & \mathrm{Wr} \\ & \text { Q-P } \end{aligned}$ | Wr <br> P-M | Wr <br> M-T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Big Alkali | 99(1) | 85(6) | 14(6) | 1(2) | 108(2.4) | 113(0.0) | 108(0.7) | 109(3.3) | 102(2.0) |
| Clear ${ }^{1}$ |  |  |  |  | 105(0.8) |  | 105(0.8) |  |  |
| Cottonwood ${ }^{2}$ |  |  |  |  | 99(3.6) | 104(3.2) | 92(3.5) |  |  |
| Cozad | 6(4) | $1(2)$ | 0 |  | 106(0.9) | 107(1.0) | 97(1.9) | 82(1.0) |  |
| Hagan | 0 | 0 | 0 |  | 121(3.0) | 121(3.0) |  |  |  |
| Island | 93(7) | 62(13) | 17(10) | 0 | 97(0.3) | 108(4.0) | 103(1.0) | 97(0.7) | 83(0.6) |
| Medicine | 59(13) | 19(10) | 11(8) |  | 115(0.4) | 120(0.5) | 119(0.9) | 105(2.9) | 88(3.5) |
| Schoolhouse | 27(32) | 18(27) | 0 |  | 116(2.0) | 118(1.0) | 123 | 104(0.0) |  |
| Shell | 100(0) | 82(27) | 55(36) | 0 | 93(1.7) |  | 88(9.7) | 91(2.7) | 95(0.8) |
| Tower | 14(14) | 10(10) | 0 | 0 | 117(0.3) | 118(0.4) | 116(-) | 112(2.2) |  |
| Twin | 97(5) | 86(12) | 81(13) |  | 105(0.6) | 119 | 114(1.2) | 112(0.0) | 103(0.8) |
| Willow ${ }^{2}$ |  |  |  |  | 86 |  |  | 86 |  |

[^3]Appendix 10. Mean back calculated total length (mm) at age for black crappie collected in Nebraska Sandhill Lakes, 1998 and 1999. Standard errors are in parentheses.

| Lake | Number <br> aged | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Big Alkali | 61 | $80(4)$ | $168(10)$ | $252(9)$ | $298(10)$ | $331(10)$ | $361(11)$ | $378(2)$ | 387 |  |  |  |
| Cozad | 44 | $68(2)$ | $109(3)$ | $149(1)$ | $175(4)$ | $195(1)$ | 202 |  |  |  |  |  |
| Hagan | 23 | $87(22)$ | 127 |  |  |  |  |  |  |  |  |  |
| Island | 48 | $68(3)$ | $139(1)$ | $212(2)$ | $254(3)$ | $279(2)$ | $296(6)$ | $306(6)$ | 319 |  |  |  |
| Medicine | 51 | $69(3)$ | $135(6)$ | $194(4)$ | $235(2)$ | $265(3)$ | $288(2)$ | $302(3)$ | $315(3)$ | $322(2)$ | 325 | 330 |
| Shell | 15 | $65(4)$ | $12593)$ | $190(8)$ | $230(5)$ | $264(5)$ | $284(5)$ | $304(3)$ | 309 |  |  |  |
| Tower | 25 | $69(6)$ | $138(12)$ | $192(11)$ | $238(4)$ | $259(5)$ | 267 |  |  |  |  |  |
| Twin | 41 | $74(3)$ | $149(6)$ | $215(13)$ | $272(11)$ | $313(1)$ | $333(2)$ | 350 |  |  |  |  |

Appendix 11. Number of black crappie collected in each age group for fish sampled in Nebraska Sandhill lakes during (RVI) ranges from -1 (very inconsistent recruitment ) to 1 (very consistent recruitment).

| Lake | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | RVI |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Big Alkali | 1 | 107 | 50 | 9 | 1 | 1 | 1 |  |  |  | 0.793 |
| Cozad | 11 | 124 | 16 | 58 | 9 |  |  |  |  |  | 0.664 |
| Island | 2 | 0 | 0 | 11 | 0 | 9 | 3 |  |  |  | -0.395 |
| Medicine | 25 | 23 | 6 | 2 | 0 | 3 | 1 | 1 | 0 | 1 | 0.464 |
| Tower | 25 | 1 | 0 | 1 | 2 |  |  |  |  |  | 0.488 |
| Twin | 0 | 1 | 5 | 24 | 4 | 2 |  |  |  |  | 0.292 |

Appendix 12. Catch per unit effort (number per trap net night) of bluegills collected in Nebraska Sandhill Lakes, 1998 and 1999. No bluegills trophy size and larger ( 2300 mm TL ) were collected in any of the lakes. Standard errors are in parentheses. $\mathrm{S}=\mathrm{stock}$ ( 280 mm ); Q=quality ( 2 150 mm ); $P=$ preferred ( 2200 mm ); M=memorable ( 2250 mm ).

| Lake | Total caught | CPUE (all sizes) | CPUE 2 S | $\mathrm{CPUE} \_\mathrm{Q}$ | $\mathrm{CPUE} \_\mathrm{P}$ | $\mathrm{CPUE} \_\mathrm{M}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Alkali | 1,712 | $85.60(23.42)$ | $85.60(23.42)$ | $78.85(21.89)$ | $18.50(5.11)$ | $0.00(0.00)$ |
| Big Alkali | 1 | $0.05(0.05)$ | $0.05(0.05)$ | $0.05(0.05)$ | $0.00(0.00)$ | $0.00(0.00)$ |
| Clear | 231 | $11.55(2.19)$ | $11.30(0.10)$ | $8.95(2.18)$ | $1.60(0.35)$ | $0.00(0.00)$ |
| Clear (VNWR ${ }^{1}$ ) | 242 | $12.10(2.81)$ | $11.35(2.78)$ | $5.85(1.46)$ | $2.45(0.65)$ | $0.05(0.05)$ |
| Cottonwood | 851 | $86.10(17.81)$ | $79.50(17.59)$ | $21.10(7.46)$ | $1.20(0.66)$ | $0.00(0.00)$ |
| Cozad | 2,325 | $232.50(29.02)$ | $232.50(29.02)$ | $128.40(16.79)$ | $0.30(0.21)$ | $0.00(0.00)$ |
| Dewey | 399 | $19.95(4.17)$ | $19.85(4.17)$ | $12.20(2.98)$ | $2.70(0.81)$ | $0.10(0.10)$ |
| Duck | 213 | $21.30(10.89)$ | $21.30(10.89)$ | $4.80(0.98)$ | $0.40(0.16)$ | $0.00(0.00)$ |
| Goose | 237 | $11.80(1.93)$ | $11.75(1.94)$ | $7.90(1.41)$ | $1.15(0.25)$ | $0.00(0.00)$ |
| Hackberry | 321 | $16.05(2.64)$ | $15.25(2.59)$ | $8.25(1.47)$ | $2.10(0.42)$ | $0.10(0.07)$ |
| Island | 410 | $20.50(3.89)$ | $20.50(3.89)$ | $20.20(3.87)$ | $15.20(2.93)$ | $0.05(0.05)$ |
| Lackaff West | 12 | $0.60(0.15)$ | $0.60(0.15)$ | $0.35(0.13)$ | $0.00(0.00)$ | $0.00(0.00)$ |
| Medicine | 584 | $58.40(15.04)$ | $58.40(15.04)$ | $41.10(10.65)$ | $5.80(1.64)$ | $0.60(0.34)$ |
| Pelican | 3,716 | $185.80(26.35)$ | $177.15(24.87)$ | $27.85(5.98)$ | $17.35(5.00)$ | $7.35(2.68)$ |
| Schoolhouse | 34 | $3.40(2.24)$ | $3.20(2.24)$ | $1.30(1.19)$ | $0.00(0.00)$ | $0.00(0.00)$ |
| Shell | 267 | $13.35(2.44)$ | $11.95(2.10)$ | $4.75(0.90)$ | $0.70(0.28)$ | $0.00(0.00)$ |
| Shoup | 64 | $6.40(1.31)$ | $6.40(1.31)$ | $4.90(0.88)$ | $2.50(0.56)$ | $0.00(0.00)$ |
| Tower | 140 | $14.00(3.91)$ | $13.10(3.85)$ | $6.40(2.35)$ | $0.90(0.41)$ | $0.00(0.00)$ |
| Twin | 190 | $9.50(2.06)$ | $7.3(1.63)$ | $4.85(1.25)$ | $2.90(0.63)$ | $0.05(0.05)$ |
| Watts | $32.20(4.14)$ | $32.05(4.14)$ | $20.60(3.21)$ | $3.90(0.86)$ | $0.00(0.00)$ |  |
| Willow | $1.50(0.91)$ | $1.15(0.63)$ | $0.40(0.30)$ | $0.00(0.00)$ | $0.00(0.00)$ |  |
| West Long | 284 | $28.30(4.50)$ | $28.50)$ | $19.30(4.35)$ | $0.00(0.00)$ | $0.00(0.00)$ |

[^4]Appendix 13. Stock density indices and Wr values of bluegills collected in Nebraska Sandhill Lakes, 1998 and 1999. Confidence intervals (95\%) for stock density indices and standard errors for mean $\underline{W r}$ values are in parentheses. No bluegills trophy size and larger ( 2300 mm TL ) were collected in any of the lakes. PSD=proportional stock density; RSD-P=relative stock density of preferred length fish; RSD-M=relative stock density of memorable length fish.

