BREEDING BIRD SURVEY REGRESSION MODELS FOR THE BEAR RIVER WATERSHED CONSERVATION AREA

Purposes of this discussion:

Address the requirement for ".... demonstrate application of the spatially-explicit biological planning and conservation design that result in measurable biological outcomes"

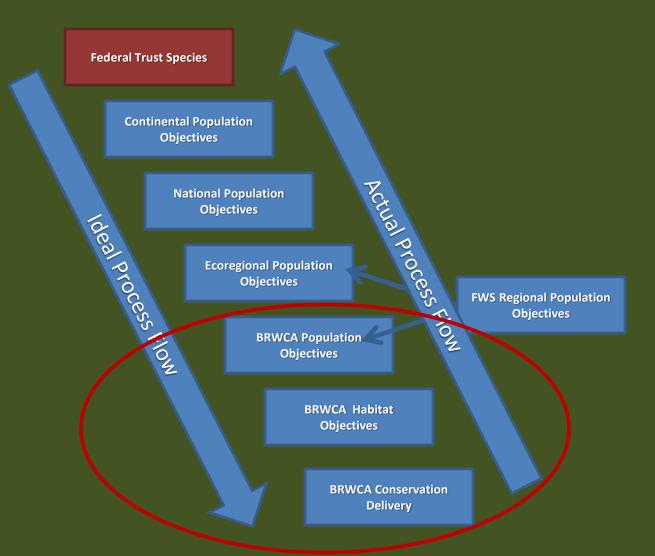
USFWS Director BRWCA PPP Approval Letter 12/16/2010

BEAR RIVER WATERSHED CONSERVATION AREA

Project Location

4.7 MILLON ACRE WATERSHED

2.5 MILLON ACRE PROJECT AREA


920,000 ACRE ACQUISTION APPROVAL

PURPOSE OF THE BEAR RIVER WATERSHED CONSERVATION AREA:

- PROTECT AND RESTORE WATER QUALITY AND QUANTITY
- CONSERVE UPLAND, WETLAND, RIPARIAN, AND AQUATIC HABITATS
- WILDLIFE HABITAT CONNECTIVITY
- **PROMOTE PARTNERSHIPS**


Provide Landscapes Capable of Sustaining Range-wide Populations of Federal Trust Species at Socially Viable Levels

How will BRWCA Contribute to this?



Breeding Bird Survey Routes By Degree Block

• Densities vary by state

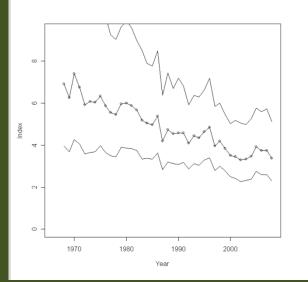
BRWCA Breeding Bird Survey Routes

Project Area - 4.8 million acres

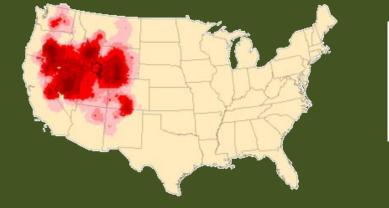
33 total routes.- Used 32 routes

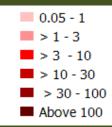
BBS stops were created by

- Route observers (3)
- BBS web site (1)
- Derived from routes (29)

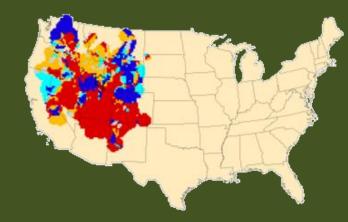

Draft BRWCA Focal Species List*

Species	BBS Total Observations	BBS Total Routes	BBS Total Stops
American avocet	3018	12	81
Black-necked stilt	1604	5	49
Lewis's woodpecker	12	2	6
Long-billed curlew	521	11	126
Northern pintail	529	8	99
Sage sparrow	398	12	128
Sage thrasher	3961	21	599
White-faced ibis	7159	8	113
Willow flycatcher	206	15	71

