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. Executive Summary
Major Findings

1. Marshes from New Jersey to Virginia support greater abundances of Species of Greatest
Conservation Need (SGCN) relative to the smaller marshes of New England and New
York, including Clapper Rail, Willet, American Black Duck, Saltmarsh Sparrow, and
Seaside Sparrow.

2. The density of some species (e.g. Saltmarsh and Seaside sparrows) is highest in the
north, however, and marshes in New York and New England support approximately 30%
of the global breeding population of Saltmarsh Sparrows.

3. Black Rail detections were too infrequent (10 detections over two years) to estimate
abundance or trends, despite call-back surveys across USFWS Region 5, indicating a
complete collapse of these Mid-Atlantic populations.

4. On average, tidal-marsh specialists have declined across New England and USFWS
Region 5 as a whole over the last two decades.

5. For Saltmarsh Sparrows, these declines are most severe on marshes with tidal
restrictions, although the trend remains across all tidal marsh specialists even when
excluding Saltmarsh Sparrow.

6. Within Connecticut (the only state where historical nesting data were available), nest
density is also declining for Saltmarsh Sparrows, Seaside Sparrows, and Clapper Rail,
with Saltmarsh Sparrows showing the strongest decline. The declines can be explained
by increases in rates of nest flooding since 2002.

7. Seasonal reproductive success (incorporating nest success and renesting rates) for
Seaside Sparrows declined from south to north within USFWS Region 5. Nelson's
Sparrow reproductive success exhibited no large-scale patterns across the survey area
but was considerably higher at the single well-sampled upriver marsh compared to
multiple coastal sites.

8. Saltmarsh Sparrow seasonal reproductive success was highly variable across the range
and is driven more strongly by local rather than regional patterns. Nest flooding was
locally variable across the range, but predation rates increased to the south.

9. Population growth rates for Saltmarsh Sparrow are consistently negative across much of
the species range. Current projections suggest a >90% reduction in population within 50
years, putting the species on a clear trajectory towards extinction. Demographic models
also suggest that Nelson’s and Seaside Sparrows will experience range contractions over
this time frame.

Detailed Summary

Tidal marshes form the dominant transition zone between terrestrial and marine communities
in eastern North America. These marshes are important globally as reservoirs of biodiversity,
with 56% of the endemic saltmarsh species or subspecies in the world. Tidal marshes also
perform many key services to humans, absorbing the energy of ocean storms, improving water
quality, and providing nutrients and nurseries for marine food webs. North America, therefore,
plays a critical role in the conservation of the ecosystem’s global flora and fauna, while coastal
towns and cities benefit directly from their local marshes. The proximity to coastal communities,
however, has contributed to a suite of impacts that have degraded ecosystem quality. There are
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no pristine tidal marshes left in the United States. Sea-level rise, also is responsible for a large
and emerging threat to the persistence of the remaining ecosystem.

Endemic bird taxa are at extreme risk to these changes, and the combination of habitat loss and
reported reductions in vital rates from flooding suggests that further sea-level increases could
push bird populations to a threshold beyond which rapid declines are likely. The Saltmarsh
Sparrow (Ammodramus caudacutus) is listed as globally Vulnerable by the International Union
for Conservation of Nature, and both King (Rallus elegans) and Black rail (Laterallus jamaicensis)
are listed as Near Threatened. Overall, thirteen species on the North American Bird
Conservation Initiative’s (NABCI) Watch List regularly use tidal marshes, and 26 bird species that
breed in or use these habitats during summer are listed as Species of Greatest Conservation
Need (SGCN) by states across the Northeast US.

This project focuses on the state of tidal marsh bird populations in the coastal zone from Virginia
to Maine, encompassing habitat in ten states. In this report, we detail work conducted to
address the needs of each state as expressed in State Wildlife Action Plans (SWAPs). We
estimated the current abundances of 23 wetland bird species using the tidal marsh in 1,780
survey locations from Maine to Virginia and estimated historical change in these populations
since 1994 using data from 3,064 survey locations over the same region. Further, we studied
the reproduction of five focal endemics (Saltmarsh Sparrow, Nelson’s Sparrow — A. nelsoni,
Seaside Sparrow — A. maritimus, Clapper Rail — Rallus crepitans, and Willet — Tringa
semipalmata) and modeled adult survival and population viability for the three songbirds using
data from 23 demographic plots spread across seven states (ME, NH, MA, RI, CT, NY, NJ). We
then used this information to pilot two different approaches for prioritizing conservation actions
at a state level.

Current Species Abundances — We used a Bayesian network approach to predict distribution
and population estimates for our five focal species (numbers reported in the body of the
report). Our results show that overall, large expansive marsh complexes from Coastal New
Jersey to Eastern Chesapeake Bay supported the majority of Clapper Rail, Willet, Saltmarsh
Sparrow, and Seaside Sparrow individuals. Species were most common in Long Island
(Saltmarsh and Seaside sparrows), Delaware Bay (Clapper Rail), and Coastal Delmarva (Willet).
New Jersey supported the greatest abundance among all of the states for three species (Willet,
Saltmarsh Sparrow, and Seaside Sparrow), and Virginia supported half of the region’s Clapper
Rails. Nelson’s Sparrows were distributed from Cape Ann, Massachusetts north into Maine, but
occurred at the greatest density and abundance in Coastal Maine. Spring migrants were
detected further south; however, the region from Cape Ann to Casco Bay, Maine supported 30%
of the population, indicating that patches at range peripheries can support substantial local
populations.

Generally, the marshes of more southern states (NJ, DE, MD, and VA) in the region, which
contain larger expanses of tidal marsh, supported greater abundances of SGCN individuals than
those of northern states (NY, CT, RI, MA, NH, and ME). American Black Duck (Anas rubripes),
Great Blue Heron (Ardea herodias), Glossy lbis (Plegadis falcinellus), Great Egret (Ardea alba),
Little Blue Heron (Egretta ceaerulea), Least Bittern (Ixobrychus exilis), Forster’s Tern (Sterna
forsteri), Laughing Gull (Leucophaeus atricilla), and Swamp Sparrow (Melospiza georgiana) had
their greatest abundances in states from New Jersey south. Black-crowned (Nycticorax
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nycticorax) and Yellow-crowned night-herons (Nyctanassa violacea) had their greatest
abundances in New York and New Jersey. Common Tern (S. hirundo) was most abundant in the
marshes of New York, New Jersey, Massachusetts, and Virginia. Notably, Virginia tidal marshes
support the greatest abundance of Virginia Rail, suggesting that there may be a hitherto
undescribed endemic tidal marsh population in this region. New York supported more than 50%
of one species’ tidal marsh population (Black-crowned Night-Heron) as well as a large proportion
of Common Terns; New Jersey supported more than 50% of two species’ tidal marsh
populations (Great Egret and Yellow-crowned Night-Heron) and large proportions of the
Common Terns, Laughing Gulls, Little Blue Herons, Marsh Wrens (Cistothorus palustris), Snowy
Egrets (Egretta thula), Tricolored Herons (Egretta tricolor), and Willow Flycatchers (Empidonax
traillii) that use coastal marshes; Delaware marshes supported large populations of Common
Yellowthroat (Geothlypis trichas), Great Blue Heron and Willow Flycatcher; Maryland supported
more than 50% of the coastal marsh populations of five species (American Black Duck, Glossy
Ibis, Least Bittern, Swamp Sparrow, and Virginia Rail) and large numbers of Common
Yellowthroat, Forster’s Tern, Great Blue Heron, Marsh Wren, and Snowy Egret; Virginia marshes
supported large populations of Forster’s Tern, Laughing Gull, Little Blue Heron, and Tricolored
Heron. Overall SGCN species richness ranged from 14 in New Hampshire to 25 in New Jersey.