| Lake | PSD | RSD-P | RSD-M | $\begin{aligned} & W r \\ & z S \end{aligned}$ | $\begin{aligned} & \mathrm{Wr} \\ & \mathrm{~S}-\mathrm{Q} \end{aligned}$ | $\begin{aligned} & \text { Wr } \\ & \text { Q-P } \end{aligned}$ | $\begin{aligned} & \mathrm{Wr} \\ & \mathrm{P}-\mathrm{M} \end{aligned}$ | Wr M-T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alkali | 92(1) | 22(2) | 0 | 119(1.2) | 114(3.4) | 118(1.6) | 121(2.0) |  |
| Big Alkali ${ }^{1}$ |  |  |  |  |  |  |  |  |
| Clear | 79(5) | 14(4) | 0 | 113(1.3) | 105(1.9) | 113(1.8) | 125(2.0) |  |
| Clear (VNWR ${ }^{2}$ ) | 52(7) | 22(5) | $0(1)$ | 120(1.6) | 123(3.2) | 118(1.1) | 117(1.6) | 126 |
| Cottonwood | 27(3) | 2(1) | 0 | 99(1.7) | 95(2.3) | 111(1.7) | 113(1.5) |  |
| Cozad | 55(2) | 0 | 0 | 109(1.1) | 112(1.8) | 106(1.3) | 97(1.8) |  |
| Dewey | 61(4) | 14(4) | 1(1) | 119(1.3) | 122(3.2) | 118(1.2) | 115(1.5) | 122(0.0) |
| Duck | 23(6) | 2(2) | 0 | 108(1.0) | 106(1.3) | 111(1.4) | 115(0.0) |  |
| Goose | 67(6) | 10(4) | 0 | 105(1.3) | 103(2.9) | 1.4(1.5) | 120(1.2) |  |
| Hackberry | 54(6) | 14(4) | 1(1) | 117(1.6) | 112(3.1) | 123(1.5) | 116(1.5) | 120(0.0) |
| Island | 99(2) | 74(4) | 0 | 117(1.9) | 113(3.5) | 119(1.9) | 107(1.6) |  |
| : Lackaff West | 58(33) | 0 | 0 | 107(0.6) | 110(0.4) | 106(0.40 |  |  |
| Medicine | 70(4) | 10(2) | 1(1) | 133(1.2) | 131(2.7) | 135(1.5) | 131(1.4) | 122(3.4) |
| Pelican | 16(2) | 10(1) | 4(1) | 112(2.5) | 111(3.0) | 118(1.6) | 124(2.2) | 123(2.0) |
| Schoolhouse | 41(18) | 9(11) | 0 | 132(0.3) | 126(0.6) | 144(2.0) | 135(0.0) |  |

Appendix 13 continued.

|  |  |  |  | $W r$ | | | | |
|---|---|---|---|---|---|---|---|---|
| Lake | PSD | RSD-P | RSD-M | $2 S$ | S-Q | Q-P | $\mathrm{P}-\mathrm{M}$ | $\mathrm{M}-\mathrm{T}$ |
| Shell | $40(7)$ | $6(30$ | 0 | $89(1.4)$ | $87(2.2)$ | $94(1.5)$ | $90(2.7)$ |  |
| Shoup | $77(11)$ | $39(12)$ | 0 | $121(0.8)$ | $110(0.6)$ | $122(0.6)$ | $122(2.0)$ |  |
| Tower | $49(9)$ | $7(5)$ | 0 | $130(1.1)$ | $131(1.1)$ | $129(2.2)$ | $131(1.4)$ |  |
| Twin | $66(8)$ | $40(8)$ | $1(1)$ | $142(1.3)$ | $131(2.8)$ | $146(1.4)$ | $147(2.2)$ | 145 |
| Watts | $64(3)$ | $12(2)$ | 0 | $121(1.1)$ | $120(2.2)$ | $122(1.5)$ | $117(2.0)$ |  |
| Willow | $35(21)$ | 0 | 0 | $122(1.3)$ | $117(2.0)$ | $130(1.7)$ |  |  |
| West Long | $68(6)$ | $40(5)$ | 0 | $119(1.1)$ | $133(1.7)$ | $118(1.8)$ | $123(2.2)$ |  |

[^5]Appendix 14. Mean back calculated total length (mm) at age for bluegill collected in Nebraska Sandhill Lakes, 1998 and 1999. Standard errors are in parentheses.

| Lake | Number aged | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alkali | 63 | 44(2) | 98(3) | 162(5) | 201(5) | 217(5) | 231 |  |  |  |  |  |  |  |
| Clear | 80 | 42(3) | 103(3) | 157(4) | 180(5) | 196(3) | 206(2) | 215 |  |  |  |  |  |  |
| Clear (VNWR ${ }^{1}$ ) | 79 | 44(2) | 102(3) | 157(4) | 186(6) | 200(10) | 208(17) | 215(30) | 190 | 196 |  |  |  |  |
| Cottonwood | 73 | 38(1) | 62(2) | 80(3) | 98(4) | 112(5) | 127(5) | 143(5) | 1564) | 165(4) | 174(6) | 185(8) | 198(10) | 212 |
| Cozad | 55 | 44(2) | 81(3) | 126(10) | 152(9) | 174(10) | 195(16) | 224(11) | 216 |  |  |  |  |  |
| Dewey | 80 | 47(4) | 96(4) | 148(5) | 183(3) | 202(3) | 216(4) | 230(4) | 240(5) | 250(1) | 254 |  |  |  |
| Duck | 58 | 53(2) | 109(7) | 143(7) | 167(7) | 188(4) | 202 |  |  |  |  |  |  |  |
| Goose | 63 | 57(7) | 108(7) | 156(5) | 185(5) | 199(3) | 208(3) | 215(6) | 225 |  |  |  |  |  |
| Hackberry | 97 | 40(1) | 87(3) | 137(5) | 169(7) | 195(5) | 214(4) | 229(2) | 236(2) | 240(1) | 250 |  |  |  |
| Island | 55 | 47(5) | 97(4) | 153(5) | 182(3) | 202(3) | 212(1) | 221(1) | 228 |  |  |  |  |  |
| Medicine | 79 | 47(4) | 102(4) | 157(4) | 189(5) | 210(7) | 233(5) | 249(3) | 256(4) | 267 |  |  |  |  |
| Pelican | 106 | 44(4) | 84(5) | 137(6) | 183(4) | 211(7) | 234(5) | 249(3) | 252 |  |  |  |  |  |
| Schoolhouse | 33 | 43(4) | 108(9) | 140(9) | 173(7) | 189(7) | 208(6) | 217(5) | 220 |  |  |  |  |  |
| Shell | 72 | 44(2) | 73(2) | 103(4) | 138(5) | 164(5) | 180(4) | 190(4) | 198(2) | 202(1) | 209 |  |  |  |
| Shoup | 51 | 46(3) | 104(7) | 159(7) | 188(4) | 204(3) | 216(3) | 227(6) | 235 |  |  |  |  |  |
| Tower | 74 | 47(2) | 105(6) | 152(6) | 181(4) | 202(3) | 217 | 223 |  |  |  |  |  |  |
| Twin | 66 | 41(2) | 103(3) | 142(3) | 164(3) | 177(4) | 189(4) | 196(5) | 203(5) | 210(7) | 211(5) | 212 |  |  |
| Watts | 84 | 49(6) | 107(3) | 168(3) | 196(2) | 210(3) | 224(6) | 240 |  |  |  |  |  |  |

Appendix 14 continued.

|  | Number <br> aged | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lake | 27 | $46(7)$ | $117(10)$ | $134(8)$ | $163(15)$ | 159 | 174 |  |  |  |  |  |  |  |
| Willow | 71 | $43(1)$ | $98(3)$ | $150(5)$ | $180(6)$ | $196(6)$ | $206(7)$ | $217(13)$ | 239 |  |  |  |  |  |
| West Long |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

${ }^{1}$ Valentine National Wildlife Refuge

| Lake | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | RVI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alkali | 6 | 612 | 939 | 148 | 5 |  |  |  |  |  |  |  | 0.654 |
| Clear | 36 | 38 | 76 |  |  |  |  |  |  |  |  |  | 0.577 |
| Clear (VNWR ${ }^{1}$ ) | 103 | 54 | 32 | 17 | 14 | 2 | 0 | 3 |  |  |  |  | 0.592 |
| Cottonwood | 15 | 145 | 194 | 44 | 91 | 107 | 59 | 129 | 47 | 11 | 9 | 1 | 0.668 |
| Cozad | 6 | 403 | 746 | 846 | 320 | 1 | 1 |  |  |  |  |  | 0.362 |
| Dewey | 88 | 30 | 97 | 44 | 30 | 7 | 4 | 2 | 1 |  |  |  | 0.795 |
| Duck | 115 | 6 | 33 | 9 | 1 |  |  |  |  |  |  |  | 0.874 |
| Goose | 68 | 72 | 34 | 37 | 6 | 5 | 1 |  |  |  |  |  | 0.804 |
| Hackberry | 114 | 77 | 55 | 23 | 16 | 6 | 9 | 2 | 1 |  |  |  | 0.843 |
| Island | 6 | 67 | 32 | 82 | 52 | 113 | 58 |  |  |  |  |  | 0.478 |
| Medicine | 218 | 243 | 71 | 33 | 8 | 5 | 3 | 2 |  |  |  |  | 0.877 |
| Pelican | 467 | 2,663 | 132 | 89 | 128 | 142 | 56 |  |  |  |  |  | 0.815 |
| Schoolhouse | 22 | 0 | 0 | 7 | 0 | 2 | 1 |  |  |  |  |  | -0.380 |
| Shell | 6 | 2 | 108 | 47 | 37 | 11 | 10 | 3 | 3 |  |  |  | 0.673 |
| Shoup | 20 | 9 | 9 | 11 | 8 | 2 | 1 |  |  |  |  |  | 0.744 |
| Tower | 74 | 32 | 8 | 4 | 5 | 1 |  |  |  |  |  |  | 0.885 |
| Twin | 14 | 4 | 8 | 6 | 13 | 8 | 38 | 6 | 5 | 5 |  |  | 0.547 |
| Watts | 163 | 321 | 56 | 29 | 16 | 6 |  |  |  |  |  |  | 0.826 |

Appendix 15 continued.

| Lake | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Willow | 6 | 0 | 3 | 0 | 1 |  |  |  |  |  |  | RVI |
| West Long | 78 | 29 | 45 | 66 | 48 | 16 | 1 |  |  |  | -0.167 |  |