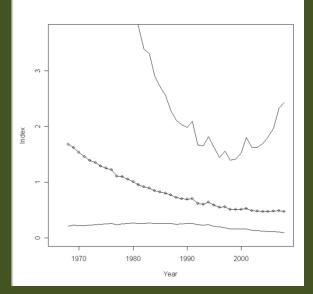

* in addition to Greater sage-grouse and Bonneville cutthroat trout

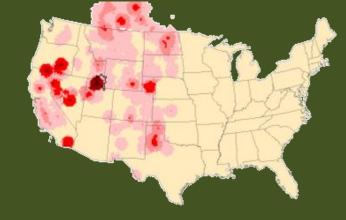

Sage Thrasher (Oreoscoptes montanus)

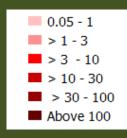
Southern Rockies BBS TREND – 1966-2009



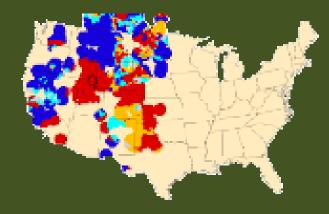
Survey-wide Abundance


Survey-wide Trend




American avocet (Recurvirosta americana)

Southern Rockies BBS TREND – 1966-2009



Survey-wide Abundance

Survey-wide Trend

Analysis Approach

- Competing Model Analysis
 - Compare candidate set of models using AICc
 - Two analyses to 1) determine landscape scale and 2) the final model selection within that scale.
- Validate Best Model
 - Goodness of Fit
 - Predictive ability
 - Spatial Autocorrelation
- Apply best model to landcover data in BRWCA
- Provide BRWCA planning team with priority maps and data layers

Potential Model Covariates

COVARIATE **STOP** NORTH EAST **ELEVATION** SLOPE percent GRASS HAY CROP FOREST SHRUB WATER **URBAN** PATCHES PONDS PRECIP ROUGHNESS

DESCRIPTION proxy for time of day UTM northing meters UTM easting meters **DEM** meters proportion in landscape number in landscape number in landscape (NHD) PRISM 30 year monthly May mean (mm) surface area ratio (1-4)

SATH Model Selection

- Used all BBS routes ran in year 2000
 Corresponds with landcover imagery dates
- Run competing full models for landscape measurement (400m, 800m, 1200m, 1600m, 2400m, 3200m)
 1200m best model (△ > 3 AICc)
- Poisson vs Negative Binomial Distributions
 - Mean: 0.24 Variance: 0.41
 - Negative Binomial ($\Delta > 21$ AICc)
 - Likelihood Ratio Test: P < 0.001
- Tested need for zero-inflated models
 Observed Poisson Negative Binomial
 867 843 865

SATH Exploratory Competing Models Analysis

BBS Data Year: 2000 Model Type: Negative Binomial Regression Landscape around each BBS stop : 1200 meter radius

MODEL	LL	К	AICc	deltaAICc	weight
NORTH + EAST + ELEV + URBAN1200 + GRASS1200 + WATER1200 + CROP1200 +					
FOREST1200 + SHRUB1200 + PATCH1200 + ROUGH1200					
	-492.52	13	1011.40	0.00	0.905
NORTH + EAST + ELEV + SLOPE + URBAN1200 + GRASS1200 + SHRUB1200 +					
FOREST1200 + HAY1200 + PATCH1200 + PRECIP1200 + ROUGH1200					
	-494.05	14	1016.51	5.11	0.070
FULL					
	-490.98	18	1018.65	7.25	0.024
NORTH + EAST + ELEV + SLOPE + URBAN1200 + GRASS1200 + WATER1200 +					
SHRUB1200 + FOREST1200 + HAY1200	-502.16	12	1028.62	17.22	0.000
NORTH + EAST + PATCH1200 + PONDS1200 + PRECIP1200 + ROUGH1200	-540.49	8	1097.11	85.71	0.000
NULL	-609.62	2	1223.25	211.85	0.000