Overall, our findings highlight the importance of expansive marshes to tidal marsh bird
populations and our ability to maintain these areas as viable habitats will likely determine the
future persistence of these species in the Northeast. Despite their smaller extent, however,
marshes on Long Island and northward also are important for the tidal marsh birds considered
most at risk from accelerated sea level rise. For instance, we estimated that almost 30% (18,000
individuals) of the global population of Saltmarsh Sparrows occurs in New England and Long
Island marshes. While marshes north of Long Island have fewer opportunities for marsh
transgression than those farther south, parts of this region are experiencing lower rates of sea
level rise than the Mid-Atlantic and may become a stronghold of Saltmarsh Sparrow in the
future.

Historical Changes — We found significant changes for six of the 19 SGCN for which we modeled
abundance over our 18-year period of observation (1994 — 2012). Generalist species that use
other habitats in additional to salt marshes, tended to fare better. Clapper Rail, Nelson’s
Sparrow, and Saltmarsh Sparrow — all tidal marsh specialist species — showed significant
declines, and the two sparrow species showed similar rates of decline within our more robust
New England trend analysis. Three species (Great Egret, Glossy Ibis, Common Yellowthroat)
showed consistent increases over the period, while populations of the remaining 13 species
appeared stable. Saltmarsh Sparrows in particular showed consistent declines at multiple
spatial scales: We detected significant declines in three of the four long-term refuge datasets
(Rachel Carson, Parker River, and Bombay Hook NWRs), in two of the five New England states
(Maine and Connecticut), in two of the three New England subregions (Coastal Maine and Cape
Cod to Casco Bay), and across New England and USFWS Region 5 as a whole. We detected no
population increases at any scale. Across the entire region we estimate that Saltmarsh Sparrows
experienced the greatest annual population change for any of our five focal species, a decline at
the rate of 9.0% annually.
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Marshes with tidal restrictions are experiencing steeper declines both for Saltmarsh Sparrows
and across our five focal species as a group. In fact, tidal restrictions supersede sea-level rise as
the dominant driver of community decline. On average, tidal-marsh specialists are declining in
locations that are tidally restricted, but are maintaining their populations in marshes that have
no road crossings affecting tidal flow. We suggest that restrictions change the hydrology of
marshes and prevent the maintenance of marsh elevation in the face of sea level rise.

Reproduction — Across our 23 study plots from 2011-2013, we found 1,644 nests (45 Clapper
Rail, 142 Willet, 80 Nelson’s Sparrow, 349 Seaside Sparrow, 1,022 Saltmarsh Sparrow, and 6
American Black Duck). Mean daily nest success probabilities (+ SE) were as follows: Clapper Rail
=0.99 £ 0.01; Willet =0.94 + 0.01; Nelson’s Sparrow = 0.93 + 0.01; Seaside Sparrow = 0.93
0.01; Saltmarsh Sparrow = 0.93 £ 0.01. Among the three sparrow species, where renesting is
common, we estimated seasonal fecundity. For Nelson’s Sparrows, fecundity was highest at the
New Hampshire sites (mean + 95% Cl = 3.34  0.34 offspring per female per season), which are
farther upriver than the Maine sites (1.55 + 0.39 offspring per female per season) and may
experience less flooding as a result. For Seaside Sparrows, fecundity was highest in New Jersey
(2.18 + 0.33 offspring per female per season) and declined to the north. Saltmarsh Sparrow
fecundity was highest in New Hampshire (1.89 + 0.25 offspring per female per season), although
fecundity was highly variable across sites and years and is likely driven by local processes. While
nest success was similar (but variable) across the Saltmarsh Sparrow breeding range, nests were
more likely to fail by predation in the south and flooding represented a larger proportion of
failure in the north. In Connecticut, where historical nesting studies have been conducted over
the last decade, nesting densities are declining for Saltmarsh Sparrow, Seaside Sparrow, and
Clapper Rail, with Saltmarsh Sparrows showing the strongest decline.

Adult Songbird Survival = We conducted standardized mist-netting of tidal marsh specialist
songbirds at 21 of our 23 reproductive plots in major marsh complexes from New Jersey to
Maine from 2011 — 2014. Mark-recapture data from systematic surveys were augmented by
targeted mist-netting of adult birds at nests at all study sites and by mist-netting birds during
spring and fall migration at our Connecticut sites. We estimated apparent annual survival of
adults using the complete-data likelihood of Cormack-Jolly-Seber (CJS) models. Female
Saltmarsh Sparrow survival at an average site was 0.46 (credible interval: 0.41, 0.51); male
survival was 0.49 (0.44, 0.55). Apparent survival for female (0.47; 0.37, 0.59) and male (0.43;
0.26, 0.59) Nelson’s Sparrows were not different from the equivalent rates for Saltmarsh
Sparrows. Apparent survival of Seaside Sparrows was 0.52 (0.37, 0.71) for females and 0.57
(0.44, 0.75) for males. Survival rates for all three species were similar across sites and showed
no clear evidence of latitudinal or other geographic patterns.

Population Viability — For Saltmarsh, Seaside, and Nelson’s sparrows, we created individual-
based population models that propagate uncertainty from both parameter estimation and
demographic stochasticity. We estimate that, based on vital rates over the course of this study,
mean growth rates for Saltmarsh Sparrows over the next five years will be negative at all of our
demographic plots. Assuming that our demographic plots are representative of the species
range, 5% of marshes at most will have positive growth over the next 50 years. Global
extinction risk for Saltmarsh Sparrow over the next 50 years is less than 5%, although the global
population is expected to decline by 92% (95% confidence interval: 7 — 100%) during this period,
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putting the species on a clear trajectory towards extinction. If individual states are to ensure a
50% chance of avoiding Saltmarsh Sparrow extirpation over the next 50 years, then they will
need to ensure a population that includes at least 7,500 females. Of the states for which we
have demographic data, only New Jersey currently has a population this large, and most states
will need to work with neighboring states to support ensure viable populations.

Our estimates suggest that Maine’s Nelson’s Sparrow population is likely not viable in the long-
term without immigration from other regions (80% chance of extinction within 50 years). For
New Hampshire, extinction risk is less than 50% if the starting female population size is at least
100 individuals. This higher persistence probability for New Hampshire arises because of higher
estimated fecundity than in Maine (although we measured reproduction at only two sites in
New Hampshire and six in Maine).

We found minimal risk of extinction over the next 50 years for Seaside Sparrows south of
Connecticut, but we estimate that there is an approximately 50% chance of being extirpated
from Connecticut over the next 50 years. Although Seaside Sparrows are rare in states farther
north (thus prohibiting explicit PVA), it is likely that their small populations would also go
extinct. In order to reduce the extinction risk in Connecticut to less than 50%, the starting
population size would need to be increased to 5,000 females, considerably higher than our
current estimated population in southern New England. For New York and New Jersey,
extinction risk is less than 25% if the female population size remains above 100 individuals.