${ }^{1}$ Valentine National Wildlife Refuge
Appendix 16. Catch per unit effort (number per hour of electrofishing) of common carp collected in Nebraska Sandhill Lakes, 1998 and 1999. Standard errors are in parentheses. $S=\operatorname{stock}(z 280 \mathrm{~mm}$ ); $\mathrm{Q}=$ quality ( $~ \geq 410 \mathrm{~mm}$ ); $\mathrm{P}=$ preferred ( $\geq 530 \mathrm{~mm}$ ); $\mathrm{M}=$ memorable ( 2660 mm ); $T=$ trophy ( 2840 mm ).

| Lake | Total caught | CPUE (all sizes) | $\begin{gathered} \text { CPUE } \\ 2 S \end{gathered}$ | $\begin{gathered} \text { CPUE } \\ 2 Q \end{gathered}$ | $\begin{gathered} \text { CPUE } \\ 2 \mathrm{P} \end{gathered}$ | $\begin{gathered} \text { CPUE } \\ \text { ZM } \end{gathered}$ | $\begin{gathered} \text { CPUE } \\ \approx \mathrm{T} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Big Alkali | 3 | 1.96(1.03) | 1.96(1.03) | 1.96(1.03) | 1.34(0.91) | 0.71(0.71) | 0.00 |
| Cameron | 4 | 3.86(3.02) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Clear (VNWR ${ }^{1}$ ) | 25 | 12.50(3.58) | 12.50(3.58) | 12.50(3.58) | 12.50(3.58) | 11.50(3.50) | 1.50(1.08) |
| Dewey | 41 | 22.63(5.48) | 22.63(5.48) | 22.63(5.48) | 22.00(4.95) | 21.38(4.98) | 1.00(0.67) |
| Goose | 2 | 1.00(0.67) | 1.00(0.67) | 1.00(0.67) | 1.00(0.67) | $0.50(0.50)$ | 0.00(0.00) |
| Home Valley | 121 | 87.86(24.55) | 77.14(20.00) | 76.43(19.56) | 39.29(9.77) | $6.71(2.43)$ | 0.00(0.00) |
| Marsh(VNWR ${ }^{1}$ ) | 19 | 23.81(9.67) | 23.81(9.67) | 17.14(8.81) | 17.14(8.81) | 17.14(8.81) | 0.00(0.00) |
| Pelican | 3 | 1.39(0.73) | 1.39(0.73) | 1.39(0.73) | $1.39(0.73)$ | 0.92(0.62) | 0.00(0.00) |
| Willow | 40 | 19.67(17.93) | 14.33(13.45) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) |

[^6]Appendix 17. Stock density indices and mean Wr values for common carp collected in Nebraska Sandhill Lakes, 1998 and 1999. Confidence intervals ( $95 \%$ ) for stock density indices and standard errors for mean Wr values are in parentheses. PSD=proportional stock density; RSD-P=relative stock density of preferred length fish; RSD-M=relative stock density of memorable length fish; RSD$\mathrm{T}=$ relative stock density of trophy length fish.

|  |  |  |  |  | $W r$ | | | | |
|---|---|---|---|---|---|---|---|---|---|
| Lake | PSD | RSD-P | RSD-M | RSD-T | $2 S$ | S-Q | Q-P | P-M | $M-T$ |
| Big Alkali $^{1}$ |  |  |  |  | 86 |  |  |  |  |
| Clear (VNWR |  |  |  |  |  |  |  |  |  |

[^7]${ }^{2}$ Valentine National Wildlife Refuge
${ }^{3}$ Low sample size (two fish) prohibited calculation of many indices
${ }^{4}$ Stock density indices and Wr values based on trap netting
${ }^{5}$ Based on 29 fish collected electrofishing

| Lake | Total caught | CPUE <br> (all sizes) | CPUE <br> $2 S$ | CPUE <br> $2 Q^{2}$ | CPUE <br> $2 P$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Cameron | 117 | $11.70(15.35)$ | $11.70(15.35)$ | $1.50(2.16)$ | 0.00 |
| Cottonwood | 30 | $3.00(0.92)$ | $3.00(0.92)$ | 0.00 | 0.00 |
| Cozad | 2 | $0.20(0.13)$ | $0.20(0.13)$ | $0.20(0.13)$ | 0.00 |
| Hagan | 5,794 | $1,448.50(457.54)$ | $2,164.82(449.44)$ | $78.75(23.11)$ | $0.97(0.29)$ |
| Lackaff West | 370 | $18.50(2.73)$ | $18.30(2.68)$ | $0.80(0.19)$ | 0.00 |
| Marsh (VNWR ${ }^{1}$ ) | 316 | $15.80(4.110$ | $15.75(4.110$ | $5.55(1.56)$ | 0.00 |
| Round | 22 | $2.20(0.47)$ | $2.20(0.47)$ | $0.10(0.10)$ | 0.00 |
| Tower | 26 | $2.60(0.85)$ | $2.30(0.78)$ | $0.50(0.22)$ | 0.00 |
| Twin | 13 | $0.65(0.23)$ | $0.60(0.24)$ | $0.05(0.05)$ | 0.00 |
| Willow | 120 | $6.00(2.15)$ | $5.40(1.98)$ | $0.75(0.33)$ | 0.00 |

${ }^{1}$ Valentine National Wildlife Refuge
Appendix 19. Stock density indices and $\underline{W r}$ values for green sunfish collected in Nebraska Sandhill Lakes, 1998 and 1999. Confidence intervals $(95 \%)$ for stock density indices and standard errors for mean Wr values are in parentheses. PSD=proportional stock density; RSD-P=relative stock density of preferred length fish. No fish memorable length ( 250 mm ) or longer were collected.

| Lake | PSD | RSD-P | $\begin{aligned} & W r \\ & \geq S \end{aligned}$ | $\begin{aligned} & \mathrm{Wr} \\ & \mathrm{~S}-\mathrm{Q} \end{aligned}$ | $\begin{aligned} & \mathrm{Wr} \\ & \text { Q-P } \end{aligned}$ | $\begin{aligned} & \mathrm{Wr} \\ & \mathrm{P}-\mathrm{M} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cameron | 13(5) | 0 | 105(1.5) | 105(1.8) | 110(0.8) |  |
| Cottonwood | 0 | 0 | 107(2.7) | 107(2.7) |  |  |
| Cozad ${ }^{1}$ |  |  |  |  |  |  |
| Hagan | 6(1) | 0 | 101(2.4) | 100(2.5) | 109(3.0) | 100(0.0) |
| Lackaff West | 4(2) | 0 | 96(2.1) | 96(2.2) | 101(0.9) |  |
| Marsh (VNWR ${ }^{2}$ ) | 35(5) | 0 | 121(2.1) | 121(2.8) | 121(2.8) |  |
| Round | 5(5) | 0 | 99(1.8) | 100(1.8) | 87 |  |
| Tower | 22(18) | 0 | 108(2.4) | 107(2.4) | 112(7.1) |  |
| Twin | 8(8) | 0 | 118(4.6) | 118(5.0) | 124 |  |
| Willow | 14(7) | 0 | 127(1.3) | 128(1.5) | 119(1.7) |  |

${ }^{2}$ Valentine National Wildlife Refuge
Appendix 20. Catch per unit effort (number per hour of electrofishing) of largemouth bass collected in Nebraska Sandhill Lakes, 1998 and 1999. No largemouth bass trophy size and larger ( 2630 mm TL ) were collected in any of the lakes. Standard errors are in parentheses. S=stock ( 2200 mm ); Q=quality ( 2300 mm ); $\mathrm{P}=$ preferred ( 2380 mm ); M=memorable ( 2510 mm ).

| Lake | Total caught | $\begin{aligned} & \text { CPUE } \\ & \text { (all sizes) } \end{aligned}$ | $\begin{gathered} \text { CPUE } \\ \text { ZS } \end{gathered}$ | $\begin{gathered} \text { CPUE } \\ \imath Q \end{gathered}$ | $\begin{gathered} \text { CPUE } \\ \text { ZP } \end{gathered}$ | $\begin{gathered} \text { CPUE } \\ 2 M \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alkali | 311 | 155.50(21.34) | 154.50(20.98) | 56.50(9.05) | 8.50(2.61) | 0.00 |
| Clear | 100 | 70.54(12.81) | 59.91(10.53) | 43.04(7.25) | 15.89(3.92) | 0.71(0.71) |
| Clear (VNWR ${ }^{1}$ ) | 16 | 8.00(2.98) | 7.00(2.43) | 4.00(1.71) | 2.50(1.16) | 0.00(0.00) |
| Cottonwood | 49 | 53.45(8.92) | 53.45(8.920 | 39.27(7.78) | 18.55(4.95) | 0.00(0.00) |
| Cozad | 107 | 50.82(5.80) | 37.74(4.25) | 22.44(4.04) | 9.59(2.80) | 0.00(0.00) |
| Defair | 159 | 175.60(25.48) | 144.40(24.48) | 63.60(13.68) | 0.00(0.00) | 0.00(0.00) |
| Dewey | 71 | 39.63(9.19) | 37.25(8.46) | 25.88(5.95) | 15.13(3.68) | 0.00(0.00) |
| Duck | 111 | 107.83(10.58) | 99.31(11.98) | 88.94(12.29) | 41.96(7.99) | 2.06(1.37) |
| Goose | 31 | 29.50(6.02) | 15.50(3.09) | 8.50(2.39) | 5.00(1.45) | 0.50(0.50) |
| Hackberry | 93 | 50.73(8.15) | 40.91(7.41) | 21.83(4.60) | 13.09(2.78) | 0.00(0.00) |
| Hagan | 2 | 1.36(0.92) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) |
| Island | 267 | 133.50(21.30) | 117.50(20.10) | 41.00(6.80) | 8.00(1.86) | 0.00(0.00) |
| Medicine | 291 | 251.25(30.62) | 138.63(18.74) | 37.13(5.77) | 17.00(4.73) | 1.25(0.84) |
| Pelican | 42 | 19.39(4.08) | 14.31(3.36) | 7.34(2.65) | 5.54(2.09) | 0.00(0.00) |
| Schoolhouse | 53 | 34.61(8.340 | 8.29(4.53) | 2.86(2.86) | $0.7190 .71)$ | 0.00(0.00) |
| Shell | 50 | 30.82(7.84) | 30.82(7.84) | 23.73(6.81) | 10.91(4.25) | 0.00(0.00) |
| Shoup | 211 | 310.75(44.63) | 158.75(28.79) | 93.25(15.04) | 32.00(10.17) | 0.00(0.00) |
| Tower | 98 | 60.72(15.47) | 54.72(14.16) | 45.64(11.14) | 11.18(1.92) | 0.00(0.00) |
| Twin | 52 | 28.75(6.71) | 11.75(2.69) | 8.50(2.35) | 3.88(1.63) | 0.00(0.00) |
| Watts | 274 | 137.00(19.84) | 95.50(12.74) | 38.50(5.19) | 6.50(1.16) | 0.00(0.00) |
| Willow | 90 | 44.33(8.54) | 44.33(8.54) | 44.33(8.54) | 26.99(6.35) | 0.00(0.00) |
| West Long | 126 | 157.50(33.43) | 143.75(32.14) | 41.25(17.07) | 12.50(5.000 | 2.50(1.58) |

