```
I. SUMAARY OF OBJECTIVES, CONCLUSIONS, AND IMPLICARIONS
    WI'TH PESPECT TO OCS OIL AILD GAS DEVELOPMENT
```

The main purpose of this study is to determine the actual size of seabird populations nesting on the Pribilof Islands.

St. George, the most important of these islands for birds, has about 48.1 km of cliffs all of which are used for nesting by 11 species. Seabird numbers on this island were considerably down in 1975 from the "millions" reported there in the past. The main least auklet colony held over 200,000 birds, the main murre cliffs appeared to hold over 400,000 , and 10.6 km of the lower cliffs had about 40,000 breeding pairs of 11 species.

St. George now represents the principal nesting ground of the redlegged kittiwake in Horth America, much smaller numbers being found on nearby St. Paul Island. (Unknown numbers have been reported on the Komandorskie Islands.)

The principal threats to seabird populations on St. George posed by petroleum exploration will be (a) disturbance of the ledge-nesting species by people or aircraft if the island is used as a local or regional base of operations and (b) potential spillage at or near the birds' main feeding area ($56^{\circ} 37: 30^{\prime \prime} \mathrm{N}$, $169^{\circ} 11^{\prime} \mathrm{W}$) a shallow area (about $2-5$ fathoms) 13.7 km to the northeast.

Table of Contents

II. Introduction 2
III. Current State of Knowledge . . 3
IV. Study Area 3
V. Methods 3
VI. Results 12
VII. Discussion 38
VIII. Conclusions..... 47
IX. Needs for Further Study . 48
X. Sumary of 4th-Quarter 49

II. IMPRODUCTIOA

A. General Nature and Scope of Study

No systematic census or population estimate of the seabirds of the Pribilofs has ever been attempted, although for almost a century ormithologists have reported their numbers as in the "millions." The project proposed here is to provide enumerational data on what supposedly is the lergest aggregate of colonial birds anywhere in North America, as a baseline on which to estimate any subsequent effects and environmental impact of petrolem exploration and development on the birdlife of this part of the Bering Sea.

The information required to meet this objective will consist of (a) actual counts of cliff-nesting species in the main colonies on St. George and St. Paul islands and (b) estimates (with confidence limits) of the numbers of puffins and auklets that nest in burrows on St. George and St. Paul.

The population estimates of the burrowing species should be available by 30 September 1976, although the confidence limits on these cannot be predicted at this time. The enumeration of ledge-nesting species will depend on (a) our success in getting photos of the cliffs during the birds' nesting season and (b) the time required to analyze these photographs after they are developed. With presently available techniques, it will take some months to analyze these pictures. The project is actively exploring a new method to expedite this analysis.
B. Specific Objectives

The primary task of this study is to define a major biological population which is subject to potential impact by petroleum exploration and development in the Bering Sea. The particular objectives of the project are twofola:
(a) to obtain precise estimates, for as many species as is practical within the time framework of this study, of the breeding seabirds on the Pribilof Islands, and
(b) to explore the possibilities of obtaining refined estimates of those additional nesting populations that do not readily lend themselves to conventional census techniques.
C. Relevance to problems of petroleum development

Seabirds, because of their large numbers and high visibility, are valuable indicators of the health of a marine ecosystem. Because of their importance in the ecosystem, and their high vulnerability to oil, their numbers are a natural index to the effect of oil on the biology of the area. Birds will be among the first species to be affected by oil pollution, and the techniques to monitor their numbers are now being developed. A repeatable census techniaue or techniques for colony seabirds is essential to understanding the evfects of oil a:d gas development on the outer continental shelf.
III. CURRETR SRALA OF RGOHLEDGE

Ornithological investjgations of the Pribilofs began in 1072 when Henry inliot (1861) described "the vast mumoers of vater-fowl," their disappearance in winter, and the considerable taking of eggs by the Aleut people. As evidence of the latter, six men on 5 July 1872 at Walrus Island loaded a 4-ton-capacity boat "down to the water's edge"with murre eges collected in less than three working hours. Fliott regarded least auklets as present by the "millions," but he also encountered thick-billed murres in "immense multitudes," the males circling St. George as "a dark girdle of oirds more than a quarter of a mile broad and thirty miles long." Gaorielson reported that in his opinion 'St. George Island, considered as a whole, contains the greatest aggregation of breeding birds" he has ever seen and that "the least auklets are the most numerous in the swarming millions of birds" (Gabrielson and Lincoln, 1959; 506).

IV. STUDY AREA

The study area comprises the islands of St . George, St. Paul, Otter, and Walrus. Colonies are found on all cliff areas around the islands, among talus slopes at the bases of cliffs, and among beach boulders. In the past, murres nested on the flat plateau on Walrus Id. In 1975, we concentrated our field work on the main avian concentrations, which are on St. George. Here about 48 km of cliffs offer immense opportunities for seabird nesting (Table 1). Tne major snallow area in tie nearby sea has a depth of about $2-5$ fathoms ($3.7-9.2 \mathrm{~m}$) extending over about 1 km by 0.5 km .

The weather on the Pribilofs during the breeding season is primarily fog and wind with alnost constant rain early in the season.
V. SOURCES, NETHOLS, AND RATIONALE OF DATA COLLECIION

The seabirds nesting on the Pribilofs consist of six species that nest on cliff ledges

Thick-billed murre, Uria lomvia
Common murre, U. aslge
Black-legged kittiwake, Rissa tridactyla
Hed-legged kittiwake, R. brevirostris
Fulmer, Fulmarus glacialis
Red-faced cormorant, Phalacrocorax urile
and five species that nest underpround
Parakeet auklet, Cyclorrhynchus psittacula
Crested auklet, Aetnia cristatella
Least auklet, A. pusilla
Horned puffin, Fratercula corniculata
Tufted puffin, Lunda cirriata

Table 1. Types of Cliffs on St. Ceorge Is.

D		SE SE S S	$\begin{aligned} & 61-122 \\ & 91.4 \\ & 91.4 \\ & 97.5-140.2 \end{aligned}$	$\begin{array}{ll} 2.5 & \\ 3.6 & \\ 2.9 & \\ 5.3 & \\ & 14.3 \end{array}$
E	(400-600 ft) $\frac{[122-182.9 \mathrm{ml}]}{80}$			
	19. Rush Pt. to Fox Castle	SW	182.9	2.0
	20. First Bluff	is	146.3	1.7
	Total length			5.4

| F $\frac{(600-1000 \mathrm{ft})}{\frac{[182.9-308.5 \mathrm{~m}]}{21 .}$ Figh Bluffs
 Total length } | N $122-308.5$ | 4.8 |
| :--- | :--- | :--- | :--- | :--- |
| Total length km | 4.8 | |

Ledre-nesting species.--The conventional method of counting cliff-nesting birds on island situations has been to photograph the birds from aircraft (Nettleship 1975). There has been some conjecture as to how to interpret these data, since under various conditions a pair may be represented by more than two birds. In censusing murres, the Canadian wildife Service tries to photograph murres before the nonbreeders arrive (late-June or early July in eastern Canada) and at the same date and hour each year (Nettleship, pers. comm.). In this approach, the Canadians assume each bird equals one pair. The bias in this assumption may be cancelled out in year-to-year comparisons, but the potential bias remains real in single-year data.

To understand this potential bias and to be able to correct for it, we explored ledge attendance by counting birds on a Eiven series of ledges on different days and at different times of the day.

Photographs of the cliffs on St. George were carried out for us by the U. S. Fish and Wildife Service in 1975, and 306 aerial photos were turned over to us by Dr. James C. Bartonek in December.

Burrow-nesting species.--The sampling scheme for censusing occupied burrows has been worked out by Bédard (1969) whose technique was to lay out quadrats 14.2 by 14.2 m , the observer stationing himself 40 or more meters away between 5 and 8 A.M. during the few days preceding laying (and coinciding with minimum daily attendance of immature birds in the colony and maximum activity of breeding birds on the surface of the slope). This involves making tallies every 30 minutes during the $3-\mathrm{hr}$. period on three successive days. This procedure further involves (1) ignoring the highest count in each series in order to correct for abnormal values resulting from disturbance and (2) averaging the 2nd, 3 rd, and 4th-highest census figures for each quadrat.

Reference areas.--In order to provide future indices of population change on these islands, we selected
(1) small but well-described sections of the cliffs that could be recensused in the future; and
(2) observation points where major flights could be counted.