Decision Support Tools for Conservation — We compared different methods of conservation
planning in two states (Delaware and Connecticut). In Delaware we 1) determined the tidal
marsh areas in Delaware that support the greatest density of breeding tidal marsh obligate
birds, 2) identified the extent of protected and unprotected saltmarsh habitat in a focal area of
the state, 3) identified and compared benefit-targeting and optimization-selected parcel
portfolios that maximize bird density on unprotected marsh habitat in three budget scenarios,
and 4) determined the effect of three sea level rise scenarios on the proportion of land cover
types within the optimized parcels. The optimization method selected more parcels, protected
more marsh area, and conserved more tidal marsh obligate birds, than the more traditional
benefit targeting method. When benefit targeting and optimization protected the same number
of birds, optimization provided a cost savings of $1.75M-$2.9M. Given the increasing rates of
inundation from sea level rise, the potential future benefits of adjacent agricultural lands to tidal
marsh birds through marsh migration should be incorporated into optimization models for more
effective conservation planning and spending of limited financial resources.

In Connecticut a meeting of most of the major organizations involved with bird conservation
together developed a set of prototype Decision Support Tools (DST) based on a systematic
planning process (Margules and Pressey 2000). Because land prices in Connecticut are high, a
successful implementation strategy will hinge on achieving efficiency in decision-making that
will give the greatest conservation benefit per dollar spent. A challenge to achieving this
efficiency is that land prices change with markets over time, and are not predictable with
complete certainty. Therefore, the DST we developed explicitly accounts for the uncertainty of
how much it will cost to protect land, providing practitioners with the decision-making
framework to make low-risk, high-efficiency decisions. The approach we have developed is
purposefully very flexible, easy to calculate and understand, and based on the latest research in



conservation biology and decision theory. We have deliberately applied the approach to a
simple example with a small set of conservation targets and a single conservation action in order
to illustrate the method as a “proof-of-concept”. The approach can easily be expanded or
applied to other systems by including a larger set of targets and considering a wider range of
conservation actions (e.g., restoration), or even explicitly trading-off the costs and benefits of
alternative conservation actions. Expanding this DST to address these issues statewide is the
focus of an ongoing follow-up study.

Conclusions — Systematic and standardized study of tidal marshes across the northeastern
United States indicates that states will need to work together to ensure the viability of tidal
marsh bird populations into the future. While states south of New York possess the most
extensive marshes and the largest concentrations of SGCN, New York and New England also
possess significant portions of tidal marsh taxa, particularly the imperiled Saltmarsh Sparrow.
Tidal marsh specialists are declining across the region, and Saltmarsh Sparrows in particular
show multiple, independent pieces of evidence for severe decline and elevated extinction risk.
Marsh alteration in the form of tidal restriction is strongly correlated with decline and restoring
and augmenting sediment transport should be a high priority for maintaining local marshes and
the bird populations they support. Rates of reproduction and survival for tidal marsh taxa
appear highly variable across the Northeast, suggesting that local processes drive viability and
that local actions may successfully lower extirpation risk. We present two approaches to
implement conservation actions systematically and efficiently using this scientific information
and suggest that further experimentation in engaging stakeholders is necessary to guide local
actions. What is clearest is that coordination is necessary over regional scales to maintain tidal
marsh bird populations into the next century.
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Il. Introduction

Tidal marshes are ecotonal ecosystems and form the dominant transition zone between terrestrial and
marine communities in eastern North America (Reinold 1977; Mitsch and Gosselink 1993). This pattern
is not reflected on other continents, and the total area of tidal marsh worldwide is estimated to be less
than 45,000 km?, with over one-third of these marshes found along the US Atlantic and Gulf coasts
(Greenberg 2006; Greenberg et al. 2006).

The tidal marshes of eastern North America also possess higher levels of vertebrate biodiversity and
endemism than the tidal marshes of any other region worldwide, with 83 breeding vertebrate species,
22% of which occur only in tidal marshes or possess subspecies found only in tidal marshes (Greenberg
and Maldonado 2006). Eastern North American tidal marshes are home to 56% of the endemic
saltmarsh species or subspecies in the world. North America, therefore, plays a critical role in the
conservation of the ecosystem’s global flora and fauna. Tidal marsh as an ecosystem is to a large extent
a North American resource, and therefore, its conservation is primarily a North American responsibility.

Tidal marshes also perform many key services to humans (Barbier et al. 2011). They absorb the energy
of ocean storms, which helps to preserve shorelines (Daiber 1986), improve water quality in bays and
estuaries (Heinle and Flemer 1976; Valiela and Teal 1979; Dame et al. 1992; Valiela et al. 2000; Koch and
Gobler 2009), provide nutrients to marine food webs (Odum 1969), and supply critical habitat for both
the reproduction of many ocean species (Boesch and Turner 1984) and for non-breeding use by an
entire community of migratory birds appreciated by birders and sportsmen alike (Master 1992, Erwin
1996, Brown et al. 2002).

Because of their restricted, linear distribution along the shoreline, tidal marshes compete for space with
humans more than many other habitats. More than half the people in the USA (Alaska excluded) live in
coastal counties, even though these counties constitute only ~17% of the land; in the Northeastern USA,
77% of people live in coastal counties (Crossett et al. 2004). Such development has contributed to the
loss of approximately half of US coastal wetlands (Tiner 1984; Dahl 1990). These losses are exacerbated
by the small area that tidal marshes occupied prior to modern human development and are linked to
the marshes’ ability to support endemic species at state and regional scales (Benoit and Askins 2002;
Greenberg and Maldonado 2006).

As an ecotonal system, the health and integrity of the tidal marsh are driven by both terrestrial and
marine inputs. This leaves the ecosystem open not only to outright loss, but also to the severe
degradation of remaining habitat. Along the highly developed US coastlines, tidal marshes are found at
the mouths of some of the country’s most human-impacted drainages (e.g. the Susquehanna, Delaware,
Hudson, and Connecticut Rivers) and along the shipping routes of some of the busiest ports (e.g.
Norfolk, Baltimore, and New York). This overlap with human use has contributed to a suite of impacts
that have degraded ecosystem quality, including nitrification (Bertness et al. 2002), contamination by
heavy metals (Shriver et al. 2006), spread of invasive plants (Benoit and Askins 1999), increases in nest
predators (Greenberg 2006), widespread ditching and other hydrologic alterations for insect
management (Daiber 1986; Erwin et al. 1994; Wolfe 1996), and increases in salinity due to the retention
of river flows for human use (Sipple 1971). There are no pristine tidal marshes left in the region. By the
late 20th century, 90% of northeastern salt marshes had been ditched to some degree (Daiber 1986);
50-75% of the salt marsh in the Chesapeake and Delaware Bays were functionally lost (Stevenson et al.



2002); and the entire Massachusetts Bay estuary system had poor sediment toxicity (Massachusetts
Executive Office of Environmental Affairs 1992).