[^8]Appendix 21. Stock density indices and mean Wr values for largemouth bass collected in Nebraska Sandhill Lakes, 1998 and 1999. Confidence intervals $(95 \%)$ for stock density indices and standard errors for mean relative Wr values are in parentheses. No largemouth bass trophy size and larger ( 2630 mm TL ) were collected in any of the lakes. PSD=proportional stock density; RSD$\mathrm{P}=$ relative stock density of preferred length fish; RSD-M=relative stock density of memorable length fish.

| Lake | PSD | RSD-P | RSD-M | $\begin{aligned} & \mathrm{Wr} \\ & \text { zS } \end{aligned}$ | $\begin{aligned} & \mathrm{Wr} \\ & \mathrm{~S}-\mathrm{Q} \end{aligned}$ | $\begin{aligned} & \text { Wr } \\ & \text { Q-P } \end{aligned}$ | $\begin{aligned} & \mathrm{Wr} \\ & \mathrm{P}-\mathrm{M} \end{aligned}$ | $\begin{aligned} & \mathrm{Wr} \\ & \mathrm{M}-\mathrm{T} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alkali | 37(6) | 6(3) | 0 | 99(0.8) | 95(1.2) | 104(1.1) | 110(0.8) |  |
| Clear | 72(10) | 27(10) | 1(3) | 116(0.8) | 118(0.4) | 116(1.7) | 115(1.3) | 102 |
| Clear (VNWR ${ }^{1}$ ) | 57(30) | 36(28) | 0 | 116(2.1) | 118(1.7) | 114(5.7) | 114(4.7) |  |
| Cottonwood | 73(13) | 35(14) | 0 | 116(0.9) | 119(1.7) | 118(1.5) | 113(1.2) |  |
| Cozad | 61(11) | 25(10) | 0 | 100(0.2) | 95(0.3) | 98(0.2) | 109(0.7) |  |
| Defair | 44(9) | 0 | 0 | 106(0.8) | 109(1.2) | 101(1.1) |  |  |
| Dewey | 70(11) | 40(12) | 0 | 124(0.7) | 121(0.9) | 123(1.2) | 127(1.2) |  |
| Duck | 89(6) | 42(10) | 2(2) | 108(0.4) | 103(0.8) | 106(0.7) | 111(0.4) | 115(13.1) |
| Goose | 55(19) | 32(17) | 3(3) | 114(0.1) | 110(0.3) | 118(1.3) | 117(2.4) | 126 |
| Hackberry | 53(12) | 32(11) | 0 | 122(0.4) | 122(0.7) | 122(0.7) | 123(0.3) |  |
| Hagan ${ }^{2}$ |  |  |  |  |  |  |  |  |
| Island | 35(6) | 7(3) | 0 | 104(0.7) | 106(0.9) | 99(1.1) | 107(1.6) |  |
| Medicine | 27(7) | 13(5) | 1(2) | 107(1.1) | 108(1.5) | 102(1.3) | 103(0.5) | 105(7.1) |
| Pelican | 52(18) | 39(18) | 0 | 122(2.2) | 121(1.9) | 113(14.3) | 127(2.6) |  |
| Schoolhouse | 31(29) | 8(16) | 0 | 121(3.1) | 124(3.3) | 119(7.8) | 107 |  |
| Shell | 76(12) | 36(14) | 0 | 106((1.2) | 99(2.3) | 104(1.5) | 114(0.6) |  |

Appendix 21 continued.

|  |  |  |  | $W r$ | | | | |
|---|---|---|---|---|---|---|---|---|
| Lake | PSD | RSD-P | RSD-M | $z S$ | S-Q | Q-P | $\mathrm{P}-\mathrm{M}$ | M |
| Shoup | $59(9)$ | $20(7)$ | 0 | $112(0.8)$ | $118(1.8)$ | $103(0.4)$ | $116(1.8)$ |  |
| Tower | $83(8)$ | $19(8)$ | 0 | $113(0.6)$ | $121(0.1)$ | $112(1.0)$ | $112(1.7)$ |  |
| Twin | $73(20)$ | $32(21)$ | 0 | $120(2.6)$ | $115(8.5)$ | $119(2.3)$ | $127(0.9)$ |  |
| Watts | $40(7)$ | $7(4)$ | 0 | $101(0.8)$ | $101(1.1)$ | $102(1.1)$ | $104(1.9)$ |  |
| Willow | $100(100)$ | $61(10)$ | 0 | $123(0.9)$ | $123(1.6)$ | $122(1.0)$ |  |  |
| West Long | $29(8)$ | $9(5)$ | $2(2)$ | $110(0.8)$ | $113(1.2)$ | $104(0.9)$ | $105(2.0)$ | $101(0.0)$ |

[^9]Appendix 22. Mean back calculated total length (mm) at age for largemouth bass collected in Nebraska Sandhill Lakes, 1998 and 1999. Standard errors are in parentheses.

| Lake | Number aged | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alkali | 104 | 88(8) | 198(10) | 283(11) | 326(10) | 359(12) | 386(4) | 401(1) | 411(5) | 425 |  |  |  |  |
| Clear | 67 | 84(4) | 196(7) | 291(8) | 346(11) | 385(8) | 408(10) | 430(11) | 450(17) | 462(22) | 454 |  |  |  |
| Clear(VNWR ${ }^{1.2}$ ) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cottonwood | 49 | 72(3) | 142(11) | 204(10) | 258(9) | 299(7) | 332(6) | 357(7) | 378(7) | 401(9) | 420(13) | 429(24) | 462 |  |
| Cozad | 71 | 111(8) | 209(14) | 279(20) | 333(18) | 371(16) | 407(18) | 439 |  |  |  |  |  |  |
| Defair | 59 | 87(8) | 186(13) | 250(10) | 284(10) | 305(6) | 314 |  |  |  |  |  |  |  |
| Dewey | 67 | 86(8) | 192(13) | 295(9) | $361(10)$ | 404(7) | 433(5) | 452(3) | 470(5) | 483(0) | 500 |  |  |  |
| Duck | 75 | 84(4) | 175(7) | 263(3) | 323(4) | 364(4) | 394(6) | 419(6) | 438(10) | 460(9) | 483 |  |  |  |
| Goose | 50 | 90(9) | 216(14) | 313(14) | 371(19) | 417(20) | 456(12) | 482(14) | 507 |  |  |  |  |  |
| Hackberry | 65 | 86(5) | 204(5) | 289(5) | 341(5) | 376(5) | 399(4) | 414(3) | 423(6) | 436 |  |  |  |  |
| Island | 103 | 96(5) | 209(7) | 287(11) | 331(12) | 364(15) | 395(19) | 421(18) | 446(13) | 469(13) | 492 | 503 |  |  |
| Medicine | 88 | 81(3) | 180(4) | 257(5) | 309(6) | 350(7) | 381(8) | 406(11) | 424(12) | 446(12) | 467(12) | 495(1) | 505(4) | 521 |
| Pelican | 30 | 96(6) | 210(11) | $300(10)$ | $349(8)$ | 384(9) | 405(9) | 423(10) | 439(12) | 459(11) | 480(10) | 498 | 505 |  |
| Schoolhouse ${ }^{3}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Shell | 48 | 76(7) | 185(7) | 256(5) | 303(6) | 331(8) | 358(8) | 382(3) | 401(2) | 417(4) | 421 | 432 |  |  |
| Shoup | 81 | 76(5) | 165(8) | 253(7) | 318(7) | 355(10) | 381(10) | 405(9) | 426(10) | 449(15) | 466(22) | 455 |  |  |
| Tower | 65 | 91(3) | 190(3) | 285(3) | 347(5) | 386(7) | 415(10) | 440(7) | 458 |  |  |  |  |  |
| Twin | 22 | 111(7) | 229(10) | 304(7) | 346(10) | 371(13) | 381(17) | 376 |  |  |  |  |  |  |

Appendix 22 continued.

| Lake | Number aged | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Watts | 87 | 91(5) | 200(5) | 277(12) | 323(16) | 355(19) | 384(21) | 411(23) | 446(27) | 482 | 492 |  |  |  |
| Willow | 56 | 100(7) | 212(15) | 309(15) | 353(11) | 384(10) | 414(9) | 438(9) | 457(8) | 466(11) | 465 | 473 |  |  |
| West Long | 68 | 78(7) | 175(12) | 249(10) | 307(13) | 359(16) | 405(20) | 448(21) | 485(9) | 508(3) | 515 |  |  |  |

[^10]Appendix 23. Catch per unit effort (number per trap net night) of northern pike collected in Nebraska Sandhill Lakes, 1998 and 1999. No
northern pike trophy size and larger ( 21120 mm TL ) were collected in any of the lakes. Standard errors are in parentheses. $\mathrm{S}=\mathrm{stock}(\geq 350$ $\mathrm{Q}=$ quality ( $\geq 530 \mathrm{~mm}$ ); $\mathrm{P}=$ preferred ( $\_710 \mathrm{~mm}$ ); $\mathrm{M}=$ memorable ( $\_860 \mathrm{~mm}$ ).