The location of 15 reference cliffs is shown in Figures l-2, and their coordinates are given in Table 2.

Observation points are located in the same figures and their coordinates set forth in Table 3.

General.--The scientific party for this study consisted of the following from the University of Wisconsin: Joseph J. Hickey (Professor of Wildlife Ecology), F. Lance Craighead (research assistant), and Ronald C. Squibb (undergraduate field assistant). The party arrived on St. Paul on 14 June, was held up by fog, and reached St. George on 21 June. Hickey left on 14 July, Craighead on 8 August, and Squibb on 13 August.

Table 2 . Coorinates of Fifteen Reference Clipes

Station io.	Islend Stratum	Project 50. Locel ilame	Cooriin	ates
Entire Clifis				
Vators	A	Village Nest No.	563612 N to	563600 N
			1693501 W	1693500 n
VEC7\%	A	vill ino. 2	$563625 N$ to	563610 m
		Village Last	1693115 w	1693155 m
2 ZCT 5	A	Wapadni Beacn N. 3	563420 N to	563448 N
			1693958 W	1694042 W
2MC75	A	No. 6		
		Zapadni towards Rusi Pt.		
		(First 524 meters)	563448 N to	5634520
			$1694042 \mathrm{~W}$	1694112 W
2MO75	(First 545 meters)		563448 N to	5634521
			1694042 N	1694118 N
2 LET 5	(First 1,346 meters)		563448 d to	563454π
			1694042 W	$1694200 \mathrm{H}$
29075	(ivext 1,573 meters)		563454 N to	$563514 N$
			1694200W	1694332 W
ZMRT5	(Total 2,919 meters)		563448 N to	$563514 \mathrm{iN}$
			$1694042 \mathrm{H}$	$1694332 \mathrm{w}$
PPC75	B and C	Mo. 9Kitasealogn to Pinnacle Point		
			563554 it to	563552 N
			1692842 V	1692802W
38075	C	No. 11		
			563552 N to	563548 N
			1692802W	1692742W

Partial Cliffs

MCLT5

PPIT5
E
FBA75

FBE75
A

C

Murie Cove Ledges
563250 N
$1693913 W$

Pinnacle Point Ledges
563552 i
1692602 W

No. 20
First Bluff Ledges
(area A) 563614 iv
1693710%
(area B)
563614 iv
1693711 N
No. 1
RFLTS A
Hosy Finch Cove Ledges
563509.1

Table 3. Coordinates of Least Aukiet colony and Fligit-count observation points.

Station no.	local name	cooxdinates
Least Auklet Colony URC75	Ulakaia Ridge	$\begin{array}{r} 563518 \pi \\ 1693230 \pi \end{array}$
Flight Observations LAFT5	Airstrip, Least Auklet Flights to Colony	$\begin{array}{r} 56360617 \\ 1693300 \mathrm{~W} \end{array}$
NivF75	Staraya Artel Observation Point, Murre Flights, East to West	$\begin{array}{r} 563612 \mathrm{it} \\ 1693554 \mathrm{~N} \end{array}$

Figure 3. Cliff Section of Red Bluffs, SE coast of St. George Is. (shown also on figure 1) height 300 ft . (91.4 m).

This cosstline is used
by nesting:
thick-billed murre
common murre
red legged kittivake
black legged kittiwake
red faced cormorant
fulmar
tufted puffin
horned puffin
parakeet auklet
least auklet
crested auklet

VI. RESULTS

Aerial . Photographs.--A photographic survey of the cliff-nesting birds on St. George was run by the U. S. Fish and Wildife Service on 1 August 1975, a relatively clear day on the island. The resulting 306 positive prints were turned over to us in December by Dr. James G. Bartonek of USFWS. Two examples of these prints are illustrated in Figures 3 and 4.

Quadrat Counts.--No progress was made in laying these out. A number of the talus slopes, including part of the great Ulakaia Ridge (famed for its nesting colony of least auklets) were covered with snow throughout June and July. Field work on St. George did not begin until 22 June when nonbreeding birds appeared to be everywhere present on least auklet nesting sites.

Reference Cliffs and Reference Ledges.--Fifteen cliff study areas were laid out (Table 2) and subjected to repeated censuses. In reporting on these reference cliffs, we have used a series of symbols (Table 4) in order to tighten up the tables of data that follow. The actual observations on entire cliff sections are set forth in Tables 5-9; those on partial cliffs are given in Tables 10-13.

Flight Observations.--A virtually complete count of the flight of least auklets from the sea in to the famed colony on Ulakaia Ridge was obtained on 1 July (Table 14), and additional data on evening flights were secured on 22 June and 17 July (Table 15). For roughly comparable evening periods, the successive totals were

22 June	38,357
1 July	50,940
17 July	33,130

Counts of the murre flights along the north shore of St. George were carried out for brief periods on 25 June, 30 June, and 1 July (Table 16) by two men and then by a single observer on 3-6 July (Table 17).

Table 4. Symbols Used in This Report

Br	Black-leggea kittiwake	PA	Parakeet auklet
CA	Crested auklet	pr N	Pair observed on nest
CM	Common murre	RC	Red-faced cormorant
F	Fulmar	RK	Red-legged kittiwake
i	Leight of cliff (in m)	S \mathbb{N}	Single bird on nest
nole	```crevice- or holemesting bird observea in front of crevice or hole```	sec	Section measured
nP	Horned puffin	sit	Sitting bird
K	Kittiwake (species not distinguished)	std	Standing
I	Lensth of section (m)	TM	Thick-billed murre
IA.	Least auklet	tot	Total
M	Murre (species not distinguished)	TP	Tufted puffin
3	Nest	W	Width of beach
Turouzhout tine tables, a cash indicates that no counts were attempted. Numerical observations are handed as follows:			
479	no. of birds observed		
(53)	no. Of nests observed		
[47]	no. of birds presumed brooding or incu		
When three such numbers are used, as for kittiwakes, the first number is always the total and includes the other two.			

Table 5. Census Data-Stratum A
Village West-Cumulative Data
From Staraya Artil Pond to North Rookery Length--1. 2 kr , by tape

Date	Time	714	CN	PR	BK	F	HP	TP	PA	CA	LA	RC
27 July	$\begin{array}{r} 0930-1000 \\ -1030 \\ -1100 \\ -1130 \\ -1200 \\ \hline \end{array}$	$\begin{aligned} & 300 \\ & 415 \\ & 176 \\ & 196 \\ & 136 \\ & \hline \end{aligned}$	$\begin{array}{r} 4 \\ 36 \\ 0 \\ 65 \\ 4 \\ \hline \end{array}$	$\begin{array}{ccc}55 & (16) & {[14]} \\ 96 & (54) & {[39]} \\ 40 & (7) & {[4]} \\ 32 & (13) & {[4]} \\ 67 & (9) & {[9]}\end{array}$	15 (9) $[6]$ 24 (10) $[4]$ 69 (42) $[26]$ 63 (30) $[27]$ 187 (112) $[78]$	0 0 (11) (33) (42)	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 34 \\ & 12 \\ & 16 \\ & 19 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 10 \\ & 24 \\ & 21 \\ & 59 \\ & \hline \end{aligned}$	$\begin{array}{\|c} (7) \\ (14) \\ 0 \\ 0 \\ (1) \\ \hline \end{array}$
Otan	0930-1200	1223	109	$290(99) \mathrm{b}$ [70$]$	358(203) [141]	(86)	9	0	103	2	149	(22)
© August	$\begin{array}{r} 1300-1330 \\ -1400 \\ -1430 \\ -1500 \\ -1530 \\ \hline \end{array}$	$\begin{aligned} & 308 \\ & 450 \\ & 140 \\ & 272 \\ & 177 \\ & \hline \end{aligned}$	$\begin{array}{r} 19 \\ 19 \\ 0 \\ 209 \\ \hline \end{array}$	191 (13) $[13]$ 68 (40) $[36]$ 86 (4) $[4]$ 113 (13) $[5]$ 208 (5) $[5]$	44 (7) $[6]$ 34 (21) $[8]$ 81 (1.2) $[32]$ 138 (76) $[52]$ 172 (80) $[45]$	$\begin{gathered} 0 \\ 0 \\ (22) \\ (41) \\ (42) \\ \hline \end{gathered}$	$\begin{aligned} & 7 \\ & 7 \\ & 1 \\ & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \\ & \hline \end{aligned}$	$\begin{array}{r} 80 \\ 73 \\ 8 \\ 70 \\ 34 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$	9 2 3 0 1	$\begin{gathered} (7) \\ (14) \\ 0 \\ 0 \\ (1) \\ \hline \end{gathered}$
Total	1300-1530	1347	254	666 (75) [63]	469 (226) [143]	(105)	24	5	265	2	15	(22)

a/ Total birds of all species: 27 July--2,351; 8 August--3,174. When only nests are counted for kittiwakes, the totals are 2,005 and 2,340 respectively.
b/ This included the start of nests; on 8 August such started nests were not counted.