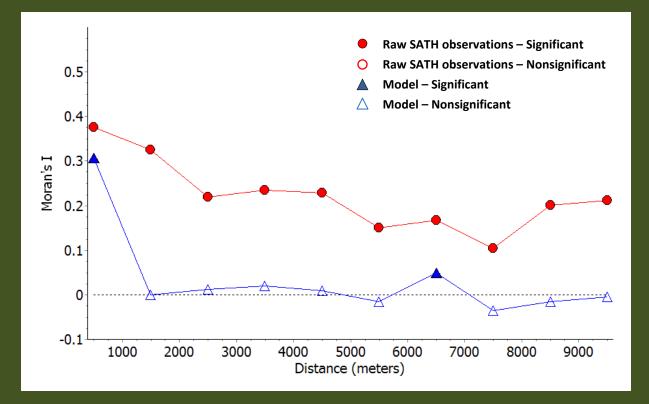
BRWCA Sage Thrasher Model

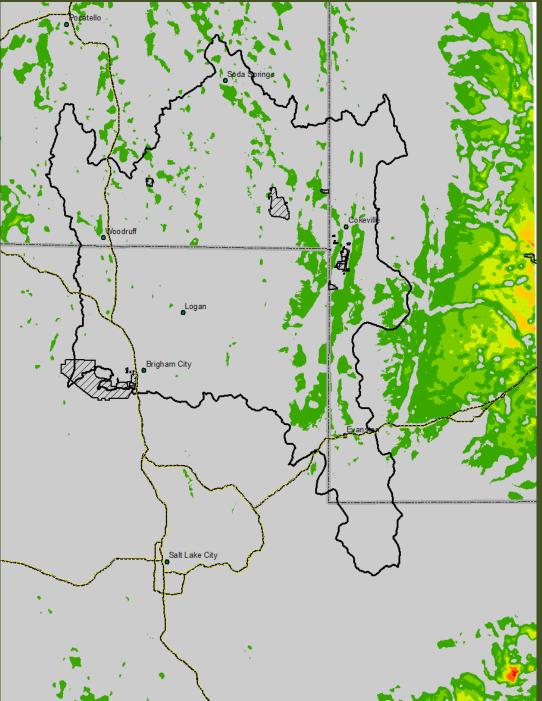
$$\begin{split} \overline{SATH} &= \overline{EXP}(\beta_0 + \beta_1(NORTH) + \beta_2(EAST) - \beta_3(ELEV) - \beta_4(URBAN) + \\ \beta_5(GRASS) + \beta_6(WATER) + \beta_7(CROP) + \beta_8(FOREST) + \\ \beta_9(SHUB) + \beta_{10}(PATCH) - \beta_{11}(ROUGH)) \end{split}$$

Coefficients:						
	Estimate	Std. Error	z value	Pr(> z)		
(Intercept)	4.699e+00	8.312e+00	0.565	0.57182		
NORTH	3.197e-06	1.101e-06	2.902	0.00370	* *	
EAST	1.295e-05	3.176e-06	4.076	4.57e-05	* * *	
ELEV	-3.411e-03	7.619e-04	-4.477	7.58e-06	* * *	
URBAN1200	-5.357e+00	3.192e+00	-1.678	0.09332		
GRASS1200	2.558e+00	1.592e+00	1.607	0.10797		
WATER1200	3.133e+00	1.386e+00	2.260	0.02380	*	
CROP1200	4.200e+00	1.375e+00	3.054	0.00226	* *	
FOREST1200	3.897e+00	1.396e+00	2.792	0.00524	**	
SHRUB1200	6.306e+00	1.250e+00	5.044	4.56e-07	* * *	
PATCH1200	3.350e-03	1.388e-03	2.413	0.01584	*	
ROUGH1200	-2.521e+01	6.844e+00	-3.684	0.00023	* * *	
Signif. code	es: 0 `***'	0.001 `**'	0.01 \	* 0.05 \.	. 0.1	