| Lake | Total caught | CPUE (all sizes) | $\begin{gathered} \text { CPUE } \\ \text { ¿S } \end{gathered}$ | CPUE <br> ¿Q | $\begin{gathered} \text { CPUE } \\ \angle \mathbf{P} \end{gathered}$ | $\begin{gathered} \text { CPUE } \\ 2 \mathrm{M} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Big Alkali | 19 | 0.95(0.28) | 0.80(0.25) | 0.05(0.12) | 0.00(0.00) | 0.00(0.00) |
| Clear | 21 | 1.05(0.19) | 1.05(0.19) | 0.45(0.11) | 0.15(0.08) | 0.00(0.00) |
| Clear (VNWR ${ }^{1}$ ) | 7 | 0.35(0.11) | 0.35(0.11) | 0.35(0.11) | 0.30(0.11) | 0.00(0.00) |
| Cottonwood | 2 | 0.20(0.13) | 0.20(0.13) | 0.20(0.13) | 0.00(0.00) | 0.00(0.00) |
| Dewey | 51 | 2.55(0.46) | 2.55(0.46) | 2.40(0.44) | 2.00(0.39) | 0.35(0.15) |
| Goose | 31 | 1.55(0.36) | 1.40(0.36) | 1.35(0.32) | 0.20(0.09) | 0.00(0.00) |
| Hackberry | 26 | 1.30(0.33) | 1.30(0.33) | 1.20(0.34) | 0.25(0.16) | 0.20(0.16) |
| Lackaff West | 15 | 0.75(0.18) | 0.75(0.18) | 0.50(0.15) | 0.20(0.09) | 0.00(0.00) |
| Marsh | 8 | 0.80(0.33) | 0.60(0.22) | 0.02(0.13) | 0.00(0.00) | 0.00(0.00) |
| Pelican | 13 | 0.65(0.18) | 0.65(0.18) | 0.65(0.18) | 0.15(0.08) | 0.00(0.00) |
| Roseberry | 28 | 2.80(0.99) | 2.10(0.78) | 2.10(0.78) | 0.50(0.17) | 0.00(0.00) |
| Round | 21 | $2.10(0.48)$ | 1.90(0.50) | 1.60(0.27) | 0.20(0.13) | 0.00(0.00) |
| Schoolhouse | 15 | 1.50(0.56) | 1.50(0.56) | 1.30(0.59) | 0.10(0.10) | 0.00(0.00) |
| - Shell | 30 | 1.50(0.37) | 1.45(0.37) | 1.10(0.35) | 0.25(0.14) | 0.05(0.05) |
| Twin | 35 | 1.75(0.35) | 1.70(0.32) | 1.35(0.28) | 0.45(0.14) | 0.15(0.08) |
| West Long | 2 | 0.20(0.13) | 0.10(0.10) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) |

${ }^{1}$ Valentine National Wildlife Refuge
Appendix 24. Stock density indices and mean Wr values for northern pike collected in Nebraska Sandhill Lakes, 1998 and 1999. Confidence intervals (95\%) for stock density indices and standard errors for mean Wr values are in parentheses. No northern pike trophy size and larger ( 21120 mm ) were collected in any of the lakes. PSD=proportional stock density; RSD-P=relative stock density of preferred length fish; RSD-M=relative stock density of memorable length fish.

| Lake | PSD | RSD-P | RSD-M | $\begin{aligned} & \mathrm{Wr} \\ & \mathrm{z} \end{aligned}$ | $\begin{aligned} & W r \\ & S-Q \end{aligned}$ | $\begin{aligned} & \text { Wr } \\ & \text { Q-P } \end{aligned}$ | $\begin{aligned} & \mathrm{Wr} \\ & \mathrm{P}-\mathrm{M} \end{aligned}$ | $\begin{aligned} & \mathrm{Wr} \\ & \mathrm{M}-\mathrm{T} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Big Alkali | 84(18) | 5(11) | 0 | 85(1.6) | 85(5.6) | 84(1.6) | 93 |  |
| Clear | 43(23) | 14(17) | 0 | 90(2.8) | 86(3.0) | 99(5.0) | 94(9.9) |  |
| Clear(VNWR ${ }^{1,2}$ ) |  |  |  | 88(5.5) |  | 98 | 86(6.3) |  |
| Cottonwood ${ }^{3}$ |  |  |  | 74(0.1) |  | 74(0.1) |  |  |
| Dewey | 94(7) | 78(11) | 14(10) | 87(0.8) | 96(5.0) | 89(1.6) | 86(0.8) | 88(2.2) |
| Goose | 96(5) | 14(14) | 0 | 92(2.0) | 89(0.0) | 93(2.4) | 91(3.1) |  |
| Hackberry | 92(11) | 19(16) | 15(15) | 86(0.3) | 88(1.2) | 82(0.3) | 100 | 97(4.4) |
| Lackaff West | 67(37) | 27(26) | 0 | 93(3.0) | 103(3.2) | 93(4.1) | 81(1.7) |  |
| Marsh ${ }^{3}$ |  |  |  | 101(2.0) | 102(2.3) | 97(3.3) |  |  |
| Pelican | 100(100) | 23(27) | 0 | 77(2.8) |  | 77(3.10) | 76(7.8) |  |
| , Roseberry | 100(100) | 24(20) | 0 | 97(1.5) |  | 96(1.6) | 98(3.8) |  |
| Round | 84(16) | 11(15) | 0 | 93(1.6) | 97(2.0) | 93(1.6) | 84(8.6) |  |
| Shell | 76(17) | 17(15) | 3(8) | 89(1.7) | 96(1.7) | 88(2.4) | 84(2.6) | 99 |
| Schoolhouse | 87(20) | 7(14) | 0 | 76(3.3) | 68(7.1) | 77(3.9) | 77 |  |
| Twin | 79(15) | 26(16) | 9(10) | 85(1.0) | 84(2.0) | 84(1.6) | 88(1.1) | 87(4.4) |

Appendix 24 continued.

| Lake |  |  |  |  | Wr | Wr |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Appendix 25. Mean back calculated total length (mm) at age for northern pike collected in Nebraska Sandhill Lakes, 1998 and1999. Standard errors are in parentheses.

|  | Number <br> aged | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| Lake | 18 | $251(9)$ | $445(11)$ | $542(9)$ | $595(10)$ | 656 |  |  |  |  |  |
| Big Alkali | 20 | $280(16)$ | $515(23)$ | $668(37)$ | $748(42)$ | $802(33)$ | 845 |  |  |  |  |
| Clear | 50 | $241(15)$ | $470(24)$ | $628(23)$ | $712(22)$ | $764(9)$ | $792(12)$ | $820(3)$ | $839(9)$ | $856(1)$ | 868 |
| Dewey | 31 | $289(19)$ | $472(15)$ | $594(10)$ | $668(14)$ | $719(18)$ | 759 |  |  |  |  |
| Goose | 25 | $368(34)$ | $632(46)$ | $758(57)$ | $834(61)$ | $927(10)$ | $951(17)$ | 978 |  |  |  |
| Hackberry | 15 | $423(16)$ | $633(14)$ | $729(23)$ | 783 |  |  |  |  |  |  |
| Lackaff West | 27 | $295(30)$ | $553(8)$ | 660 |  |  |  |  |  |  |  |
| Roseberry | 21 | $253(20)$ | $440(33)$ | $514(36)$ | $609(41)$ | $648(26)$ | 662 |  |  |  |  |
| Round | 15 | $308(42)$ | $517(22)$ | $655(67)$ | 766 |  |  |  |  |  |  |
| Schoolhouse | 29 | $259(9)$ | $434(15)$ | $531(18)$ | $610(15)$ | $661(28)$ | $721(26)$ | 714 | 731 |  |  |
| Shell | 33 | $372(34)$ | $625(53)$ | $743(44)$ | $820(21)$ | $856(29)$ | 900 |  |  |  |  |
| Twin |  |  |  |  |  |  |  |  |  |  |  |

Appendix 26. Catch per unit effort (number per trap net night) of pumpkinseed sunfish collected in Nebraska Sandhill Lakes, 1998 and 1999. Standard errors are in parentheses. $S=$ stock ( $\geq 80 \mathrm{~mm}$ ); Q=quality ( $\geq 150 \mathrm{~mm}$ ). No fish preferred length $(200 \mathrm{~mm})$ or longer were collected.

| Lake | Total caught | CPUE <br> (all sizes) | CPUE <br> $2 S$ | CPUE <br> 2 |
| :--- | :---: | :---: | :---: | :---: |
| Clear (VNWR ${ }^{1}$ ) | 24 | $1.20(0.58)$ | $1.20(0.58)$ | 0.00 |
| Cottonwood | 76 | $7.60(1.69)$ | $7.50(1.67)$ | $1.20(0.51)$ |
| Duck | 56 | $5.60(3.19)$ | $5.60(3.19)$ | $2.00(0.83)$ |
| Goose | 68 | $3.40(1.74)$ | $3.40(1.74)$ | $2.20(0.90)$ |
| Medicine | 13 | $1.30(0.63)$ | $1.30(0.63)$ | $0.90(0.41)$ |
| Schoolhouse | 45 | $4.50(0.90)$ | $4.40(0.92)$ | $0.30(0.15)$ |
| Shell | 12 | $0.60(0.23)$ | $0.55(0.86)$ | 0.00 |
| Shoup | 16 | $1.60(0.40)$ | $1.60(0.40)$ | $0.60(0.22)$ |