The coastal placement of tidal marshes is responsible for another large and emerging threat to the
ecosystem’s persistence, sea-level rise. Over the last century, average global sea level has risen by ~1.5
mm/year (IPCC 2013). Since 1993, satellite and tide gauge estimates suggest a higher rate of ~3.2
mm/yr, and accelerated increases are projected for the future. Even under optimistic scenarios, half a
meter of sea-level rise is expected by the end of this century (Schaeffer et al. 2012, IPCC 2013). Locally,
rates of sea-level rise vary considerably. For example, along the US Atlantic Coast, rates of sea-level rise
from Cape Hatteras to Boston are accelerating faster than the global average (Sallenger et al. 2012), and
it has been suggested that anomalously large short-term increases in sea level, such as occurred in the
northeastern US during 2009-10, might become more frequent (Goddard et al. 2015). Relative sea-level
rise has been linked to altered vegetation in marshes in the northeast (Warren and Niering 1993) and
caused interior marsh loss across the seaboard: Four of five well-monitored Spartina marshes of high
conservation value from Virginia to New England have lost 10-20% of their area due to salt-water
intrusion in the last 50 years (0.2-0.7% per year: Erwin et al. 2004). Projected acceleration of sea-level
rise is expected to result in annual tidal marsh losses of 0.5-1.5% (Greenberg 2006).

Climate change also may impact the unique bird assemblage of the tidal marsh by increasing the
frequency (Resio and Hayden 1975; Hayden 1981) and intensity (Emanuel 1987; Knutson 1998; Bacon
and Carter 1991) of storm surges. Flooding can be a strong determinant of bird reproduction in the tidal
marsh (Gjerdrum et al. 2005, 2008a; Greenberg et al. 2006, Bayard and Elphick 2011), and both sea-level
rise and storm surge increases are likely to raise this threat for many marsh specialists, most of which
are near-ground nesters. The combination of habitat loss and reduced vital rates, suggests that small
sea-level increases could push populations to a threshold beyond which rapid declines are likely. For
example, early efforts to model the effect of such losses on Seaside Sparrows in Connecticut suggested
that even moderate sea-level rise (0.5 m) could make persistence unlikely (Shriver and Gibbs 2004).

Preventing species from entering an “extinction vortex” (Gilpin and Soulé 1986) that would warrant
listing under the US Endangered Species Act requires that we quantify species vulnerability, identify the
thresholds for serious declines and the time frame on which they will be reached, and investigate
potential solutions that would preempt the need for drastic, and costly, remedies. Many organizations
recognize the threats to birds that use northeastern USA tidal marshes. Saltmarsh Sparrow
Ammodramus caudacutus is listed as globally Vulernable by the International Union for Conservation of
Nature (BirdLife International 2015), and both King, Rallus elegans, and Black Rail, Laterallus
jamaicensis, are listed as Near Threatened; thirteen species on the North American Bird Conservation
Initiative’s (NABCI) Watch List regularly use tidal marshes (Rosenberg et al. 2014); and 26 bird species
that use these habitats during summer are listed as SGCN by states in USFWS Region 5 (Table 1).

This project focuses on the coastal zone from Virginia to Maine, encompassing habitat in ten states.
Each state has identified tidal marshes as key habitat for SGCN species in their State Wildlife Action
Plans (SWAPs). Subsequently, states have identified priority actions in their SWAPs to address
conservation needs. Ranging from simple inventories to detailed demographic evaluations, northeast
coastal states have independently identified conservation needs in tidal marshes as a priority and have
outlined explicit actions to address them. In this report we detail work conducted to address many of
these needs.



Table 1. Species of Greatest Conservation Need (SGCN) in USFWS Region 5 that we set out to measure in this study. Focal species for which
we collected reproductive and survey data are in boldface text; those for which only survey data were gathered are in plain text; and those that we
surveyed using playback of recorded vocalizations are underlined. Also noted is (a) whether a species was considered Threatened (T),
Endangered (E), or of Special Concern (SC) within each state at the start of the project, (b) which states considered a species to be an SGCN at
the start of the project, and (c) whether a species is currently on the International Union for Conservation of Nature Red List (“lUCN”) or North
American Bird Conservation Initiative Watch List (“NABCI”).

Species

Listed as T/E/SC

Listed as SGCN

International Listing

Least Bittern
Great Blue Heron
Great Egret

Snowy Egret

Tricolored Heron

Little Blue Heron
Black-crowned Night-Heron
Yellow-crowned Night-Heron
Glossy Ibis

American Black Duck
Clapper Rail

Virginia Rail

Black Rail

Black-necked Stilt

Willet

Laughing Gull

Common Tern

Forster's Tern

Willow Flycatcher

Sedge Wren

Marsh Wren

Common Yellowthroat
Nelson's Sparrow
Saltmarsh Sparrow
Seaside Sparrow

Coastal Plain Swamp Sparrow

ME, NH, MA, RI, CT, NY, NJ, MD
RI, NJ

RI, CT, VA

RI, CT, NJ

NJ, VA

CT,NJ

ME, RI, NJ, DE

RI, CT, NJ, DE, VA

RI, CT, VA

RI

CT, NY, NJ, DE, MD, VA
NH, RI

ME

ME, NH, MA, CT, NY, NJ, DE
DE, VA

ME, NH, MA, CT, NY, NJ, DE, MD, VA

ME, NH

ME, NH, CT, VA
NH, RI, CT, NY
MD

ME, NH, MA, RI, CT, NY, NJ, DE, MD, VA
ME, NH, RI, CT, NJ, DE, MD

ME, RI, CT, NY, NJ, DE, MD, VA

ME, MA, RI, CT, NY, NJ, DE, MD

ME, NY, NJ, DE, MD, VA

ME, RI, CT, NY, NJ, DE, MD, VA

ME, MA, RI, CT, NY, NJ, DE, MD, VA

RI, CT, NY, NJ, DE, MD, VA

ME, RI, CT, NY, NJ, DE, MD, VA

ME, NH, MA, RI, CT, NY, NJ, DE, MD, VA
RI, CT, NJ, VA

ME, CT, NJ, VA

CT, NY, NJ, DE, MD, VA

DE

ME, NH, RI, NY, NJ, DE, MD

ME, MA, NY, MD

ME, NH, MA, RI, CT, NY, NJ, DE, MD, VA
NY, NJ, DE, MD, VA

ME, RI, CT, NY, NJ, DE, MD, VA

ME, NH, MA, CT, NY, NJ, DE, MD, VA
ME, RI, CT, NJ, DE, MD, VA

ME, RI

ME, NH

ME, NH, MA, RI, CT, NY, NJ, DE, MD, VA
NH, MA, RI, CT, NY, NJ, DE, MD, VA

MD

IUCN, NABCI

NABCI

IUCN, NABCI




lll. Project Objectives

To identify critical areas for tidal marsh bird conservation and identify which marshes and species in the
Northeast/Mid-Atlantic are most sensitive to land and seascape change, we had the following
objectives.