Sage Thrasher Model Validation

- Model Goodness of Fit:
 Chi-squared test
- How well does the model predict? 2 tests


<u>Year</u>	<u>Method</u>	<u>RMSE</u>	<u>MAE</u>
2001	Observed vs Predicted	0.51	0.19
2000	10-fold cross validation	0.34	


- What does this mean?
 - Large errors in predictions did not occur.
 - Average difference between predicted and observed
 SATH was 0.19 in 2001

Sage Thrasher Model Validation

Spatial Autocorrelation:

- Moran's I Corellograms
- Spatial autocorrelation does exist in the data
- The model accounts for most, not all, of the SA

Sage Thrasher

NB Regression Model using BBS data from 2000

Sage Thrashers

AMAV Model Selection

- Use all years combined
 - Only routes with observed AMAV
 - Used route variable as a random effect
- Logistic Regression
 - Habitat occupancy probability (0-1)
- Review correlation coefficients
 - Threshold = 0.7
- Run competing full models for landscape measurement (400m, 800m, 1200m, 1600m, 2400m, 3200m)
 - 800m, 1200m, 1600m (△ 2 AICc)
 - 800m final landscape

AMAV Exploratory Competing Model Analysis

BBS Data Years: 1997 - 2010 Model Type: Logistic Regression (GLMM) Landscape around each BBS stop : 800 meter radius

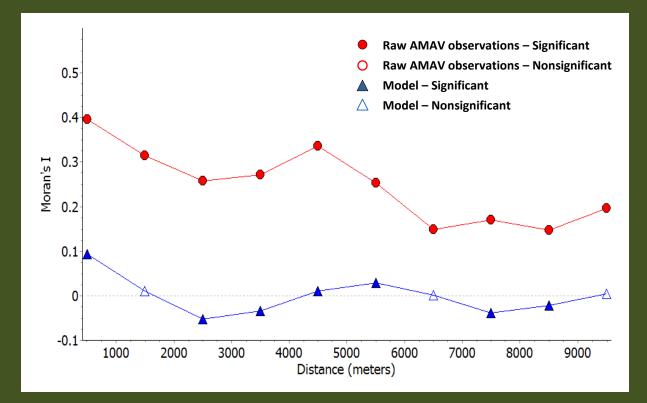
MODEL	LL	К	AICc	deltaAICc	weight
STOP + NORTH + EAST + ELEV + URBAN800 + GRASS800 + HAY800 +					
CROP800 + FOREST800 + SHRUB800 + ROUGH800					
	-537.168	12	1100.442	0.000	0.692
STOP + NORTH + EAST + ELEV + URBAN1200 + GRASS1200 + HAY1200 +					
CROP1200 + FOREST1200 + SHRUB1200 + ROUGH1200					
	-538.975	12	1104.055	3.613	0.113
FULL800	-534.329	17	1104.863	4.421	0.075
FULL1200	-534.469	17	1105.144	4.702	0.065
FULL1600	-534.845	17	1105.895	5.453	0.045
STOP + NORTH + EAST + ELEV + URBAN1600 + GRASS1600 + HAY1600 +					
CROP1600 + FOREST1600 + SHRUB1600 + ROUGH1600	-541.778	12	1109.662	9.219	0.006
NULL	-697.75	1	1399.500	299.05	0.000