' Valentine National Wildlife Refuge
Appendix 27. Stock density indices and mean $\underline{W r}$ values for pumpkinseed sunfish collected in Nebraska Sandhill Lakes, 1998 and 1999. Confidence intervals (95\%) for stock density indices and standard errors for mean Wr values are in parentheses. PSD=proportional stock density. No fish preferred length ( 200 mm ) or longer were collected

|  |  | $W_{r}$ | $W_{r}$ | $W_{r}$ |
| :--- | :---: | :---: | :---: | :---: |
| Lake | PSD | 2 Z | $\mathrm{S}-\mathrm{Q}$ | $\mathrm{W}_{\mathrm{r}}$ |
| Clear (VNWR ${ }^{1}$ ) | 0 | $114(0.9)$ | $114(0.9)$ |  |
| Cottonwood | $16(8)$ | $113(2.9)$ | $113(3.4)$ | $111(1.7)$ |
| Duck | $36(13)$ | $104(0.5)$ | $102(0.4)$ | $107(1.0)$ |
| Goose | $65(12)$ | $103(0.6)$ | $102(1.1)$ | $103(0.7)$ |
| Medicine | $69(29)$ | $124(2.9)$ | $121(8.2)$ | $125(3.0)$ |
| Schoolhouse | $7(7)$ | $122(1.3)$ | $122(1.4)$ | $122(0.0)$ |
| Shell | 0 | $82(4.9)$ | $82(4.9)$ |  |
| Shoup | $38(27)$ | $109(1.7)$ | $108(2.7)$ | $110(1.2)$ |

${ }^{1}$ Valentine National Wildlife Refuge
Appendix 28. Catch per unit effort (number per trap net night) of yellow perch collected in Nebraska Sandhill Lakes, 1998 and 1999. No yellow perch trophy size and larger ( 2380 mm TL ) were collected in any of the lakes. Standard errors are in parentheses. $\mathrm{S}=$ stock ( 2130 mm ); Q=quality ( $z 200 \mathrm{~mm}$ ); P=preferred ( 250 mm ); M=memorable ( 2300 mm ).

| Lake | Total caught | CPUE <br> (all sizes) | $\begin{gathered} \text { CPUE } \\ \stackrel{S}{S} \end{gathered}$ | $\begin{gathered} \text { CPUE } \\ \geq Q \end{gathered}$ | $\begin{gathered} \text { CPUE } \\ 2 P \\ \hline \end{gathered}$ | $\begin{gathered} \text { CPUE } \\ \text { ¿M } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alkali | 307 | 15.35(4.16) | 15.35(4.16) | 14.70(4.09) | 11.70(3.52) | 1.90(0.50) |
| Big Alkali | 3 | 0.15(0.08) | 0.05(0.05) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) |
| Cameron | 915 | 91.50(12.53) | 82.60(11.77) | 51.70(7.82) | 27.60(4.25) | 1.80(0.42) |
| Clear | 3 | 0.15(0.08) | 0.15(0.08) | 0.15(0.08) | 0.15(0.08) | 0.00(0.00) |
| Clear (VNWR ${ }^{1}$ ) | 481 | 24.05(5.43) | 20.20(4.75) | 2.50(0.80) | 0.25(0.16) | 0.00(0.00) |
| Cottonwood | 217 | 21.70(3.65) | 18.50(3.27) | 5.70 (0.84) | 0.50(0.27) | 0.00(0.00) |
| Cozad | 57 | 5.70(2.560 | 5.70(2.56) | 2.80(1.29) | 0.00(0.00) | 0.00(0.00) |
| Defair | 19 | 1.90(0.77) | 1.60(0.73) | 0.60(0.31) | 0.10(0.10) | 0.00(0.00) |
| Dewey | 275 | 13.75(4.99) | $6.35(2.22)$ | $2.10(0.83)$ | 0.50(0.26) | 0.05(0.05) |
| Duck | 39 | $3.9(1.73)$ | $3.6(1.53)$ | 2.1(0.77) | 1.5(0.60) | 0.00(0.00) |
| Goose | 257 | 12.85(4.17) | 12.80(4.14) | 1.40(0.50) | 0.15(0.08) | 0.05(0.05) |
| Hackberry | 284 | 14.20(7.42) | 4.35(1.26) | 1.55(0.47) | 0.45(0.18) | 0.00(0.00) |
| Hagan | 571 | 142.75(70.86) | 120.75(63.13) | 14.50(7.75) | 0.50(0.50) | 0.00(0.00) |
| - Home Valley | 1,648 | 82.40(10.22) | 66.95(10.27) | 25.95(5.50) | 1.95(0.46) | 0.20(0.09) |
| Island | 229 | 11.45(3.02) | 11.35(3.01) | 10.25(2.75) | 5.15(1.56) | 0.00(0.00) |
| Lackaff West | 316 | 15.80(3.38) | 15.80(3.38) | 2.90(0.56) | 0.35(0.18) | 0.25(0.12) |
| Marsh | 177 | 17.70(4.51) | 17.10(4.56) | 8.10(2.32) | 1.20(0.39) | 0.10(0.10) |
| Marsh (VNWR ${ }^{1}$ ) | 1,080 | 54.00(9.74) | 51.85(9.57) | 36.90(6.52) | 33.25(5.83) | 16.10(2.71) |

Appendix 28 continued.

| Lotal caught | CPUE <br> (all sizes) | CPUE <br> $2 S$ | $C P U E$ <br> 2 Q | CPUE <br> $2 P$ | CPUE <br> $2 M$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Medicine | 249 | $24.90(11.46)$ | $24.70(11.41)$ | $14.70(9.50)$ | $4.40(3.74)$ | $0.80(0.80)$ |
| Pelican | 73 | $3.65(0.87)$ | $1.85(0.43)$ | $0.45(0.15)$ | $0.00(0.00)$ | $0.00(0.00)$ |
| Roseberry | 364 | $36.40((12.83)$ | $36.40(12.83)$ | $28.10(8.82)$ | $4.80(1.67)$ | $0.80(0.36)$ |
| Round | 303 | $30.30(7.60)$ | $25.70(6.46)$ | $2.70(4.23)$ | $1.90(0.85)$ | $0.40(0.31)$ |
| Schoolhouse | 222 | $22.20(10.43)$ | $12.40(5.36)$ | $1.70(0.60)$ | $0.40(0.22)$ | $0.10(0.10)$ |
| Shell | 39 | $1.95(0.53)$ | $1.75(0.51)$ | $0.95(0.32)$ | $0.00(0.00)$ | $0.00(0.00)$ |
| Tower | 12 | $1.20(0.41)$ | $1.00(0.33)$ | $0.50(0.22)$ | $0.10(0.10)$ | $0.00(0.00)$ |
| Watts | 117 | $5.85(1.78)$ | $3.70(0.86)$ | $1.60(0.38)$ | $0.35(0.13)$ | $0.00(0.00)$ |
| Twin | 3 | $0.15(0.11)$ | $0.05(0.05)$ | $0.00(0.00)$ | $0.00(0.00)$ | $0.00(0.00)$ |
| Willow | 2 | $0.10(0.07)$ | $0.10(0.07)$ | $0.10(0.07)$ | $0.05(0.05)$ | $0.05(0.05)$ |
| West Long | 148 | $14.80(2,82)$ | $14.20(2.86)$ | $10.50(2,97)$ | $8.80(3.06)$ | $0.40(0.22)$ |

${ }^{1}$ Valentine National Wildlife Refuge
Appendix 29. Stock density indices and mean Wr values for yellow perch collected in Nebraska Sandhill Lakes, 1998 and 1999. Confidence intervals $(95 \%)$ for stock density indices and standard errors for mean Wr values are in parentheses. No yellow perch trophy size and larger ( 2380 mm TL ) were collected in any of the lakes. PSD=proportional stock density; RSD-P=relative stock density of preferred length fish; RSD-M=relative stock density of memorable length fish.

| Lake | PSD | RSD-P | RSD-M | $\begin{aligned} & W r \\ & \geq S \end{aligned}$ | $\begin{aligned} & \mathrm{Wr} \\ & \mathrm{~S}-\mathrm{Q} \end{aligned}$ | $\begin{aligned} & \mathrm{Wr} \\ & \text { Q-P } \end{aligned}$ | $\begin{aligned} & \mathrm{Wr} \\ & \mathrm{P}-\mathrm{M} \end{aligned}$ | Wr M-T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alkali | 96(2) | 76(5) | 12(3) | 85(0.7) | 92(0.5) | 94(1.3) | 84(1.0) | 74(1.2) |
| Big Alkali ${ }^{1}$ |  |  |  | 79 | 79 |  |  |  |
| Cameron | 63(4) | 33(4) | 2(1) | 81(0.8) | 83(1.4) | 81(1.4) | 79(1.1) | 82(1.5) |
| Clear ${ }^{1}$ | 53(25) | 21(20) | 0 | 107(2.3) | 112(3.7) | 100(1.5) | 107(3.6) |  |
| Clear (VNWR ${ }^{2}$ ) | 12(4) | 1(1) | 0 | 87(1.2) | 90(1.4) | 82(1.5) | 83(4.6) |  |
| Cottonwood | 31(7) | 3(2) | 0 | 108(1.3) | 112(1.9) | 103(1.0) | 82(5.5) |  |
| Cozad | 49(14) | 0 | 0 | 89(0.6) | 93(0.9) | 86(0.6) |  |  |
| Defair | 38(27) | 6(12) | 0 | 106(1.3) | 109(0.7) | 99(1.9) | 92(-) |  |
| Dewey | 33(8) | 8(5) | 1(0) | 99(2.0) | 103(2.9) | 109(2.9) | 94(1.4) | 87 |
| Duck | 58(17) | 42(17) | 0 | 88(0.2) | 91(0.5) | 86(0.9) | 86(0.5) |  |
| Goose | 11(4) | 1(1) | 0 | 84(1.2) | 85(1.3) | 80(0.9) | 75(0) | 79(0) |
| Hackberry | 36(10) | 10(7) | 0 | 86(0.8) | 85(1.2) | 91(1.4) | 84(2.0) |  |
| Hagan | 12(3) | $0(1)$ | 0 | 97(1.9) | 99(2.2) | 82(1.6) | 83(0.8) |  |
| Home Valley | 39(3) | 3(1) | 0 | 81(2.2) | 78(1.4) | 84(5.7) | 80(0.8) | 86(2.5) |
| Island | 90(4) | 45(6) | 0 | 83(1.0) | 87(0.4) | 84(1.4) | $80(1.6)$ |  |
| Lackaff West | 18(5) | 2(2) | 2(2) | 83(1.0) | 84(1.2) | 78(1.9) | 89(4.5) | 80(2.8) |