Station VEC7S
Table 6. Census Datn--Stratum A Clifi mo. 2

Vinlace wast Cliffs-Cumbative Data
Lengti--1,073 km, oy tape

[^0]Sitation ilo. 23075
Zacle I. Cowsus Data---Dtratum A
Clifif Mo. 3
Zanaani iseach Aorth--Cumulative Data a/
incluces cifis above beach from beginning of ciifes nortin to ieadland where beach ends and boulders besin. Leresth- 0.55 km , by tape.

Late	lime	M	Oi:	$B i$	KK	F	HP	ir	PA	CA	LA	RC	
25 ine	9:8-104;	M :	931	K:	3	11	22	4	-	-	-	-	1,051
2) June	1110-1130	M :	203	K:	2	7	12	2	110	4	540	1	1,021
	1235-125	M :	224	K: 6	68	6	10	1	115	0	370	0	794
8 Juiv	1235-1355	569	13	43(37)	35(14)	$5(5)$	0	0	125	14	855	3	1,652
16 2ivy	1535-2620	700	13	$17(35)$	$\left\lvert\, \begin{aligned} & 130(19) \\ & {[16]} \end{aligned}\right.$	7(0)	0	2	23	0	23	5	1,036
6 suisusi	203u-1i05	542 $[9]$	27	$\begin{aligned} & 73\left(22_{i}\right) \\ & {[13]} \end{aligned}$	$\begin{aligned} & 96(16) \\ & {[16]} \end{aligned}$	25(10)	14	5	25	1	12	6	806
10 iniousi	-5330-1007	$\begin{aligned} & 530 \\ & {[503]} \end{aligned}$	7		-	$8(6)$	21	4	112	0	6	17	
	1014-34	-	-	$\begin{aligned} & 40(24) \\ & {[15]} \end{aligned}$	$\begin{aligned} & 65(3) \\ & {[1]} \end{aligned}$	-	-	-	-	-	-	-)
Mean of 2nd-, 3rd-, and 4th- highest counts of birds Same for nests		624	11	55	65	9	16	3	112	2	311	5	1,613
				28	11	7							46

a/ This cliff had extensive snow drifts covering many of its talus slopes right into August. The auklets were quite of ten seen on these snow banks, and most of them undoubtedly were nonbreeding birds.

Cliff No. 6

Zayadii say to :Synari Point and vovond
iotal distance 2.019 lm , by tare

table continued on next pace

a/ Incluaes 545-k area above.
b/ The total birds for all species was 14,858 ; when only nests are included for kittiwakes and cormorants, this drops to 14,349 .

Station Numbers PPC75
$38 C 75$

Pable 9. Census Dala-mistrata B am C

Cliffs 70.9 and 11
Gotal leneth 0.460 anc 0.460 ma , cy tare

Late	2i-e	i	if	\%	Bis 3ri-d	Fhr Rh-n	H(ii)	ac	PA	cn	1.1	\%	
20 June oinu 7 knote Sw	Cliff No. 9: from "traii down" (Nitascaloch to Pinnacle it. $125 j-1420$ 468 m 59 m 783 $\mathrm{~K}:$ 572 $\mathrm{KN}:(342)$						-	111(82)	-	-	-	-	?
	Clifif No. Il from "Pimacie Pt." to "3 Boulders Pt."						-	35(20)	-	-	-	-	-
$\begin{aligned} & 24 \text { July } \\ & \text { light } \\ & \text { foE } \end{aligned}$	$\frac{\text { Cliff No }}{1040-1205}$	9: fr	"t	"	gh) to Pin 556(310)	acle Pt. $163(117)$	14	(90)	49	11	250	-	$?$

itace: iurie Cove (ulift divided into tro groups of ledges:
upper and bower).
birus chasilici as sitting on stanking, io comon murres observea.

Zate	isper			Lower				$\begin{aligned} & \text { rotal } \\ & \text { (ooth } \end{aligned}$
	こi．．e	Sii	3ta 502	tire	sit	stn	tot	
$\underline{20} 20.3$	6－0－331	6	¢0 225	45－48	122	87	109	23%
	705－07	0	63120	700－03	16	32		206
	こu－aı	－0	61.230	15－13	11	81	92	202
	33－37	65	61 İćús	30－33	19	76	95	221
	43－51	69	65134	45－48	18	74		226
	803－06	66	65131	300－03	15	75	91	222
	10́－22	72	57129	15－13	14	04	90	227
	33－36	63	$\mathrm{Cl}_{5} 127$	30－33	19	$7{ }^{\text {c }}$	97	224
	40́－51	70	58120	$4{ }^{4}-43$	22	77	99	297
	203－06	63	（6） 132	900－03	23	$7{ }^{\text {c }}$	9^{5}	227
	18－22	E？	54.121	15－18	16	79	95	216
	33－36	73	50123	30－33	23	C8	91	214
	40－51	63	63126	45－48	20	70	50	216
	1003－07	E1．	61122	1000－03	21	65	86	208
	10゙－23	60	59127	$15-18$	22	60	82	209
	103：－30	64	63132				76	208
	40－54	64	60132	4 $45-48$	18	65	33	215
	1103－00		6\％ 132	1100－03	19	64	83	215
23 Juiy	1740－45	36	172208	1745－50	10	1421		360
	1750－55	36	140104	1755－1800	8	1401	14.8	332
27 July	1815－20	40	140180	1820－21	4	113	117	297
	30－34；	43	$133-76$	35－37	5	1101	115	201
$\begin{aligned} & \text { sea } 2 \\ & \text { hisin ceiling } \\ & \text { vis:cood } \end{aligned}$	4j－4i	33	147130	49－50	10	1091	119	200
	1900－04	46	131177	1904－05	16	991	115	292
	15－20	45	120165	20－21	12	10111		273
	30－35	53	110163	35－36	9	981	107	270
	45－4i	43	104147	49－50	9	921		248
	2000－05	43	9814	2005－06	6	941	100	241
	15－10	44	97141	18－19	10	89	99	240
	30－34	50	64112	34－35	10	74		198
	$45-1,6$	40	5595	40－49	10	57	67	162
31 juiy	1534－39	50	158208	1530－34	19	1251		352
	40－52	64	147211	$145-47$	30	119	149	360
$\begin{aligned} & \text { sea 0-l } \\ & \text { vis:v. ecod } \end{aligned}$	1605－00		14； 214	1600－03	34	1201		360
	19ーころ	Ć7	154 221	15－13	23	1311	154	375
	35－37	67	149．216	30－32	34	1201	154	370
	40－52	56	150214	45－47	35	1181		367
	1705－08	71	$145 \quad 216$	1700－04	35	1141		365
	10－21	63	150219	15－13	33	1201		372
	34－30	59	159218	30－33	25	1331		376
	$49-53$ 2004	61	1531214	45－48	20	1391	159	373
	1804－03	72	139211	1800－03		1311		365
	$10-22$ $34-37$	55	134c／189	15－17	31	1191		339
	34－37	52	132183	30－33	25	1111		319
	40－52	55	132187	45－48	27	1091		323
	1904－06	53	113166	1900－04	21	1191	140	306

Date	Unper				Lower				Total (both)
	time	sit	sm	tot	time	sit	stin	tot.	
31-Juiju	19-22	50	113	163	15-18	22	105	127	290
	$34-30$		105	157	30-32	22	102	124	281
	49-53		107	150	45-48	23	83	111	261
	2004-08	47	99	146	2000-03	22	87	109	255
	13-22	40	91	137	15-18	25	79	104	241
	33-35	50	74	124	30-32	16	74	90	214
	40-51	45	55	100	$45-47$	13	57	70	170
	2103-00	54	27	31	2100-03	16	37	53	134
9 ALE .	1049-55	31	137	168	1045-48	23	101	124	292
	1103-06	35	130	165	1100-02	23	94	117	282
wind it. fromin. goci vis.	17-21		120	155	15-17	22	92	114	269

a/ Bhrouding for.
Q/ Cloudy, fog, urizzle entire period.
c/ Fox intrusion (compensated by adding, flushed m to "str." coi.)