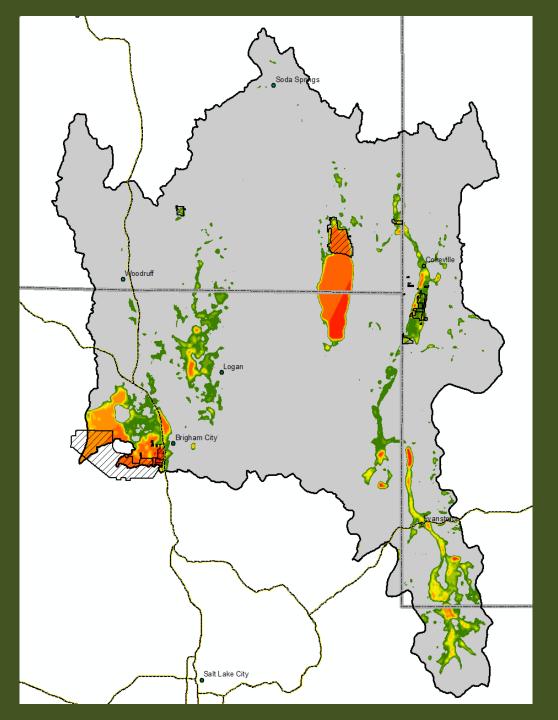
BRWCA American Avocet Model

$$AMAV = \frac{e^x}{1+e^x}$$

 $\begin{aligned} x &= (\beta_0 + \beta_1(NORTH) + \beta_2(EAST) - \beta_3(ELEV) - \beta_4(URBAN) - \\ \beta_5(GRASS) + \beta_6(WATER) - \beta_7(CROP) - \beta_8(FOREST) - \\ \beta_9(SHUB) - \beta_{10}(HAY) - \beta_{11}(ROUGH)) \end{aligned}$

	coef	se(coef)	Z	Pr(> z)
(Intercept)	1.044e+02	5.056e+01	2.0655	3.89e-02
STOP	1.804e-02	8.386e-03	2.1514	3.14e-02
NORTH	-2.258e-05	1.061e-05	-2.1284	3.33e-02
EAST	4.547e-05	1.488e-05	3.0552	2.25e-03
ELEV	-3.485e-03	2.390e-03	-1.4578	1.45e-01
URBAN800	-5.962e+00	3.094e+00	-1.9271	5.40e-02
GRASS800	-8.443e+00	1.710e+00	-4.9368	7.94e-07
HAY800	-5.688e+00	1.273e+00	-4.4687	7.87e-06
CROP800	-2.706e+00	8.495e-01	-3.1857	1.44e-03
FOREST800	-5.912e+00	5.871e+00	-1.0070	3.14e-01
SHRUB800	-8.015e+00	1.136e+00	-7.0577	1.69e-12
ROUGH800	-1.344e+01	1.646e+01	-0.8169	4.14e-01


American Avocet Model Validation


- Much more difficult with mixed-effects models
- Model Goodness of Fit:
 - Likelihood Ratio Test
 - AICc as a general GOF
- 10-fold cross validation
 - RMSE = 0.22
 - -MAE = 0.11
 - Large prediction errors did not occur
- Spatial Autocorrelation