Appendix 29 continued.

| Lake | PSD | RSD-P | RSD-M | $\begin{aligned} & W r \\ & \geq S \end{aligned}$ | $\begin{aligned} & \mathrm{Wr} \\ & \mathrm{~S}-\mathrm{Q} \end{aligned}$ | $\begin{aligned} & \mathrm{Wr} \\ & \text { Q-P } \end{aligned}$ | $\begin{aligned} & \mathrm{Wr} \\ & \mathrm{P}-\mathrm{M} \end{aligned}$ | Wr <br> M-T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Marsh | 47(7) | 7(4) | 1(1) | 93(0.9) | 98(1.5) | 89(1.0) | 83(2.5) |  |
| Marsh (VNWR ${ }^{2}$ ) | 71(3) | 64(3) | 31(3) | 105(0.6) | 119(1.3) | 104(0.9) | 100(1.2) | 98(1.0) |
| Medicine | 60(6) | 18(5) | 3(2) | 105(1.4) | 110(1.3) | 105(3.1) | 97(1.0) | 91(2.5) |
| Pelican | 24(15) | 0 | 0 | 86(0.7) | 86(0.9) | 88(2.6) |  |  |
| Roseberry | 77(5) | 13(4) | 2(2) | 95(1.2) | 103(1.2) | 94(1.8) | 88(1.8) | 70(2.3) |
| Round | 11(4) | 7(4) | 2(20 | 76(1.4) | 76(1.6) | 7791.6) | 76(0.9) |  |
| Schoolhouse | 14(6) | 3(3) | 1(1) | 102(2.2) | 104(2.6) | 101(0.4) | 101(2.3) | 91 |
| Shell | 54(18) | 0 | 0 | 79(0.5) | 82(0.8) | 77(0.5) |  |  |
| Tower | 50(38) | 10(10) | 0 | 100(2.6) | 104(3.3) | 101(0.8) | 82(-) |  |
| Twin ${ }^{1}$ |  |  |  | 106 | 106 |  |  |  |
| Watts | 43(11) | 9(6) | 0 | 94(0.3) | 98(0.5) | 91(0.6) | 80(1.9) |  |
| Willow ${ }^{3}$ |  |  |  | 96(2.0) |  | 94 |  | 98 |
| West Long | 74(7) | 62(8) | 3(3) | 94(0.5) | 96(0.6) | 98(0.8) | 93(0.9) | 86(2.1) |

${ }^{d}$ Low sample size (3 fish in trap nets) prohibited calculation of many indices.
${ }^{3}$ Low sample size (2 fish in trap nets) prohibited calculation of many indices.
Appendix 30. Mean back calculated total length (mm) at age for yellow perch collected in Nebraska Sandhill Lakes, 1998 and 1999. Standard errors are in parenthesis.

| Lake | Number aged | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alkali | 77 | 88(5) | 174(9) | 231(11) | 268(10) | 289(9) | 306(10) | 322 |  |  |  |  |  |
| Cameron | 99 | 94(2) | 161(3) | 204(3) | 235(1) | 255(2) | 270(3) | 287(1) | 300 | 307 |  |  |  |
| Clear (VNWR ${ }^{1}$ ) | 84 | 78(3) | 142(5) | 187(9) | 208(12) | 219(16) | 252(13) | 257 |  |  |  |  |  |
| Cottonwood | 76 | 79(2) | 120(3) | 151(6) | 174(7) | 190(8) | 202(10) | 213(12) | 217(15) | 228(26) | 213 |  |  |
| Cozad | 38 | 84(2) | 136(2) | 164(4) | 180(6) | 197(3) | 207(1) | 213 |  |  |  |  |  |
| Defair | 19 | 96(17) | 174(21) | 234(23) | 267 |  |  |  |  |  |  |  |  |
| Dewey | 88 | 75(5) | 138(8) | 199(10) | 228(8) | 249(8) | 265(9) | 284(8) | 302(7) | 318 |  |  |  |
| Duck | 36 | 98(2) | 182(8) | 225(9) | 254(8) | 269(9) | 277 |  |  |  |  |  |  |
| Goose | 57 | 85(6) | 141(7) | 192(10) | 216(12) | 235(16) | 253(22) | 271(33) | 247 | 251 |  |  |  |
| Hackberry | 88 | 73(3) | 122(5) | 165(5) | 197(4) | 216(6) | 228(8) | 237(9) | 253(6) | 262(6) | 268(8) | 280 |  |
| Hagan | 77 | 88(2) | 134(2) | 171(1) | 195(2) | 218(7) | 236(9) | 248(17) | 271 |  |  |  |  |
| Home Valley | 107 | 110(4) | 166(7) | 209(8) | 237(9) | 263(11) | 291(5) | 308 |  |  |  |  |  |
| Island | 70 | 70(4) | 118(3) | 166(3) | 198(6) | 228(4) | 246(3) | 259(4) | 268(5) | 279(5) | 292 |  |  |
| Lackaff West | 60 | 83(5) | 143(6) | 187(9) | 221(9) | 247(12) | 268(15) | 283(18) | 295(24) | 299(36) | 268 |  |  |
| Marsh | 73 | 85(4) | 148(7) | 200(10) | 236(9) | 259(3) | 270(1) | 280 | 288 |  |  |  |  |
| Marsh(VNWR ${ }^{1}$ ) | 115 | 103(4) | 186(11) | 243(6) | 268(4) | 287(3) | 305(4) | 319(3) | 331(5) | 342(7) | 356(2) | 360(2) | 362 |
| Medicine | 90 | 72(3) | 143(4) | 201(5) | 234(4) | 257(5) | 278(4) | 292(5) | 307(2) | 316(0) | 322 |  |  |
| Pelican | 49 | 63(1) | 106(3) | 152(3) | 188(5) | 207(8) | 224(2) | 233 |  |  |  |  |  |

Appendix 30 continued.

| Lake | Number <br> aged | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Roseberry | 72 | $68(2)$ | $125(6)$ | $159(8)$ | $188(5)$ | $204(4)$ | $215(6)$ | $225(8)$ | $233(12)$ | $243(17)$ | $254(31)$ | 226 |  |
| Round | 72 | $82(1)$ | $148(6)$ | $204(9)$ | $244(9)$ | $272(4)$ | $289(1)$ | 298 |  |  |  |  |  |
| Schoolhouse | 44 | $109(5)$ | $183(11)$ | $223(12)$ | $249(19)$ | 281 |  |  |  |  |  |  |  |
| Shell | 37 | $64(2)$ | $104(5)$ | $131(4)$ | $156(3)$ | $174(3)$ | $194(3)$ | $213(4)$ | $225(6)$ | 246 |  |  |  |
| Watts | 73 | $67(4)$ | $115(3)$ | $167(6)$ | $204(4)$ | $227(4)$ | $241(5)$ | $254(7)$ | 269 |  |  |  |  |
| West Long | 80 | $83(4)$ | $154(3)$ | $206(7)$ | $245(3)$ | $267(1)$ | $279(2)$ | 287 |  |  |  |  |  |

${ }^{1}$ Valentine National Wildlife Refuge
Appendix 31. Number of yellow perch collected in each age group for fish sampled in Nebraska Sandhill lakes during 1998 and 1999.. Only fish fully recruited to the gear (i.e., age-2 and older) are included.
) (very

| Lake | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alkali | 0 | 40 | 54 | 122 | 88 | 3 |  |  |  | 12 |
| Cameron | 259 | 72 | 203 | 172 | 81 | 29 | 0 | 10 |  | 0.321 |
| Clear (VNWR') | 258 | 7 | 5 | 13 | 1 | 1 |  |  |  | 0.644 |
| Cottonwood | 92 | 20 | 18 | 28 | 25 | 16 | 10 | 1 | 3 | 0.963 |
| Cozad | 1 | 15 | 3 | 21 | 15 | 1 |  |  | 0.784 |  |
| Defair | 10 | 5 | 1 |  |  |  |  |  | 0.557 |  |
| Dewey | 101 | 24 | 12 | 10 | 6 | 3 | 1 | 1 |  | 0.854 |
| Duck | 20 | 1 | 9 | 5 | 1 |  |  |  |  | 0.897 |
| Goose | 123 | 87 | 29 | 7 | 8 | 1 | 0 | 1 |  | 0.789 |
| Hackberry | 165 | 50 | 20 | 10 | 3 | 5 | 3 | 3 | 2 | 1 |
| Hagan | 237 | 154 | 50 | 35 | 6 | 5 | 1 |  |  | 0.527 |
| Home Valley | 487 | 390 | 222 | 85 | 6 | 4 |  |  |  | 0.914 |
| Island | 0 | 6 | 8 | 20 | 76 | 79 | 32 | 4 | 1 | 0.877 |
| Lackaff West | 85 | 91 | 121 | 9 | 3 | 2 | 3 | 0 | 1 | 0.676 |
| Marsh | 39 | 57 | 62 | 6 | 3 | 0 | 3 |  |  | 0.379 |
| Marsh(VNWR') | 95 | 80 | 38 | 153 | 214 | 119 | 69 | 40 | 1 | 3 |

Appendix 31 continued.

| Lake | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Roseberry | 1 | 8 | 54 | 74 | 118 | 82 | 13 | 4 | 9 | 12 |
| Round | 171 | 86 | 9 | 7 | 6 | 5 |  |  |  | 0.404 |
| Schoolhouse | 17 | 1 | 3 | 4 |  |  |  |  |  | 0.901 |
| Shell | 1 | 1 | 1 | 4 | 11 | 9 | 9 | 1 |  | 0.810 |
| Watts | 29 | 18 | 21 | 11 | 10 | 4 | 2 |  |  | 0.442 |
| West Long | 36 | 6 | 7 | 38 | 52 | 11 |  |  |  | 0.752 |