Table 11 .
Ledee Attendance Counts: Aittiwakes, Murres
and Cormorants with surplementary ouservations on
Parakect and Least nuricts.
Pinnacle Pt, Study Area (Part of Cliff io. a)
Wiuth: $50 \mathrm{~m}(66-13 \mathrm{~m}$. of Pinn. Pt. $)$; ht: $15-16 \mathrm{~m}$

'iacie continued on next page

Table II continued.

vatc -i...u		$\begin{array}{ccc} \text { iK } \\ \text { pr in si } & \text { loose } & \text { 'lot. } \\ \text { ii } & \text { indiv. } \\ \text { indiv. } \end{array}$	\therefore	Sil. Stand Clot.	at: looun		10.
$\begin{array}{cl} 24 & 0935-1004 \\ 11 & 1030-\quad 30 \end{array}$	$\begin{array}{lllll} 9 & 66 & 31 & (76) a / & 125 \\ i & 42 & 61 & (46) & 111 \end{array}$	$\begin{array}{lllll}2 & 33 & 18 & (35) & 53 \\ 4 & 24 & 22 & (29) \underline{1} & 54\end{array}$	-	$\begin{array}{lll} \hline 57 & 82 & 139 b / \\ 69 & 25 & 9 i \end{array}$	13	-	
$\begin{array}{cl} 29 \text { July } & 0930-52 \\ 11 & 1000-25 \\ " 1 & 1030-1100 \\ " 1100-25 \end{array}$	$\left\lvert\, \begin{array}{rrrrr} - & 37 & 55 & - & 92 \\ 2 & 42 & 60 & - & 114 \\ 3 & 37 & 62 & - & 105 \\ 3 & 40 & 67 & - & 113 \end{array}\right.$	27 21 - 48 - 23 25 - 50 - 23 31 - 54 1 24 32 - 53	- - -	57 87 144 66 92 150 64 100 164 71 02 163	$\left\lvert\, \begin{array}{ll} 11 & 11 \\ - & 13 \\ - & 10 \\ - & 0 \end{array}\right.$	-	
10 Alijust 1930-2015	$\begin{aligned} & \text { brood/sit[35] } \\ & \frac{\text { chichs seen: } 2 / 2}{1-\frac{17}{65 e} /(38) \underline{\mathrm{a}} / 104} \end{aligned}$	$\begin{aligned} & \text { uroou/sit[18] } \\ & \frac{\text { chicks, seen: } 8,}{1 \quad 2!} \quad \text { (23) i/ } 64 \end{aligned}$	-	$\begin{array}{lll} 54 & 82 & 136 \\ & & {[11]} \end{array}$	$\begin{array}{ll} 1 & 14 \\ & (10)^{\underline{g}} / \end{array}$	-	-

a/ Nest unoccupied
b/ Plus 1 common murre
c/ Plus 2 common murres
d/ Only completed nests counted; all others in the first 17 lines above defined as any nest site under construction
e/ Includes 56 adults at 45 incomplete nests
f/ Includes 24 adults on 17 incomplete nests
g/ the 10 nests had 21 chicks

Hhwe: first - luff--Contor bthay Area
Subrection \therefore (face nearer observation nt.)

Table 12 (Cont.)

Subsection Λ (face nearer observation pt.)

	tine	RK							BK							TM				
date				$100 s$	tot. ij	$\begin{aligned} & \text { tot } \\ & \text { indi } \end{aligned}$	$\begin{aligned} & \text { sit- } \\ & \text { ting } \end{aligned}$	Nw/ chicks	$\begin{aligned} & \mathrm{BK} \\ & \mathrm{pN} \end{aligned}$		loose	tot. iv	tot. sitr Nw/ indiv. ting chicks			sit. stn		tot. chick se		
30	0930	-	-	-	-	-	-	-	-	-	-	-	-	-	-	29	61	90	-	
	45	-	-	-	-	-	-	-	-	-	-	-	-	-	-	41	54	95	-	
"	1000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	39	54	93	-	
"	15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	43	54	97	-	
"	30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	43	48	21	-	
"	45	-	-	-	-	-	-	-	-	-	-	-	-	-	-	40	64	104	-	
	1100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	37	63	105	-	
1	15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	35	69	104	-	
	30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,6	54	100		
6 August	1400-13	3	44	13	(48)d/	63	-	-	-	13	4	(13)	17	-	-	32	50	82	-	
	15-25	2	44	18	(48) - $\overline{\mathrm{a}}$	66	-	-	-	12	3	(13) d/	15	-	-	30	50	83	-	
"	30-36	2	43	20	(48) $\overline{\mathrm{d}} /$	67	-	-	-	13	2	(13)	15	-	-	42	52	94	-	
"	50-55	4	41	12	(48)	61	-	-	-	13	4	(13)	17	-	1	29	63	92	-	
"	1500-06	3	42	16	(47) ${ }^{\text {d }}$	64	-	-	-	13	5	(13)	18	-	-	40	53	93	-	
"	15-21	2	45	14	(48)	63	-	-	-	13	5	(13)	18	-	-	39	56	95	4	
I	30-38	3	42		(47) ${ }^{\text {d }}$	48	-	-	1	12	5	(13)	19	-	-	41	56	97	-	
"	45-50	3	42	18	(47) ${ }_{\text {a }} /$	66	-	-	-	-	-	-	-	-	-	55	53.	108	-	
	0615-25	-	38	5	(47)d	43	[25]	-	-	11	1	(12)	12	[g]	3	31	67	98	-	
O August	0630-40	-	38	5	(47)	43	[24]	-	-	11	1	(12)	12	[-	35	61	96	3	
"	0045-50	-	39	5	(47)	4.4	[24]	-	-	11	1	(12)	12	[7]	-	35	56	91	-	
"	-700-06	-	39	:3	(47)	42	[20]	-	-	10	-	(12)	10	[8]	-	28	63	91	-	
"	0715-24	1	38	6	(47)	46	[26]	-	1	10	-	(12)	12	[6]	-	36	60	96	-	
"	0730-40	1	37	8	(46)e/	47	[24]	-	-	12	-	(13)e/	12	[6]	-	38	58	96	3	
"	0745-52	2	39	10	(46)e:	53	[27]	-	-	12	4	(13)e/	16	[8]	-	38	54	92	-	
"	0800-07	2	39	15	(47)	58	[29]	-	-	11	4	(12)	15	[5]	-	37	55	92	4	
"	$0815-24$	4	39	15	(47)	62	[27]	-	1	10	2	(12)	14	[5]	-	36	57	93	6	O
	0830-36	4	38	16	(47)	62	[29]	-	1	10	4	(12)	16	[10]	-	38	53	91	7	
August	1125-44	3	25		(28)e/	80	[23]	4	2	8		(10) ${ }^{\text {e/ }}$	19	[8]	5	24	64	88	10	
	1200-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	22	74	96	-	

Table continued on next page

Jubsection B (farther from observation pt.)