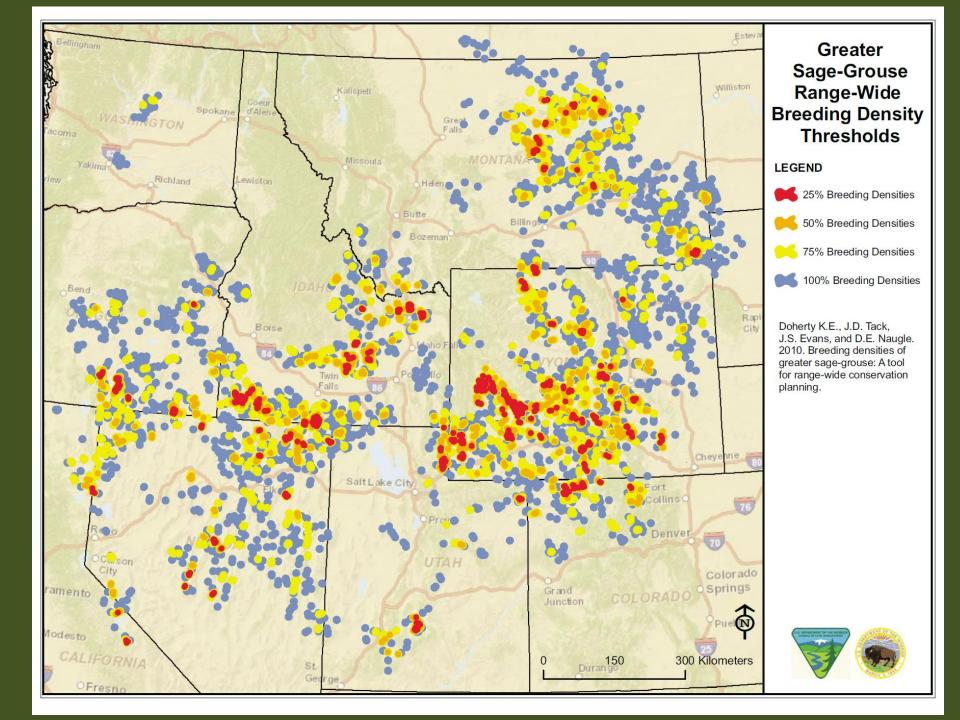
American Avocet Model Validation

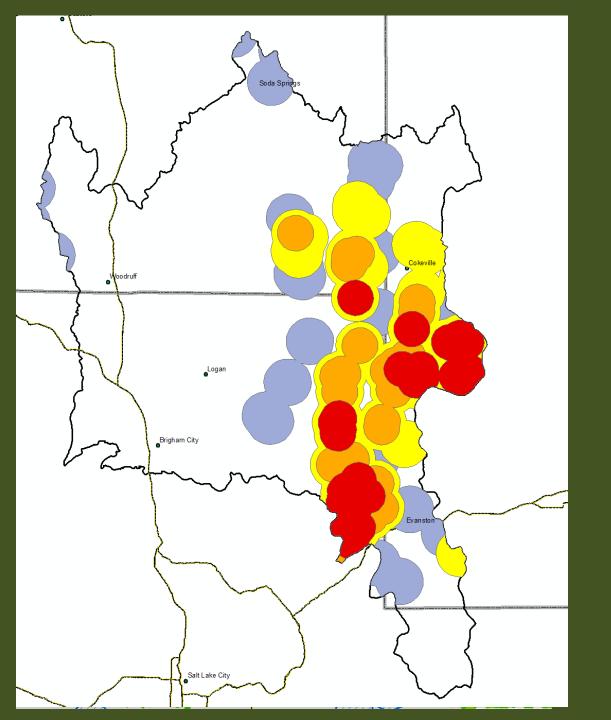
Spatial Autocorrelation:

- Moran's I Corellograms
- Spatial autocorrelation does exist in the data
- The model accounts for some of the positive SA