Objective 1: To estimate the distribution and relative geographic abundance of bird species breeding in
the tidal high marsh from Maine to Virginia using a combination of passive and broadcast surveys. Our
protocol and sampling framework focused on the distribution and abundance of five diurnal species that
nest primarily in the high marsh zone:

Saltmarsh Sparrow, Ammodramus caudacutus (formerly Saltmarsh Sharp-tailed Sparrow)
Nelson’s Sparrow, Ammodramus nelsoni (formerly Nelson’s Sharp-tailed Sparrow)
Seaside Sparrow, Ammodramus maritimus

Willet, Tringa semipalmata

Clapper Rail, Rallus crepitans

T oo ow

We also surveyed for tidal marsh species that breed in low abundance in this region, although our
diurnal, point-count approach may underestimate local populations. The species in this group are of
high conservation concern across their entire range. Although our local estimates may be biased low,
our data will help to assess the relative importance of breeding areas within the coastal portion of US
Fish and Wildlife Service (USFWS) Region 5, information that is crucial for their long-term conservation.
These species are:

f. Black Rail, Laterallus jamaicensis

g. American Black Duck, Anas rupribes

For a third group of species that breed only in the upland fringe of the high marsh or that, in USFWS
Region 5, use marsh primarily for foraging, we provide regional information on the degree of tidal marsh
use. This information is critical to understanding how tidal marsh loss and degradation may impact
species with more general habitat associations. These species are:

h. Wading birds (Least Bittern, Ixobrychus exilis; Great Egret, Ardea alba; Snowy Egret, Egretta
thula; Little Blue Heron, Egretta caerulea; Great Blue Heron, Ardea herodias; Tricolored Heron,
Egretta tricolor; Black-crowned Night-Heron, Nycticorax nycticorax; Yellow-crowned Night
Heron, Nyctanassa violacea; Glossy l|bis, Plegadis falcinellus)

Virginia Rail, Rallus limicola

Black-necked Stilt, Himantopus mexicanus

Laughing Gull, Leucophaeus atricilla

Common (Sterna hirundo) and Forster’s (Sterna forsteri) Terns

m. Marsh fringe songbirds (Willow Flycatcher, Empidonax traillii; Marsh Wren, Cistothorus
palustris; Sedge Wren, Cistothorus platensis; Yellow Warbler, Setophaga petechia; Common

Yellowthroat, Geothlypis trichas; Coastal Plain Swamp Sparrow, Melospiza georgiana nigrescens;

Red-winged Blackbird, Agelaius phoeniceus)

—_— = -

Objective 2: To compile information on hydrologic and other manipulations, as available, to examine the
current bird community in light of past management.



Objective 3: To conduct thorough nest-searches to estimate the high marsh nest abundance, density,
and productivity for species a — f at three intensive study sites (in Maine, Connecticut and New Jersey),
chosen to represent the breadth of conditions across USFWS Region 5. Note that multiple
“demographic” plots were studied at each site, and that additional sites were added through
collaborations with colleagues such that we ultimately collected reproductive data from 23 demographic
plots spread across seven states.

Objective 4: To estimate adult survival rates for and Nelson’s sparrows at our northern demographic
(Maine sites) and for and Seaside sparrows at our southern (Connecticut and New Jersey) demographic
sites. Note that, through collaborations with colleagues, we ultimataely collected survival data from 21
demographic plots spread across seven states.

Objective 5: To parameterize a species-specific, Markov-Chain, seasonal fecundity model (Program MC-
Nest, Bennett and Etterson 2007) using results from Objectives 3 & 4 and additional published
latitudinal trends in tidal flooding risk, clutch size, and breeding season length. This model will be used
to predict latitudinal variation in potential local population growth for species of tidal marsh sparrow.

Objective 6: To use data from Objectives 1, 3, 4, & 5 to model geographic trends in density (all species),
nest density/productivity (species a — g), and adult survival (species a — ¢) to determine where within
USWEFS Region 5 the greatest responsibility lies for conserving each species.

Objective 7: To conduct population viability analysis (PVA) at state and regional scales for all three focal
species for which we gathered detailed demographic data in order to model the sensitivity of these
species to state-scale landscape changes caused by sea-level rise.

Objective 8: To estimate change in relative abundance since the 1990s of all surveyed species for which
adequate data exist.

Objective 9: To estimate change in nesting density and productivity over the last decade for sites with
historical reproductive data.

Objective 10: To facilitate the transfer and use of research information for on-the-ground
implementation by establishing a working group of local, state, federal, and NGO stakeholders within
Connecticut to develop Decision Support Tools that address the conservation issues identified by this
project. Note that we also conducted a second pilot in Delaware, testing different approaches in the
two states and have used the results and feedback on these pilots to develop a unified approach that
can be used across the entire region.



IV. Distribution & Abundance

Methods
Study Area

We conducted this research in tidal marsh habitat from Maine to Virginia during the 2011-12 breeding
seasons (April-July; Fig. 1). Coastal marshes from the Canada-Maine border to Cape Cod, Massachusetts
on the Gulf of Maine are classified as Acadian coastal salt marsh (NatureServe ID: CES201.578; Comer et
al. 2003, Ferree and Anderson 2013). These polyhaline marshes are interspersed throughout the rocky
sections of the Gulf of Maine coast along the ocean shoreline and estuary mouths. Acadian coastal salt
marsh is dominated by graminoids Spartina patens and S. alterniflora, and includes patches of other

graminoids (e.g., Juncus balticus,
J. gerardii, and Puccinellia
maritima) and forbs (e.g.,
ue w'i Limonijum carolinianum and
Plantago maritima var.
_ ”{ juncoides). Acadian coastal salt
> - : I marshes typically occur as small
_‘J.‘" \ ) patches, but may be more
’ Vo L extensive where topography
wy - allows, although rarely as
e o extensive as tidal marshes
B elsewhere along the USA Atlantic
7~3 Subregion coast (Comer et al. 2003, Ferree
- . Ah B Coastal Maine and Anderson 2013). Northern
v Cpabod=oaste ey Atlantic Coastal Plain tidal salt
f Southern New England
marsh extends from Cape Cod,
o Long Island
P %, N Coastal New Jarsey Massachusetts, to the mouth of
% Delaware Bay the Chesapeake Bay, and
Gonsal Drimerty intermittently along the southern
™ - Eastern Chesapeake Bay f h G If f M .
sl B \Western Chesapeake Bay coast of the Gult o aine to
.e\ southern Maine (NatureServe ID:
NC 3

CES203.519; Comer et al. 2003,
Ferree and Anderson 2013). This
intertidal system occurs on the
bayside of barrier beaches and along the outer mouths of tidal rivers where saline to mesohaline
conditions are not strongly impacted by freshwater flow. Northern Atlantic Coastal Plain tidal salt
marshes also are dominated by graminoids S. patens and S. alterniflora, but tend to have more Distichlis

Figure 1 The sampling universe for surveys of tidal marsh birds
in the Northeast USA delineated into subregions.

spicata and Salicornia spp. than Acadian coastal salt marsh, as well as more developed upland borders
containing shrubs such as Iva frutescens, Baccharis halimifolia, and Juniperus virginiana with an
herbaceous layer of Panicum virgatum. Average patch size of Acadian coastal salt marsh is 2 ha and the
largest single patch is 337 ha, compared to 4 ha and 7,877 ha, respectively, for Northern Atlantic Coastal
Plain tidal salt marsh.