		RK					BK					K			TM			hP1e	$\frac{\mathrm{PA}}{\mathrm{hole}}$	$\frac{\mathrm{F}}{\mathrm{N}}$
date	Time			ose	tob N	tot. indiv.	pr N	sN	loose	tot	$\begin{aligned} & \text { tot. } \\ & \text { indiv. } \end{aligned}$		sN	tot. indiv.	sit.	stn	tot.			
10 \%uly	$\left(\left.\begin{array}{l} 1530-45 \\ 1746-1600 \end{array} \right\rvert\,\right.$	3 3	$\begin{aligned} & 20 \\ & 24 \end{aligned}$		$\begin{aligned} & (23) \\ & (27) \end{aligned}$	$\begin{aligned} & 46 \\ & 45 \end{aligned}$			-	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 9 \\ & 7 \end{aligned}$	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	76 80	243 269	$\begin{aligned} & 319 \\ & 349 \end{aligned}$	$\left.\begin{aligned} & 2 / 1 \\ & 5 / 1 \end{aligned} \right\rvert\,$	$\begin{array}{r} 5 / 0 \\ 13 / 0 \end{array}$	$\begin{aligned} & 2 \times 1) \\ & (11) \end{aligned}$
12 July	1704-1730	7	11		(18)	38	-	2	-	2	2	-	7	8	74	249	323	8/2	14/1	212)
23 July	1133-40		k:	47.	too	fogey	for	furti	her cl	ssif	cation	.			41	121	162	$6 /$	$1 /$	-
27 July	1815-38				(24)	49	-	-	-	-	-	-	-	-	78	207	285	$4 / 2$	$17 /$	(12)
"	1900-12	4	23		(27)	49	-	-	1	-	1	-	-	-	87	194	281	1/1	$20 /$	2(2)
"	1933-40	1	22		(23)	37	-	-	-	-	-	-	-	-	63	166	229	-	181	E(2)
"	1954-2000	1	24		(25)	36	-	-	-	-	-	-	-	-	57	172	229	$3 /$	15 /	(12)
"	2013-20	-	22		(22)	29	-	-	-	-	-	-	-	-	63	146	209	$2 /$	$22 /$	0 (2)
29 July	1525-38	2			(29)	41	-	-	2	-	2	-	-	-	43	202	245	$1 /$	$3 /$	2(1)
"	1548-160d				(28)	32	-	-	-	-	-	-	-	-	52	179		1/1	$1 /$	2(1)
"	1622-34				(26)		-	-	2	-	2	-	-	-	54	199	253	1/1	$1 /$	
"	1650-170	1	23		(24)	38	-	-	-	-	-	-	-	-	72	160	232	2/2	9	(1) 13
"	1719-20		24 $[20]$	17	(25)	43	-	-	-	-	-	-	-	-	72		250	-	$12 /$	1(1)
6 Aucust	1507-12		wea				-	-	-	-		-	\cdots	-	45		222	-		-
	22-20		23		(26)	77						-	-		63	189	252	$2 / 1$	12/1	2 2
"	30-44				(26)	54	-	-	-	-	-	-	-	-	62	177	239	1/1	$4 /$	212
1 August	1145-1200				(24)e	/ $\left.49 \frac{1}{22}\right]$	-	-	-	-	-	-	-	-	40 bro	$\begin{aligned} & 161 \\ & 1: \end{aligned}$	201	-	-	2(2)

Table is continued on next page

Table 12. (concluded)

```
a/ plus 2 unoccupied nests
b/ plus 1 unoccupied nest
c/ strong winds
d/ sone nests unoccupied
e/ complete nests with side walls
f/ also includes 22 auults at }18\mathrm{ incomplete nests
E/ also includes 4 adults at 3 incomplete nests
h/ also includes 2 adults at 2 incomplete nests
i/ }8\mathrm{ chicks seen
```


N

Table 3.
Ledfe Attendance Counts: Thick-billed and Common Murres, Red-legged and Black-legged Kittiwakes, and Fuimars. Place: Rosy Finch Cove

Date	Time	$\frac{3 M}{\text { stn } \operatorname{sit}^{\text {total }}}$			CM			RK	BK	F
					stn	it	total			
23 July Normal observation point										
	1215	24	45	69	26	16	42	3 (1)		8
	1230	21	49	70	21	26	47	3 (1)		
	1245	20	42	62	28	27	55			
	1300	17	47	64	20	27	47	-		
	1315	21	42	63	28	23	51			
	1330	27	40	67	30	28	58	-	-	
	1345	37	36	73	29	28	57	-	-	
	2400	37	37	74	28	21	49	-	-	
	2415	26	50	76	15	33	48	-		
	1430	32	44	76	23	27	50	-	-	
	1445	34	48	82	20	27	47	-		
	1500	41	39	80	29	29	58	-		
	1515	64	32	96	34	24	58	-		
	1530	54	35	89	27	26	53		-	
23 July	On east	ledg								
	1545			14	-	-	30	-	-	
27 July	Normal ob	ervat	on	int						
	1116	19	31	50	44	21	65	-	-	
28 July	Normal ob	rva	n							
	1215		44		22	18	40	5 (1)	2 (7)	
28 July	On east	leag								
	1230	3	3		12	6	18	-	-	-
28 July	Normal ob	rva	on	int						
	1245	15	42	57	16	22	38			
	1300	18	42	60	22	16	38	6 (1)	8 (7)	
	1315	26	46	72	17	17	34	5 (1)	8 (7)	
	1330	29	44	73	23	20	43	9 (1)	9 (7)	
28 July	$\begin{array}{r} \text { On east } \\ 1335 \end{array}$	$\begin{gathered} \text { led } \\ 0 \end{gathered}$	4	4	16	9	25		-	-
28 July	Normal ob	erva	on	int						
	1345	29	40	69	16	21	37	11 (1)	10 (7)	
	1400	30	44	74	16	25	41	8 (1)	12 (7)	
	1415	29	46	75	20	20	40	10 (1)	10 (7)	
	1430	26	41	67	27	17	44	11 (1)	11 (7)	
28 July	$\begin{array}{r} \text { On east } \\ 1433 \end{array}$	led 1	4	5	18	12	30		-	-
28 Juiy	Normal ob	erva	on	int						
	1445	21	45	66	22	19	41	10 (1)	10 (7)	
	1500	20	45	65	22	22	44	6	9	
	1515	20	42	61	19	20	39	7	10	
	1530	16	44	60	19	22	41	6	10	

Taule 13 continued.

'lable continueu on next page

Paole 13 continued.

브 58 loitering on lower edge
b/ Ioiterers leave
c/ large numbers of loiterers present on lower edge

Station No. LAF75

Table 14. Flight Ccunt--Least Auklets Flying Over Airstrip To Colony on Ulakaia Ridge July 1
Time Flight Count Percent

Start-0519	9
$0519-0556$	379
$0556-0612$	650
$0612-0700$	2,628
$0700-0733$	3,890
$0733-0800$	4,750
$0800-0830$	7,700
$0830-0905$	10,200
$0905-0930$	6,950
$0930-1003$	7,200
$1003-1030$	7,300
$1030-1100$	5,100 a
$1100-1130$	11,900
$1130-1200$	8,100
$1200-1230$	6,495
$1230-1300$	12,285
$1300-1330$	10,500
$1330-1400$	9,140
$1400-1430$	8,330
$1430-1500$	5,830
$1500-1530$	3,460
$1530-1600$	2,125
$1600-1630$	1,025
$1630-1700$	586
$1700-1730$	91
$1730-1800$	8

$$
63.2
$$

$1800-1830$	66
$1830-1900$	230

1900-1930 770

1930-2000 1,550
2000-2030 8,550

2030-2100 16,460
2100-2130 24,180
2130-2200 18,530
2200-2230 8,820
2230-2300
2300-2330
2330-2400

$\overline{79,631}$	36.8
$\overline{216,262}$	100.0

ㅂ/. Involves a slight estimate for some minutes in which the observer was
absent.

Taule 15
Flight Counts: Comparison of Evening Flights of Least Auklets over airstrip on 22 June and 17 July from 2040 to 2200 hours.

Time	Totals	
	22 Jure	17 July
2040-2050		
2050-2100	15,410	
2100-2110		5,930
2110-2120	5,740	7,470
2120-2130	6,150	6,260
2130-2140	4,260	3,560
2140-2150	4,430	1,350
2150-2200	2,367	450
FOTAL'S	33,357	33,130

Taule 16.
Station NO. MNF75

1

Flicht Counts: Hurre rilights on North
Bide of St. George, as ouserved from

Two obscrvers vith spottink scones, counting in $20^{\prime} s$

Taile continued on next page

Table 16 (cont.)

a/ considerea to be best estimate by observers.

Table 17
Flieht Counts: Diurnal Last-to-West Flicht of Murres
on Worth Side of St. George Isiand in Larly July
(Birds counted with 10 -power, Zeiss binoculars
in units (flocks) of 80 every other 10 minutes.)