American Avocet

BRWCA Draft Logistic Regression Model 1997 – 2000 BBS Data

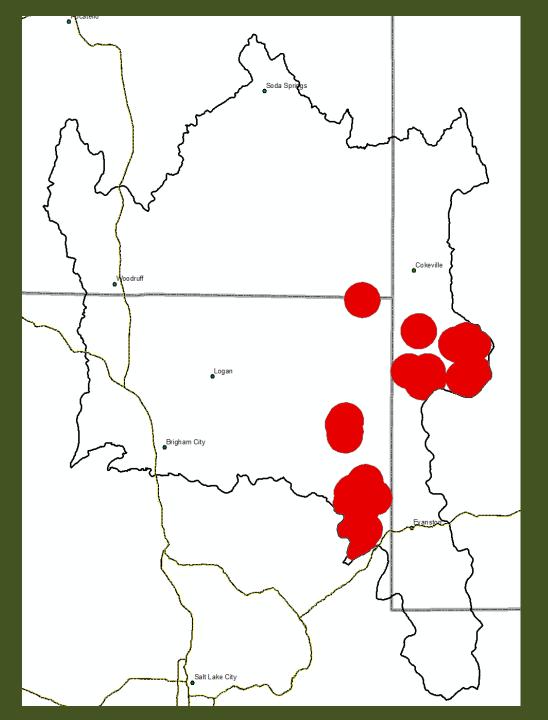

Probability of Occupancy


High

Low

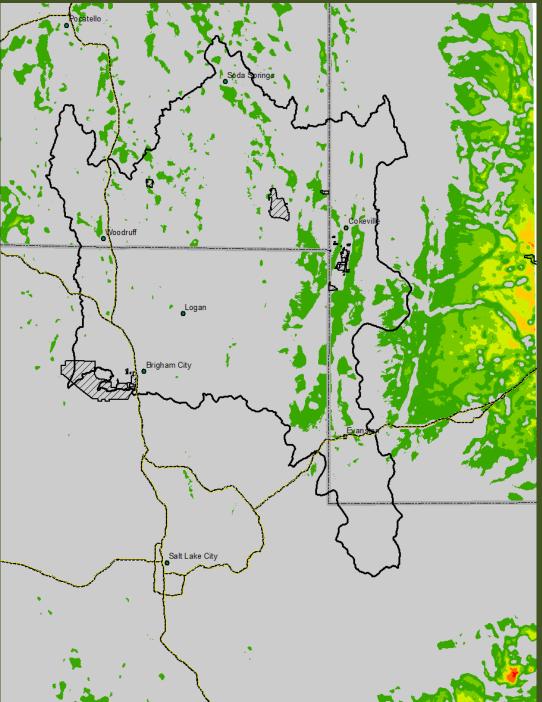
Bringing It All Together

- Target conservation easements in the top areas for each focal species
- Use integrated approach when there is a priority area for one focal species that overlaps areas for other focal species
 - One of the overlaps MUST be in a priority area
 - Example
- Integrate other issues that may help prioritize within a species priority area
 - Connectivity
 - Must occur within a species focal area



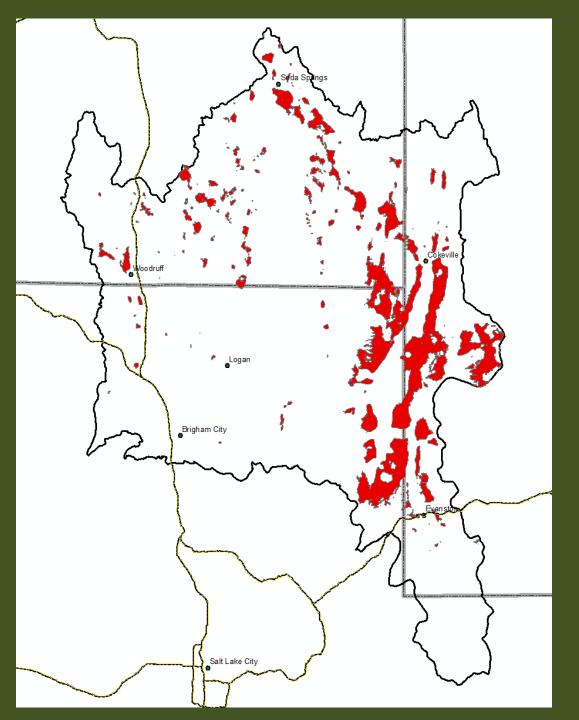
Greater Sage-Grouse Range-Wide Breeding Density Thresholds