Sampling Design

Our sampling design followed the sample selection protocol recommendations developed by Johnson et
al. (2009) to monitor secretive marsh birds at regional and continental scales. We used a two-stage
cluster sampling design (Thompson 2012) with generalized random-tessellation stratified (GRTS)
sampling at each stage (Stevens and Olsen 1999, 2003, 2004) to distribute survey points. The GRTS
survey design emphasizes a spatially balanced sample distribution; a sample is dispersed such that the
spatial density pattern of the sample closely mimics the spatial density pattern of the environmental
resource (Stevens and Olsen 1999, 2003, 2004). The two-stage cluster design required a geographical
division of the study area and separate selection protocols for the two types of sampling units: primary
sampling units (PSUs; hexagons) and secondary sampling units (SSUs; survey points). We used a North
American continental hexagon grid (40 km? hexagons) to generate the PSU sampling universe
(www.tidalmarshbirds.org). We selected the subset of the continental grid that included all hexagons
located in the 10 Northeast U.S. coastal states that contained Estuarine Intertidal Emergent Wetland
(code ‘E2EM’; Cowardin et al. 1979) as designated by state wetland geospatial data from the National
Wetlands Inventory (NWI; Wilen and Bates 1995, U.S. Fish and Wildlife Service — National Wetlands
Inventory 2010). We compiled and processed the Estuarine Intertidal Emergent Wetland geospatial
features in ArcGIS ver. 9.3 (ESRI 2009) to develop a single spatial layer of salt marsh in the Northeast.
Northeast hexagons that contained salt marsh became the sampling universe for the selection of PSUs
(Fig. 1, Table 2). We did not divide the sampling universe further by wetland size (small and discrete or
large and extensive) or by accessibility, as proposed by Johnson et al. (2009), because the NWI layer we
used for the entire region digitizes very small polygons of tidal marsh that are effectively part of the
same larger marsh, and because we could not determine wetland accessibility prior to sampling.

We used the ‘spsurvey’ package (Kincaid and Olsen 2012) in the R statistical program (R Core Team
2014) to select hexagons and survey points. We used three sampling strata to select hexagons:
subregion, state lands, and federal lands (USFWS and National Park Service [NPS]). Subregion
boundaries were based on Conway and Droege (2006) and generally delineated by major
geomorphological features (e.g., Long Island, Delmarva Peninsula, Chesapeake Bay; Fig. 1, Table 2). We
randomly selected 25 hexagons as the core sample and 10 hexagons as oversample for the initial
hexagon selection within each subregion (GRTS selection). We selected oversample hexagons in the
event core sample hexagons could not be sampled owing to saltmarsh inaccessibility (e.g., denied
access, impassible terrain) or absence. Next, we randomly selected 25 hexagons that contained tidal
marsh on state lands in each subregion. Finally, we selected all hexagons that contained tidal marsh on
USFWS and NPS lands, because the two agencies conduct wildlife surveys and are likely to continue to
do so into the future. Our prioritization of hexagons with protected tidal marsh did not preclude
sampling private tidal marsh within the hexagons, but simply ensured that sampling would be permitted
at a reasonable number of sites across the study area. We used spatial data from the Protected Areas
Database (U.S. Geological Survey, Gap Analysis Program 2011) to determine the hexagons that
contained protected tidal marsh. We combined the federal lands hexagons with the GRTS-selected
hexagons (i.e., core and state hexagons) to create the sampling frame. We excluded hexagons that
contained less than 10 ha of marsh, although there was no lower limit on individual marsh size;
hexagons with less marsh can support fewer sampling points, potentially requiring excessive travel time
for few sampling locations.



Table 2. Subregions used for sampling stratification for surveys of tidal marsh birds, and summary statistics describing the sampling universe
(number of hexagons and marsh area [ha]) and sampled area (number of hexagons, marsh area [ha], and number of survey points). Subregion
boundaries were developed based on suggestions by Conway and Droege (2006; also see Fig. 1 for subregion map and state abbreviation
definitions). NA, not applicable.

Sampling universe Sampled area
Survey
Subregion State(s) Boundaries Hexagons Marsh area Hexagons Marsh area points
Coastal Maine ME Lubec, ME to north side Casco Bay, ME 208 6,223 43 2,573 244
) Casco Bay, ME to Cape Cod, MA (incl.
Cape Cod - Casco Bay ME/NH/MA north side U.S. Rt. 6) 113 20,472 44 10,826 340
South of Cape Cod, MA (incl. south side
Southern New England MA/RI/CT/NY U.S. Rt. 6) to Hudson River, NY 180 10,127 35 4,005 205
Long Island NY Long Island, NY 107 9,920 31 6,263 119
Coastal New Jersey NY/NJ Staten Island, NY; NJ Meadowlands to 109 50,354 43 32,977 293
Cape May, NJ (oceanside)
Delaware Bay NJ/DE Cape May, NJ (bayside) to Lewes, DE 88 59,956 23 24,444 153
(bayside)
Lewes, DE (oceanside) to Fisherman
Coastal Delmarva DE/MD/VA Island National Wildlife Refuge, VA 93 45,333 36 25,683 241
Eastern Chesapeake Bay ~ MD/VA Chesapeake Bay coast east of 212 78,337 22 28,272 185
Susquehanna River mouth
Western Chesapeake Bay! ~ MD/VA Chesapeake Bay coast west of 311 35,409 NA NA NA

Susquehanna River mouth

" Western Chesapeake Bay was included in the sampling universe, but not in the comprehensive survey.



We used ‘spsurvey’ to randomly locate 10 survey points and 10 oversample survey points in
marsh in each hexagon. To improve our ability to make comparisons with previous tidal marsh
surveys, we also acquired coordinates of existing tidal marsh bird survey points from historical
and ongoing marsh bird surveys (20 projects total; Table 3). We used ArcGIS to combine existing
point locations with the randomly generated points, only retaining random points 400 m or
more from established points. Point spacing followed the Standardized North American Marsh
Bird Monitoring Protocol’s recommendation of a minimum distance of 400 m between survey
points (Conway 2011). Once the previously established and new, randomly selected points were
identified, we ground-truthed all sampling points, prioritizing established points that had
historical survey data. We ground-truthed the established points first (if the hexagon possessed
them) and then the randomly located survey points followed by the oversample points until we
had identified up to 10 survey points in accessible, appropriate saltmarsh habitat in each
selected hexagon. Survey points consisted of a mix of wetland edge and marsh interior
locations, and were accessed by foot, vehicle, and non-motorized or motorized boats.

Defining Saltmarsh Patches

We delineated habitat patches to assess species abundance within discrete, biologically relevant
spatial areas and to allow for comparisons in abundance patterns across the landscape. We
used the Estuarine Intertidal Emergent Wetland spatial layer developed in the survey sampling
design to define saltmarsh habitat patches. We used ArcGIS ver. 9.3 (ESRI 2014) to create a 50
m buffer around the polygon features. Polygons with buffers that intersected were considered
the same patch based on home range size and movement estimates for Nelson’s and Saltmarsh
sparrows (Shriver et al. 2010). For each defined patch we recorded the state (e.g., Maine, New
Hampshire), subregion (e.g., Coastal Maine, Cape Cod to Casco Bay), longitude, latitude, and
area.