Hiours	Date	No. of Flocks counted in 3×10-minutes	Flocks x 30	$\begin{aligned} & \times 2= \\ & \text { Total } \end{aligned}$ Each Hour
5-6	4 July	8	640	1,230
$6-7$	"	.76	6,080	12,160
1-8	v	83	6,640	13,280
8-9	*	255	20,400	40,800
9-10	3 July	372	29,760	59,520
10-11	"	380	30,400	60,800
11-12	*	680	54,400	108,300
12-13	"	301	24,080	48,160
13-14	"	223	17,840	35,680
14-15	"	79	6,320	12,640
15-16	6 July	99	7,920	15,340
16-17	"	, 8	4,640	9,280
17-18	"	17	1,360	2,720
103-19	"	44	3,520	7,040
19-20	"	a/	4,520	9,040
200-21	"	- ${ }^{1}$	3,860	7,720
-21-22	"	1.2	960	1.920
			223,340	446,630

a/
From 1950 hr. to 2050, birds wore counted by another observer usine a dirferent method.

VII. DISCUSSION

Aerial Surveys of Ledge-nesting Species.--St. George curing the summer period is more or less regularly serviced by Peninsula Airways by means of flights chartered by the National Marine Fisheries Service $2-3$ times per month. The plane, a twin-engined Navaho, flies out of King Salmon almost exactly 500 miles (800 km) due East. In our brief experience, the plane was often late by at least a day (once, 4 days), and its arrival on St. George once was effected under conditions that could only be termed by we laymen as "hairy." The weather factor here is fog, and on St. George it can facetiously be said that the weather seemed to change every 2 hours on the hour. Fogs proved to be local. One part of the island at this time of the year would be fog-bound, the others clear; or the others fog-bound, and this one clear. We repeatedly set out on long hikes only to be frustrated by a developing fogbank that came in just before or just-after we arrived. During the course of our 54 days on St. George, there appeared to be 6 days in which the island was seemingly free of fog; but on some of these 6 days we did not actually check the entire island for this condition.

Of course, there are no U.S. weather stations to the east of St. George, and there was no way that one could predict when a survey plane might find the cliffs reasonably free of fog-after the plane had flown something like 800 km from a place like King Salmon. We therefore came to conclude that aerial photographic surveys of ledge-nesting species on St. George will be extremely difficult to carry out, and it was no surprise to us that the U.S. Fish and Wildlife Service flight on 1 August encountered fog on the higher cliffs.

Bartonek (pers. comm.) has expressed to us his deep disappointment in the photos that FWS secured on this date. On two of our Reference Ledges (Station Numbers FBA75 and FBB75 at First Bluff), we can discern in the FWS photos on 1 August (under a 23-power binocular microscope) 34 and 9 birds respectively. On 6 August we counted the following on these areas:

FBA75
Time . . 1538-1544
Red-legged kittiwakes 54 Black-legged " -Thick-billed murres Other species (3)

Total . .

FBB75 1530-1538

66
17
82
$\frac{-}{165}$

This difference occurs on one of the better FWS photographs.
Boat Photography.--On 14-16 January 1976 we reviewed the FWS photos with Dr. David iN. Nettleship (Canadian Wildife Service at Ottawa), discussed our photographic problems with him, went over CWS methods of analyzing aerial photos (see also below), and decided to have our own boat available for quick use of good weather in photographing ledge-nesting birds. (No national Marine Fisheries Service boats with motors were available to us in 1975, and the Aleuts' private boats were only occasionally available. We had actually contracted to use one such boat on a fine-weather day but lost out because
the whole village decided to go fishing!) In early March 1976 we therefore shipped on the Pribilof, the Aleut vessel servicing the islands, a 13 -foot Avon rubber raft equipped with a $25-\mathrm{HP}$ Evinrude motor. This will permit us to have much flexibility in photographing at least the lower cliffs, but we may not be able to do a good job of photographing all the higher ledges on the highest cliffs.

Analysis of Photographs.--The errors inherent in census counts based on photographs of gulls have been reviewed by Kadlec and Drury (1968) and by Drury (1973) and for alcids by ivettleship (1975). Our conference in Ottawa yielded the following information:

CWS has found Hasselblad photos to be "not good" and has settled on Pentax 6 by 7 cm in photographing murre cliffs at $600-900 \mathrm{ft}$. with a $100-\mathrm{mm}$ lens and trying to fill the cliff in each frame. Higher cliffs have to be photographed at a greater distance.

The CWS blows its photograph prints to 28 by 36 cm [about $101 / 2$ by 15 inches] on glossy paper (for resolution and storage) and counts each carefully with the aid of gridded plastic overlays. The time involved varied from about 1,500 to 3,000 birds or nests per day in examples that we studied. Specific counting statistics provided us by Nettleship and his photo interpreter, Mike Channing, follow:

$$
\begin{array}{ll}
\text { Creat Island } & 23,229 \text { nests } \\
\text { Degges Sound } & 89,647 \text { murres } \\
\text { about } 3 \text { weeks to count } \\
11 / 2 \text { months }
\end{array}
$$

It is worth adding that the photo interpreter involved here is an experienced technician.with a great deal of patience.

The Service assumes that 1 bird $=1$ pair. It attempts to photograph murres before the nonbreeders come in. This ordinarily is late June but was early Juiy on Funk Island. What it tries to do is standardize date and time of day--preferably in the second half of the incubation period.

It is obvious that the censusing of ledge-nesters on St. George by means of photographs can only be done, under CWS methodology, on a stratified sampling basis: it will be impractical to try and count say 400,000 murres on say 50 km of cliffs.

It is at least possible that the birds photographed on these cliffs could be counted mechanically by a particle-counter which is used in hematological labs. Dr. Don H. Anderson, director of the Industrial Laboratory of Eastman Kodak Company, Rochester, has found (pers. comm.) that a Quantimat counter is easily able to enumerate blackbirds (on the order of $3-5$ thousand in a single picture) photographed against the sky es they approached a nighttime roost. We are currentiy exploring the practicality of such a technique for the analysis of our St. George photos. The machine presumably will not distinguish between a bird on a ledge and one in the air; and it may not be able to distinguish between birds and rocks that have been whitened by fecal droppings. Nettleship (pers. coma.) feels that the variance in Alcid ledge numbers in Eastern Arctic colonies requires him to count 65 percent
of the total number of ledges. This figure is clearly impossible to attain on St. George; its need would presumably be reduced by stratification. Mechanical counting impresses us as a practical necessity. Even with the limitations already envisioned (and there must be others), it would appear to have considerable utility as an order-of-magnitude estimate of the present population and as a year-to-year population index.

Flight Observations.--In personally discussing their St. George fieldwork with us last December, I. R. Gabrielson and M. C. Thompson (pers. comm.) maintained that the least auklet was the most abundant species on the island at the time of their visits (3 July 1940 and 3 other days on a later visit-IRG; 1964-68--MCT). This was not our impression in 1975, when murres were more numerous; we did not see Gabrielson's "swarming millions" (Gabrielson and Lincoln 1959:506). In the flight of lesst auklets over the village on 3 July, Gabrielson saw "many cresteds." In our all-day count on 1 July 35 years later we saw not more than 200. Thompson's impressions of the least auklet flight back up Gabrielson's, and we feel it probable that a significant decrease in this species took place on St. George sometime in the last 10 years. Aleut people who have for many years witnessed the auklet spectacle on this island all seen to agree that some diminution in numbers has taken place, but they place it earlier after the road was put through near the edge of the Ulakaia Ridge. This would be about 1950; but the Aleuts are not talking about a great reduction which we feel has taken place. There is at least some possibility that a pronounced change in auklet breeders could have taken place in 1975 as a result of the usually late snowfields to persist on Ulakaia Ridge. This will of course be watched for in 1976.

The least auklet flight into Ulakaia Ridge on 1 July dropped to a scant 8 birds between 1730 hr and 1800 (Table 14). We initially hypothesized that the 79,631 that then came in were females preparing to take over their nests for the night. If one is willing to accept an even sex ratio in the breeding population, it then follows that the morning flight consisted of 79,631 males and the remaining 57,000 birds (27 percent of those counted on 1 July) were nonbreeders. This 27 percent may be compared to the $30-35 \%$ that Bédard (1969) estimated as nonbreeders in the least auklet population on St. Lawrence Island. We did not attempt to test this hypothesis on St. George until 30 July when we collected 10 least auklets flying in from the sea between 2030 and 2130 hr . The sex ratio (Table 18) on this occasion was 5:5. We lack a good flight count for this late date in the season, and at present we regard the hypothesis as not yet adequately tested. George and Molly Hunt report (personal communication) that, in collecting least auklets on St. Paul this summer for their food-habits study, they found no evidence of a difference in sexual behavior such as we initially hypothesized. If the 79,600 evening fliers on 1 July were all and the only birds that would be incubating that night, it might still follow that 27 percent of the birds seen on 1 July were nonbreeders.