LEGEND

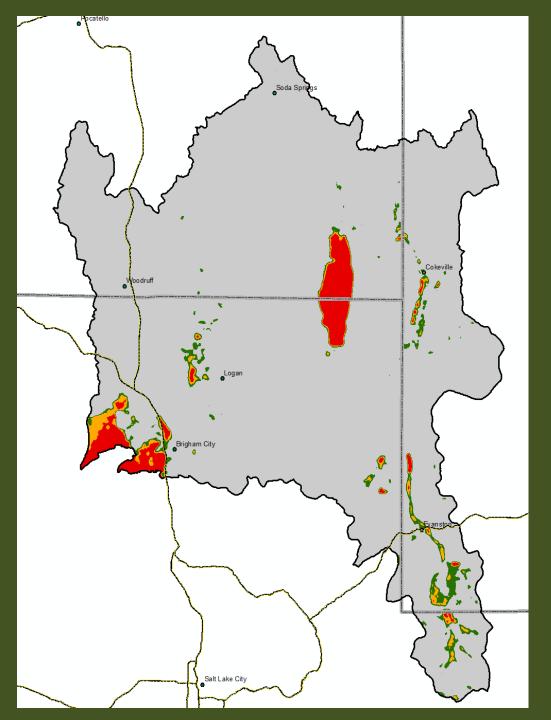


Greater Sage-Grouse Range-Wide Breeding Density Thresholds

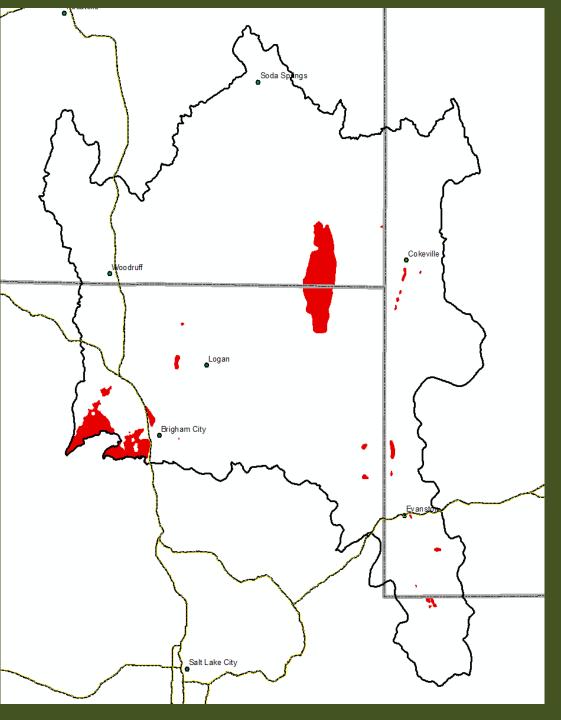
LEGEND



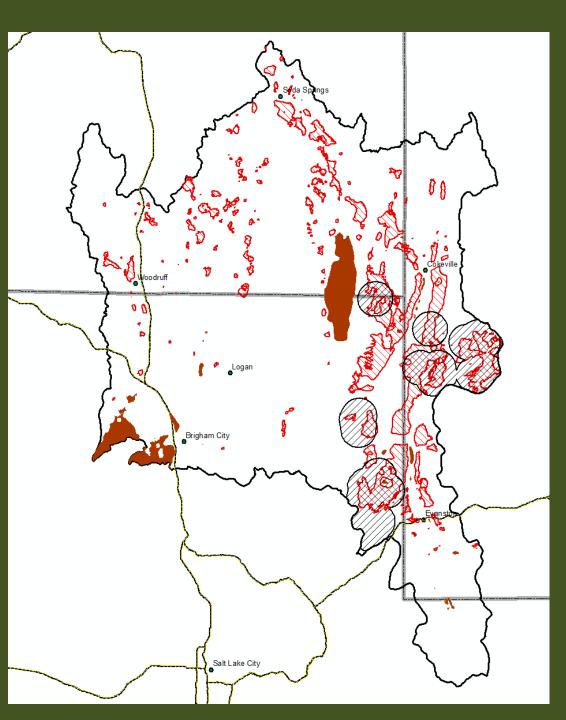
Sage Thrasher


NB Regression Model using BBS data from 2000

Sage Thrashers



Sage Thrashers Priority Areas


American Avocet Priorities

American Avocet Priorities

BRWCA Priorities

SAGR Priority 1 SATH Priority 1 AMAV Priority 1

Region 6 BBS Modeling Approach

- The approach CAN work outside of prairies. Several considerations.
 - Single year vs. multiple years of data
 - All routes vs. Only routes with observations
- Model specification
 - Poisson vs. Negative Binomial
 - Fixed effects vs. Mixed Effects
- Model Validation
 - Goodness of Fit
 - Predictiveness
 - Spatial Autocorrelation
 - Psuedo R-squared
 - **AUC/ROC for Logistic models**
- Deliverables
 - Maps, data, narratives ALL?