Bird Sampling

We used the North American Marsh Bird Monitoring Protocol (Conway 2011) to estimate the
distribution and abundance of tidal marsh birds within our study region. At all survey points
during the 2011-12 breeding seasons, we conducted 5-minute passive point-counts divided into
1-minute intervals followed immediately by a sequence of 30-second marsh bird broadcasts
couple with 30-seconds of silence (Conway 2011). We selected call-broadcast species based on
the species thought to breed in marshes in each subregion and from additional
recommendations by federal and state wildlife biologists. A single observer conducted surveys
in the morning from 30 minutes before sunrise to approximately 1100 hours and visited each
sampling point 2 - 3 times from April 15 to July 31. We did not survey during high winds,
sustained rain, or heavy fog. During each survey we estimated the number of individuals for
each species detected in three distance categories: 0-50 m, 50-100 m, and >100 m. To
standardize the sampling procedure across the entire region, we used detections of marsh birds
from the five-minute passive period for all following analyses. We limited analyses to records
from the 0—-50 m distance band to reduce measurement error in the count data (e.g., difficulty
estimating far distances from auditory cues and species misidentification as distance from the
observer increases; Simons et al. 2009) and to keep analysis methods consistent across species.



Table 3. Historical and ongoing studies with existing marsh bird survey points; studies are listed

by organization type, then from north to south.

Organization

Historical study

State(s)

surveyed Resurveyed!

Academic

State
Government

Federal
Government

Non-
Governmental

University of Connecticut

State University of New York, College of Environmental
Science and Forestry

Maine Department of Inland Fisheries and Wildlife

New Jersey Division of Fish and Wildlife (Rail surveys)
New Jersey Division of Fish and Wildlife (Saltmarsh birds)

Delaware Department of Natural Resources and
Environmental Control

Maryland Department of Natural Resources

U.S. Fish and Wildlife Service (Salt marsh integrity project
pilot study)

Rachel Carson National Wildlife Refuge
Parker River National Wildlife Refuge
Monomoy National Wildlife Refuge

Bombay Hook National Wildlife Refuge
Smithsonian Environmental Research Center

Smithsonian Migratory Bird Center

New Hampshire Audubon (Hampton)

Massachusetts Audubon

New Jersey Audubon (Gateway)
New Jersey Audubon (Raritan)
New Jersey Audubon (Meadow)

New Jersey Audubon (Peters)

CT

NH, MA, RI,
CT

ME

NJ

NJ

DE

MD

ME, MA, R,
CT, NY, NJ,
DE, VA
ME
MA
MA
DE
VA

DE

NH

MA
NJ
NJ
NJ

NJ

Y

< z < < =< <

<

< < z =< <

'Y indicates that we resurveyed historical points in 2011 and/or 2012, and an ‘N’ indicates that no points

were resurveyed.
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Estimating Distribution and Abundance

We estimated the distribution based on the percent of survey points where a given species was
detected on at least one visit. We estimated species abundance within each surveyed patch using the
‘multinomPois’ function (Royle 2004) in the ‘unmarked’ package (Fiske and Chandler 2011) in the R
statistical program (R Core Team 2014). We used the time-of-detection method to account for species
detection probability as a function of survey visit to control for seasonal differences in detection rates
(Farnsworth et al. 2002). We took two approaches for estimating state and regional population totals
(see below). For SGCN species (Table 1), we used the abundance estimates within surveyed patches and
estimated a total based on the density of the species and the amount of marsh habitat in the state or
region. For focal species (Clapper Rail, Willet, Nelson’s, , and Seaside sparrows), we used a Bayesian
network (BN) modeling framework (Koller and Friedman, 2009) to predict the probability of species
presence and density in marsh habitat patches. We used the regional sampling effort to: (1) predict
focal species distribution and abundance and (2) estimate population sizes at state and subregional
scales. We used our occurrence and density estimates for sampled patches (Wiest et al. in press) to
develop BNs for each focal species independently and used the same model development, performance,
and validation approaches to be consistent across species. The resulting models provide spatially
explicit, geographical predictions of species distribution and abundance that can be used for population
monitoring and tidal marsh bird conservation planning.

Bayes Net Model Covariates

Saltmarsh Patches - We defined saltmarsh habitat patches to model focal species distribution and
abundance (Wiest 2015). We recorded 22 covariates at four spatial scales for each patch in five
categories: location and dimension, land use and land cover, geomorphic setting, sea level trend, and
human disturbance (Table 4). We chose patch features that are known to influence focal species
distribution and abundance and can be obtained from remote-sensing data for the entire Northeast.
We used ArcGlIS ver. 9.3 (ESRI, 2014) for all geospatial calculations unless stated otherwise. We
recorded patch-location covariates: state (e.g., Massachusetts, Rhode Island), subregion (e.g., Cape Cod
to Casco Bay, Southern New England), centroid coordinates (longitude and latitude), and patch area and
perimeter length during patch development (Wiest et al. in press).

Land use and land cover - We calculated the proportion of high marsh in a patch using a raster file
developed by Correll et al. (unpublished data). The raster quantified high marsh areas in the Northeast
using Landsat Thematic Mapper imagery and local tidal covariates. High marsh was defined as an area
dominated by saltmeadow cordgrass (Spartina patens), smooth cordgrass-short form (S. alterniflora),
black grass (Juncus gerardii), and/or saltgrass (Distichlis spicata). We calculated the proportion of five
land use and land cover categories (i.e., natural lands, agriculture, developed, open water, and marsh)
within 150-m and 1,000-m buffers around each patch using The Nature Conservancy spatial data (Ferree
and Anderson, 2013). We considered any land cover type not classified as agriculture, developed lands,
or open water, as natural lands. We used a subset of the natural land cover types to calculate the
proportion of marsh as an index of habitat connectivity (Winfree et al., 2005). We considered the
following five categories as marsh: (1) Acadian estuary marsh; (2) Acadian coastal salt marsh; (3) North
Atlantic coastal plain tidal salt marsh: salt/brackish/oligohaline; (4) North Atlantic coastal plain
brackish/fresh & oligohaline tidal marsh; and (5) Atlantic coastal plain embayed region tidal
freshwater/brackish marsh (Comer et al., 2003; Ferree and Anderson, 2013).



Table 4. Patch covariates, grouped by geographic context, included in Bayesian network models and covariate bin categories developed to predict
the occurrence and density of tidal-marsh-specialist birds in Northeast USA. The shaded boxes indicate which covariates were included in the
models. Land cover land use covariates are proportions.

Model Bin categories'
Geographic level
Covariate All1 Sub2 A2 Sub3 A3 Sub4 All4 1 2 3 4
Site
Area (ha) 0.0-5.0 5.0-50.0 50.0-100.0 > 100
Perimeter (m) 2,500.0-

137.0-700.0 700.0-2,500.0 15,000.0 > 15000

High marsh 0.0-0.01 0.01-0.15 0.15-0.50 0.50-1.0
Local
Natural 150 0.0-0.25 0.25-0.50 0.50-1.0 2
Agriculture 150 0.0-0.01 0.01-0.15 0.15-0.53
Developed 150 0.0-0.10 0.10-0.25 0.25-0.99
Open water 150 0.0-0.10 0.10-0.25 0.25-0.92
Marsh 150 0.0-0.05 0.05-0.10 0.10-0.47
Road density 0.0-20.0 20.0-50.0 50.0-230.0
Landscape
Natural 1000 0.0-0.25 0.25-0.50 0.50-1.0
Agriculture 1000 0.0-0.01 0.01-0.15 0.15-0.61
Developed 1000 0.0-0.10 0.10-0.25 0.25-0.91
Open water 1000 0.0-0.10 0.10-0.25 0.25-0.93
Marsh 1000 0.0-0.05 0.05-0.10 0.10-0.59
Sea level trend
(mmlyr) 1.70-2.0 2.0-2.63 2.63-5.48
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Table 4. Continued.