Flight counts do vary somewhat as the season progresses. For the period $2100-2200 \mathrm{hr}$, we counted 29,380 Zeast auklets flying into Ulakaia Ridge on 22 June; on 1 July this number was 42,710 .

Table 18

Least Auklets Collceted
30 July 1975; 2030-2130 ir.; on St. George Island

11.0	Left testis $0.4 \mathrm{~cm} \times 0.2 \mathrm{~cm}$ richt testis not found food sample taiken - skin saved
\#2 9	largest ova 1.5 mm burst foliicle found food sarpie taken - skin saved
\#3 ${ }^{\circ}$	left testis $0.5 \mathrm{~cm} \times 0.3 \mathrm{~cm}$ right testis $0.5 \mathrm{~cm} \times 0.2 \mathrm{~cm}$ food sanple taken - skin saved
\#4 9	largest ova 0.1 cm has collapsed follicle food sample taken - skin saved
175	left testis $0.8 \mathrm{~cm} \times 0.3 \mathrm{~cm}$ foou sauple collected; rt. testis not found skin discarded since ladly damaged
$\begin{aligned} & 16 \pi \\ & 92 \varepsilon \end{aligned}$	left \& right testes both $0.4 \times 0.2 \mathrm{~cm}$ foou sample collected, skin saved
${ }_{87}^{177} \mathrm{E}^{\text {早 }}$	ova to 0.05 cm food sample collected, skin saved
118 9	ova to 0.05 cm
945	skin saved, food sample collected
197	ova to 0.05 cm
87 \%	skin saved, food sample collected
$\begin{gathered} \# 10 \\ 90 \\ \hline \end{gathered}$	left testis $0.5 \times 0.2 \mathrm{~cm}$, right testis $0.4 \times 0.2 \mathrm{~cm}$. skin saved, food sample collected,

The east-to-west flight of murres of the north shore of St. George was an impressive ornithological sight in 1976. Using spotting scopes, for 5 to l0-minite counts scattered over about 4 late afternoon hours on 25 and 30 June, we estimated this flight to involve about 1,000 birds per minute. This ran to about 900 per minute in a morning count on 7 July (Table 16). When a single observer "counted" these flocks with a 10 -power binocular on 3~6 July (Table 17), there was good agreement between the morning counts (1000 vs. 900 per minute) but not at all for the afternoon counts (200 vs. 1000 per minute). We hope to make more direct comparisons of these two techniques in 1976.

He did carry out comparative side-by-side counts or estimates of least auklets on our full-day count of the flight going into Ulakais Ridge on 1 July. These were independent estimates by J. J. Hickey and R. C. Squibb. Their estimates were invariably less than 10 percent apart, and no bias on the part of one man was evident. Auklet counting at this site is quite comparable to counting starlings as they fly into a roost.

Reference Areas.--In the field we delineated our reference cliffs and reference ledges by taking Polaroid pictures in color or black and white. These were immediately pasted into field note books against the need to replicate counts in subsequent days. It would have been preferable to have taken a duplicate set of these pictures for use in the present report. Conventional 2×2 pictures taken of the reference areas have not been entirely satisfactory, and efforts will be made this sumner to remedy this situation.

Ledge Attendance. --It is now well-known that a diurnal rhythm in the ledge attendance of murres does take place (Tuck, 1960:120; Swartz, 1966:659), although no such rhythm was evident to Uspenski (1956) at Novaya Zemlya nor to Pennycuick (1956) at Spitzbergen.

Our ledge counts (Tables 10-13) were made for trial time periods of varying length whenever our work schedule and the weather permitted. Because of the patchy nature of these observations, confidence intervals can not be calculated and the counts can only be considered as a rough estimate. Preliminary analysis of these counts reveals a general trend during incubation: the lowest numbers of birds are present on the cliffs in the evening just before dark (presumably equals over night) and in the morning before it is light enough to make an accurate count; and the highest numbers are present in the afternoon, around 1630 hours. This is best seen in our most numerous set of counts--for Murie Cove, where we made 94 counts spread over 8 -days from 10 to 31 July (Table 10). The behavior is illustrated in Figure 5. It appears that only those birds with very high motivation for breeding (i.e., those properly classified as breeding birds) are spending the night on land. Evening ledge counts may be valuable in correlating ledge counts with numbers of breeding pairs. This phenomenon is further discussed under Direct Counts (below).

400-

50-
 TIME AT GEGINNING OF $7.5 \rightarrow$ MIN COUNT $\pm 5 \mathrm{MIN}$

Figure 5. Ledge ottendance of thj.ck-billed murres at Murie Cove Study Area (Station No. MCLT5) Ih July-31 July, Each dot indicates one datum point. (First thick-billed murre chick seen August 2.)

We are considering doing systematic counts in the coming season at $1 / 2$-hour intervals for one full day at regular intervals at each of the study ledges we will set up. This of course will be modified somewhat by weather conditions.

Direct counts.--In 1975, we succeeded in counting from the beach a total of 6.67 km of the lower cliffs, most of then in Stratum A (Table 19). With more than half of this stratum thus censused, it would appear that the 10.6 km of this lowest stratum carried about 40,000 birds . . . and that the numbers present on the higher cliffs will in turn be much higher. These higher strata

Table 19. Effect of Cliff Height on the Iumbers of Birds Present

Approx. Cliff Height (m)	$\begin{gathered} \text { Station } \\ \text { No. } \\ \text { (Table 2) } \end{gathered}$	Length Cliff Counted (km)	No. of Countsa/	Mean No. of Birds	Mean No. of Pairs ${ }^{\text {b/ }}$	Birds per 100 m	Table Ref.
Stratum A							
12.2	VwC75	1.2	2	2,763	2,173	230.3	5
12.2	VEC75	1.07	2	2,297	2,023	214.7	6
ca 18	ZBC75	0.55	3	1,613	1,530	293.3	7
24.4	ZMR75	2.92	1	14,858	14,349	508.8	8
Totals		5.74	8	21,531	20,075		
Stratum mean		-			375.1c/		
$\begin{aligned} & \text { Stratum } B \\ & 24.4-61 \end{aligned}$	PPC75	0.47	2	1,852	1,576	394.0	9
$\operatorname{Stratum~}_{61} C$	$3 \mathrm{BC7} 5$	0.46	1	5,286	4,861	1,149.1	9

a/ Where 2 counts were available, the numbers were averaged. Where 3 or more counts were available, the 2nd-, 3 rd-, and 4 -th highest counts for each species were averaged, the mean total of these was used to arrive at the mean numbers shown in the table.
b/ For "Pairs" here we substituted the actual number of nests or started nests for the numbers counted for kittwakes and cormorants.
c/ Weighted according to the length of cliff censused.
must be sampled by boat and aerial photography; they have little in the way of beaches at their bases, and the cliff-nesting birds there cannot be fully counted from the cliff tops.

The variables affecting this estimate appear to result, at least importantly, from differences in the number of nonbreeding birds present (1) throughout the day, as one might suspect from Figure 5, and (2) throughout the season, as one can infer from the work of Swartz (1964) at Cape Thompson on murres. Our census work on Stratum A was equally divided between morning and afternoon hours (Table 20). Morning counts on the whole were 24 percent lower than afternoon counts. Of this 24 percent, half was due to a difference in thick-billed murre counts, one-quarter was due to least auklet counts, and the remaining one-quarter was spread over the other nine species. The afternoon least auklet counts invariably included flocks of obvious nonbreeders on the beach or talus slopes. We believe that the difference of 25.8 birds between A.M. and P.M. birds of this species was produced by this segment of the population. If 44.6 least auklets in Table 20 are a reasonable index of the incubating half of the breeding population, the total population is represented by $44.6+44.6+25.8=115$. This would mean that the nonbreeders were 22 percent of the population. This compares to an inferred 27 percent in the flight at Ulakaia Ridge and Bédard's (1969) estimate of 30-35 percent on St. Lawrence Island.