${ }^{1}$ Valentine National Wildlife Refuge
Appendix 32. Abundance (Number/L) of common zooplankton in 30 Nebraska Sandhill lakes 1998-1999.

| Lake | Bosmina | Chydorus | Cyclops | Daphnia | Diaptomus | Keratella | Copepod Nauplii | All zooplankton |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alkali | 1 | 1 |  | 1 | 3 | 65 | 8 | 78 |
| Big Alkali | 9 | 25 | 5 | 11 | 4 | 76 | 53 | 187 |
| Cameron | 37 | 325 | 18 | 43 | 1 | 29 | 43 | 512 |
| Clear | 51 | 9 | 30 | 2 |  | 185 | 39 | 565 |
| Clear (VNWR ${ }^{1}$ ) | 124 | 12 | 17 | 88 | 6 | 55 | 162 | 2260 |
| Cottonwood |  |  | 59 | 2 |  | 106 | 211 | 517 |
| Cozad | 19 | 1 | 6 | 36 |  | 146 | 28 | 275 |
| Defair | 55 | 14 | 17 | 8 | 1 | 48 | 41 | 218 |
| Dewey | 228 | 15 | 27 |  | 1 | 349 | 44 | 670 |
| Duck |  | 189 | 14 | 18 |  | 15 | 12 | 248 |
| Goose | 630 | 260 | 11 |  |  | 297 | 61 | 1273 |
| Hackberry | 21 | 1 | 4 | 2 | 1 | 23 | 21 | 86 |
| Hagan | 15 | 46 | 29 | 89 | 1 | 85 | 48 | 486 |
| Home Valley | 355 | 525 | 99 | 196 | 42 | 34 | 86 | 1816 |
| - Island | 1 | 4 | 5 |  | 6 | 55 | 37 | 108 |
| Lackaff West | 25 | 23 | 54 |  |  | 247 | 133 | 756 |
| Marsh | 2 | 26 | 26 |  |  | 88 | 95 | 268 |
| Marsh (VNWR ${ }^{1}$ ) | 9 | 10 | 7 | 39 | 36 | 916 | 39 | 1098 |

Appendix 32 continued.

| Lake | Bosmina | Chydorus | Cyclops | Daphnia | Diaptomus | Keratella | Copepod Nauplii | All zooplankton |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Medicine | 4 | 17 | 14 | 159 | 1 | 87 | 58 | 901 |
| Pelican | 210 | 752 | 22 | 26 |  | 12 | 60 | 1178 |
| Roseberry | 8 | 4 | 9 |  |  | 333 | 29 | 617 |
| Round | 16 | 17 | 6 |  |  | 44 | 24 | 191 |
| Schoolhouse | 115 | 207 | 346 | 83 | 3 | 80 | 311 | 1293 |
| Shell | 61 |  | 3 | 2 |  | 50 | 17 | 188 |
| Shoup |  | 49 | 3 | 88 |  |  | 10 | 150 |
| Tower | 397 | 25 | 45 |  | 16 | 31 | 58 | 588 |
| Twin | 2 | 46 | 10 | 75 | 7 | 22 | 31 | 2466 |
| Watts |  | 32 | 6 | 2 |  | 22 | 30 | 120 |
| West Long | 111 | 84 | 26 | 75 | 1 | 346 | 32 | 675 |
| Willow | 3 | 31 | 21 | 93 | 44 | 8 | 69 | 291 |

[^11]Appendix 33. Abundance (Number $/ \mathrm{m}^{2}$ ) of common benthic invertebrates in 30 Nebraska Sandhill lakes sampled 19981999. Standard errors are in parentheses.

|  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lake | Amphipods | Chironomids | Gastropods | Odonates | Oligocheates | Pelecyopods | All benthos |
| Alkali | 0 | $232(144)$ | $3,910(1,485)$ | 0 | 0 | 0 | $4,141(1,628)$ |
| Big Alkali | 0 | $199(57)$ | $15(15)$ | 0 | 0 | 0 | $246(52)$ |
| Cameron | 0 | $282(93)$ | 0 | 0 | 0 | 0 | $301(101)$ |
| Clear | $417(402)$ | $670(376)$ | $62(44)$ | 0 | $2,076(915)$ | $40(40)$ | $3,373(576)$ |
| Clear (VNWR $\left.{ }^{1}\right)$ | 0 | $971(484)$ | $308(111)$ | $7(7)$ | $902(132)$ | $163(126)$ | $2,388(640)$ |
| Cottonwood | $43(21)$ | $145(60)$ | $3,003(777)$ | $14(10)$ | 0 | 0 | $3,206(702)$ |
| Cozad | $141(113)$ | $362(136)$ | $395(390)$ | $4(4)$ | $51(17)$ | $36(19)$ | $1,022(340)$ |
| Defair | $69(26)$ | $14(6)$ | $12,902(4,225)$ | 0 | $4(4)$ | 0 | $12,989(4,250)$ |
| Dewey | 0 | $906(445)$ | $94(57)$ | 0 | 0 | 0 | $1,015(439)$ |
| Duck | $11(7)$ | $44(19)$ | $101(67)$ | 0 | $18(7)$ | 0 | $156(53)$ |
| Goose | 0 | $2,493(498)$ | $4,884(1,017)$ | 0 | $11(7)$ | $29(17)$ | $7,438(822)$ |
| Hackberry | 0 | $2,294(262)$ | $159(155)$ | $4(4)$ | $1,808(485)$ | 0 | $4,286(483)$ |
| Hagan | $4(4)$ | $514(254)$ | 0 | 0 | $630(568)$ | $29(21)$ | $1,203(792)$ |
| Home Valley | 0 | $978(131)$ | 0 | 0 | $33(24)$ | 0 | $1,036(148)$ |
| Island | 0 | $340(234)$ | $206(145)$ | 0 | 0 | 0 | $547(187)$ |
| Lackaff West | 0 | $127(51)$ | $33(33)$ | 0 | 0 | $18(18)$ | $181(35)$ |
| Marsh | $47(33)$ | $1,583(1,506)$ | $9,605(3,976)$ | 0 | 0 | $58(58)$ | $11,293(3,037)$ |
| Marsh (VNWR $\left.{ }^{1}\right)$ | $4(4)$ | $1,815(702)$ | $1,304(758)$ | $7(7)$ | $148(94)$ | $11(11)$ | $3,384(316)$ |

Appendix 33 continued.

| Lake | Amphipods | Chironomids | Gastropods | Odonates | Oligocheates | Pelecyopods | All benthos |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Medicine | $199(123)$ | $1,290(814)$ | $11(11)$ | $18(11)$ | $40(12)$ | $25(21)$ | $1,598(936)$ |
| Pelican | 0 | $830(391)$ | $18(14)$ | 0 | $83(58)$ | 0 | $1377(664)$ |
| Roseberry | 0 | $2,891(980)$ | 0 | 0 | $330(117)$ | 0 | $3,275(1,084)$ |
| Round | $254(130)$ | $464(264)$ | $105(41)$ | 0 | $7(4)$ | $29(17)$ | $855(259)$ |
| Schoolhouse | $7(4)$ | $909(275)$ | $1,272(495)$ | 0 | $1,848(1,412)$ | $7(7)$ | $5,562(3,174)$ |
| Shell | $4(4)$ | $145(126)$ | $54,112(12,216)$ | $11(11)$ | 0 | 0 | $54,275(12,308)$ |
| Shoup | $11(7)$ | $29(24)$ | $21(7)$ | 0 | $11(11)$ | 0 | $62(38)$ |
| Tower | 0 | $1971(708)$ | $214(140)$ | 0 | 0 | $18(7)$ | $2207(646)$ |
| Twin | 0 | $1,022(806)$ | $116(54)$ | $11(7)$ | $476(278)$ | $80(61)$ | $1761(1067)$ |
| Watts | 0 | $1,372(952)$ | $213(213)$ | 0 | 0 | 0 | $1,589(1,158)$ |
| West Long | $196(99)$ | $362(53)$ | $51(51)$ | $18(18)$ | $623(253)$ | $4(4)$ | $1381(254)$ |
| Willow | $40(16)$ | $627(499)$ | $1,420(970)$ | 0 | $1,841(1,073)$ | $218(198)$ | $5,044(2,656)$ |

${ }^{1}$ Valentine National Wildlife Refuge


[^0]:    ${ }^{1}$ Total dissolved solids
    ${ }^{2}$ Valentine National Wildlife Refuge

[^1]:    ${ }^{1}$ Valentine National Wildlife Refuge

[^2]:    ${ }^{1}$ Low sample size (two fish in trap nets) prohibited calculation of indices. ${ }^{2}$ Low sample size (five fish in trap nets) prohibited calculation of indices.
    ${ }^{3}$ Valentine National Wildlife Refuge.
    ${ }^{4}$ Low sample size (three fish in trap nets) prohibited calculation of indices.

[^3]:    ${ }^{1}$ Low sample size ( 4 fish) prohibited calculation of many indices.
    ${ }^{2}$ Low sample size ( 5 fish) prohibited calculation of many indices.

[^4]:    ${ }^{1}$ Valentine National Wildlife Refuge

[^5]:    ${ }^{1}$ Low sample size (one fish in trap nets) prohibited calculation of many indices ${ }^{2}$ Valentine National Wildlife Refuge

[^6]:    'Valentine National Wildlife Refuge

[^7]:    ${ }^{1}$ Low sample size (three fish) prohibited calculation of many indices

[^8]:    ${ }^{1}$ Valentine National Wildlife Refuge

[^9]:    ${ }^{1}$ Valentine National Wildlife Refuge
    ${ }^{2}$ Low sample size (2 fish) prohibited calculation of indices.

[^10]:    ${ }^{1}$ Valentine National Wildlife Refuge
    ${ }^{2}$ Low samples size (16 fish) prohibited meaningful calculation of age and growth. ${ }^{3}$ Only 13 stock-length and longer fish were collected

[^11]:    ${ }^{1}$ Valentine National Wildlife Refuge