The major difference between A.M. and P.M. counts for a single species appears in the common murre. We interpret at least part of this to be due to an inadvertent increase in flat ledges in the higher cliffs of Zapadni Bay that we could reach only in the latter part of our field trips. Counting these higher cliffs in the afternoon (Station No. ZPC75) has probably biased our afternoon totals somewhat also. There vere more birds per meter here than anywhere else in this stratum.

At Cape Hay, Tuck (1960:119) found the murre population to be increased about 10 percent by nonbreeders that appeared after 1 August. On the basis of extensive collecting during the incubation and early nestling period. Swartz (1966) did not consider nonbreeding murres to represent any significant fraction of the population at Cape Thompson. His diurnal cycle, obtained 30 August to 1 September involved a maximum of 250 birds on his study ledges. Our curve (Figure 5) compiled from data obtainca on 14-31 July closely follows that of Swartz. This is a bit surprising since (1) Tuck (1960:120) found different riythms for different parts of the nesting cycle, (2) Swartz's rhythm data in 1959 were obtained late in the nestling period, and (3) our curve holds only for the latter half of incubation. Swartz corrected all his ledge counts and census data to 100 percent of his afternoon maximum.

We have extrapolated the Table 20 data to 10.6 km for Stratum A in Table 21. The use of all our afternoon data instead of a correction factor based on the peak at 1630 hr gives a somewhat somewhat more conservative estimate than Swartz's approach, being 12.8 percent lower.

Table 20. Effect of Time of Day on Census Totals for Lowest Cliffs (Stratum A) a/

SpeciesTime counted	Mean no. birds (and nests)counted\qquad per 100 m			AM as Percent of PM
	$-0815-1200$ $1200-3630$ $8 \mathrm{hr} 44 \mathrm{~min} \quad 8 \mathrm{hr} 43 \mathrm{~min}$			
Total hours counted				
Thick-billed murre	185.6	234.8		79
Common murre	9.8	17.3		57
Red-legged kittiwake	12.7 (4.7)	19.1	(4.6)	66
Black-legged kittiwake	24.3 (15.3)	26.7	(15.2)	91
Fulmar	8.6	9.8		88
Horned puffin	4.7	4.8		98
Tufted puffin	0.3	0.4		75
Parakeet auklet	15.7	20.8		75
Crested auklet	0.4	0.6		67
Least auklet	- 44.6	70.4		63
Red-faced cormorant	0.8 (0.3)	0.9	(0.5)	89
Total birds per 100 m	307.5	405.6		76

a/ Counts of zero birds are included in the means shown.

Table 21. Estimated Breeding Population (Pairs) in Stratum A Cliffsa

Ledge nesters	
Thick-billed murre	25,000
Black-legged kittiwake	2,800
Red-legged kittiwake	2,000
Common murre	1,800
Fulmar	1,000
Red-faced cormorant	100
Hole nesters	
Least auklet	4,700
Parakeet auklet	2,200
Horned puffin	500
Crested auklet	60
Tufted puffin	40
Total	40,000 (40,200)

VIII. CONCLUSIONS

1. In 1975 , the seabird numbers on St. George were considerably down from the "millions" reported in the past.
2. The cause of this change is not yet clear; some disturbance of the main least auklet colony may have taken place. Some instability induced by persisting snowbanks in 1975 also seems to have occurred.
3. The main least auklet colony held over 200,000 birds, of which as many as 27 percent may have been nonbreeders.
4. The lower cliffs on the island, extending for 10.6 km , held approximately 40,000 breeding pairs of ll species. Higher densities undoubtedly occur on the 37.5 km of high cliffs, the highest of which held at least 400,000 murres on the north side of the island.
5. On the lower clirfs, the comonest species were thick-billed murres, least auklets, black-legged kittiwakes, parakeet auklets, red-legged kittiwakes, common murres, and fulmars in that order. Horned puffins, red-faced cormorants, crested auklets, and turted puffins were also present in much reduced numbers.
6. Pelagic cormorants, formerly found on this island, were completely absent in the summer of 1975.
7. St. George now appears to be the main stronghoid of red-legged kittiwakes
in North America. (Their only other known nesting grounds, outside the
\uparrow Pribilofs, are in the Komandorskie Islands). If any species of seabird

- can be seriously threatened by petroleum exploration in the Bering Sea,

8. Conventional census-photography by aircraft on St. George is extremely difficult to carry out due to fog; boat photography of ledgenesting birds will have to be substituted.
9. If conventional photograph-analysis is used, it would take an experienced technician 26-52 weeks to count 400,000 murres. This time can be reduced by stratified sampling. It will in turn be increased by the need to count other species. The search for a mechanical counting technique should be pushed.
10. The major threats to these seabird populations posed by petroleum exploration will be (a) disturbance of the ledge-nesting species by people or aircraft if St. George is ever used as a local or regional base of operations for petroleun drilling and (b) potential spillage at or near the birds' main (but not their only) feeding areas 13.7 km (less than 8 nautical miles) NE of the island at $56^{\circ} 37^{\prime} 30^{\prime \prime} \mathrm{M}$ and $160^{\circ} 11^{\prime} \mathrm{W}$. This is about $2-5$ fathons deep and involves about 1 km by 500 m .

IX. NEEDS FOR EURTHER STUDY

Most of our needs for 1976 have already been alluded to:
(1) We will need to take advantage of good weather, whenever we get it, to photograph ledge-nesting species. Ve expect to use a boat to do this.
(2) We need to jack up our ledge-attendance statistics for other species besides murres and for different parts of the bixds' nesting cycles in which we will be photographing the cliffs.
(3) We will need to lay out the quadrat system on Ulakaia Ridge in order to get some confidence limits in estimating the maia nesting population of least auklets. We will explore the possibility of revising our budget so as to put one man full time on this subprotect.
(4) We will have to run down the possible use of a mechanical counter for cliff photogrephs.
(5) We are considering the use of a miniature radio telemetry system to monitor the flight of least auklets and determine how often breeding birds approach and leave the colony.
(6) We need some new understanding from NOAA about how long it takes to write up a final report. If our field work runs well into August, we are appalled at an "absolutely firm" deadline for a final report on 1 Octcber.
(7) A cooperative effort with Dr. George Hunt and his team on St. Paul is being worked out whereby (1) we will monitor kittiwake nests at two study areas on St. George and collect growth and reproductive data. (Molly Hunt will spend a month on St. George from inid-August until fledging in mid-September) and (2) they will photograph and census the cliffs of St. Paul and other Islands in the course of their work there. Plane schedules permitting, we will try to join them on some of this.

(1) Field Trip Schedule
1.1-12-75 to 12-12-75

Pacific Seabird Group Mecting in Asilomar, Califomia. Conrerence with NOAA perscnnel on rescarch problems and data management.

14-01-76 to 16-01-76
Meeting with Dr. Davià N. Net Ieship ma Cenodian Wildife Service staff in Ottawa, Canade, to discuss and exomine CrS techniques for censusing seabirds by means of aerial photcgrephy.
(2) Scientific Party

Dr. Joseph J. Hickey, Professor of Hildife Ecology, University of Wisconsin, P. I.
F. Lence Craighead, Research Assistant, University of Wisconsin
(3) Methods

We received 306 acriai photiographs of the ciiffs of St. George Island from Dr . James C. Bartonek of the U. S. Fish and Wildife Service. These were taken on 1 August 1975, irom an FWS PRV. We examined these photographs ara then conferred vi.th Dr. David N. Nettleship who agreed that many of them were impossible to analyze for census intormation. It wes concluded that much better-quality photogrephs could be taken by boat with a $6 \times 7 \mathrm{~cm}$ Pentax as used by the Canadian Wildife Service. This we have now secured.

We also conferred (by phone) with in. Don H, Anderson, director of the Industrial Laboratory of Eastuan Kodak Company, Rochester, N. Y., relative to a nechanical counter for the birds we photograph on ledges. We are currently trying to find a Quantimat counter here in southern Wisconsin so that we can explore this further.
(4) Sample localities, etc.

None. A rubber boat and motor were shipped to St. George on the Pribilof early in March.
(5) Data anelysis

Upon receipt of Data Menagement Formats 034 and 035 , work was begun keypunching last sumer's data for storage on magnetic tape. This should be completed by i April.

[^0]: a/
 Total birds of all species were 2,156 on 11 July and 2,438 on 20 July When only nests are used for kittivakes and cormorants, these totals become 1,889 and 2,156 respectively.