Model Bin categories’
Geographic level
Covariate All 1 Sub2 All2 Sub3 All3 Sub4 Al4 1 2 3 4
Regional
State® Maine New Hampshire Massachusetts Rhode
Island
. . Cape Cod - Southern New
4
Subregion Coastal Maine Casco Bay England Long Island
-77.380 — -73.965 — -71.855 —
Longitude (°W)
-73.965 -71.855 -66.800
Latitude (°N) 36.400 —40.490 40.490—-41.400 41.400-45.100
Primary geomorphic Back-barrier Estuarine Estuarine Open coast
setting® lagoon marsh brackish marsh embayment P
Secondary Back-barrier Estuarine Estuarine
. . . None
geomorphic setting lagoon marsh brackish marsh embayment

Tertiary geomorphic
setting

Tidal fresh
marsh

None

' Bin categories do not overlap.

2NA = not applicable.

3 Bins are listed north to south. Additional bins: Connecticut, New York, New Jersey, Delaware, Maryland, and Virginia.
4 Bins are listed north to south. Additional bins: Coastal New Jersey, Delaware Bay, Coastal Delmarva, and Eastern Chesapeake Bay.

5 Additional bin: Tidal fresh marsh.
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Geomorphic setting - We reviewed aerial photographs in ArcGIS ver. 10.2.2 (ESRI, 2014) to characterize
patch geomorphic setting. The physical setting of Northeast tidal marshes varies along the coast and
settings are characterized by differences in hydrodynamics, sediment sources, and plant community
characteristics (Cahoon et al., 2009). We evaluated patches using six broad geomorphic settings: open
coast, back-barrier lagoon marsh, estuarine embayment, estuarine brackish marsh, tidal fresh marsh, and
nontidal brackish marsh. When a patch was situated in multiple broad settings, we recorded the primary
(dominant) setting, followed by the secondary and tertiary settings, if applicable. Settings were based on
a classification scheme modified from Reed et al. 2008; based on Cahoon, 2006; Woodroffe, 2002. The
classification scheme further refined some broad settings into sub-setting categories; however, we did not
assess patch sub-setting.

Sea level trend - We used data from the National Oceanic and Atmospheric Administration’s (NOAA)
Center for Operational Oceanographic Products and Services (CO-OPS; NOAA Ocean Service, CO-OPS,
2013) to calculate sea level trend for each patch. CO-OPS calculates sea level trends, i.e., changes in mean
sea level (rise or fall, mm per year), for long-term water level stations using a minimum of 30 years of
consecutive station observations (NOAA Ocean Service, CO-OPS, 2014). We recorded a single trend value
for each patch using the trend of the water level station that was located in an area most similar to the
patch; this was usually the nearest station and applied to the majority of patches. We used the mean sea
level trend of nearby stations to estimate the trend for a patch when no station existed in an area similar
to the patch. For example, we recorded the mean sea level trend of Kings Point, Port Jefferson, and
Montauk stations as the sea level trend for patches on Long Island’s southern shore (Far Rockaway to
Southampton, New York) where a long-term water level station is not present.

Human disturbance - We calculated road density as an index of human disturbance using U.S. Census
Bureau TIGER/Line road spatial data (U.S. Census Bureau, 2013). We estimated road density by creating a
500-m buffer around each patch, calculating the total road length in the patch and buffer, and dividing by
the area of the patch and buffer. Although road presence within tidal marshes is usually minimal, we
included patch road length in the calculation so that roads present in patches were accounted for.

Bayes Net Model Development

We developed models to predict occurrence and density for focal species using the BN modeling shell
Netica 5.16 (Norsys Software Corp., 2014, Marcot et al., 2006) and the covariates defined above. We
grouped the covariates into site, local, landscape, and regional scales (Table 4). The site level contained
three covariates measured at the patch scale; the local level contained six covariates measured outside
patches up to 500 m; the landscape level contained six covariates measured greater than 500 m from
patches up to 1,000 m; and the regional level contained seven covariates measured across the Northeast
(Table 4).

We constructed the models in a stepwise fashion and increased model complexity with each step by
incorporating covariates from the geographic scales in succession (Table 4). We assessed covariate
relationships using Pearson correlation coefficients within each geographic level to determine which
covariates to include in the subset models. We did not omit covariates with missing data since an
advantage of the BN framework is to incorporate missing data as uncertainty in model probability
distributions (Friedman, 1997; Lauritzen, 1995).



We discretized each continuous variable (a node in the BN) into state ranges. We discretized predictor
covariates (i.e., patch features) into three or four states (Table 4), occurrence into two states (absent or
present), and density into three states (birds per ha): 0, >0 —1, and >1. We created Tree Augmented
Naive Bayes (TAN) structures to build alternative models from the existing data (Friedman et al., 1997).
We parameterized the model structures using the case data, calculating conditional probability values for
each covariate using the Expectation Maximization algorithm (EM; Dempster et al., 1977).

Model complexity and performance - We defined model complexity as the number of covariates and
probabilities (unconditional priors and conditional probabilities) in each model. We used these two
metrics because model complexity metrics are not necessarily correlated and multiple metrics can provide
a more complete picture of model structure to assess model parsimony; the more complex a model, the
less parsimonious (Marcot, 2012). We assessed model performance by comparing the BNs’ most probable
predictions for species occurrence and density to our sampled estimates. We compared model
classification performance by calculating spherical payoff values and confusion error rates for each model
(Marcot, 2012). Spherical payoff is an index ranging from 0 to 1, with 1 indicating perfect model
performance (Hand, 1997). For our BNs, models with the greatest spherical payoff performed the best in
correctly predicting the state of species occurrence or density. Confusion error rates are the percentage
of cases a model classifies incorrectly from the cases’ actual state. We calculated confusion error rates
from confusion matrices for false positives (Type | error), false negatives (Type Il error), and their sum to
assess model predictions for our presence/absence and density states (Kohavi and Provost, 1998; Marcot,
2012). Because we constructed, parameterized, and tested our BNs using the same dataset, we used 5-
fold cross validation to test the parameterized networks with the case data and evaluate the prediction
accuracy and validity of our models (Boyce et al., 2002). We compared performance metrics for the
models using the entire existing dataset to the 5-fold results to identify the best models for predicting
species occurrence and density; see Appendix A for model evaluation tables.

Model selection and estimating abundance - We selected occurrence models with low false positive
error (predicting a species to be present when it was absent) and low total error, and density models with
low error for the greatest density state (>1) and low total error. We used the expected density values
from the best-performing models to estimate abundance for each species. We multiplied the expected
value for each patch by patch area (ha) and summed across patches to estimate abundance in un-
surveyed patches. We added this total to the abundance total for the surveyed patches (Wiest et al. in
press) and calculated mean patch abundance. We selected random abundance values from a normal
distribution for mean patch abundance to simulate an abundance total for each species by subregion and
region-wide. The number of random values equaled the number of patches (surveyed and un-surveyed)
where we estimated species abundance. We multiplied the random value for each patch by patch area
(ha) and summed across patches to estimate total abundance. We repeated the simulation 5,000 times to
calculate a final abundance estimate. We report the mean of the simulated abundance totals as the final
abundance estimate and multiplied the standard deviation of the mean by 1.96 to calculate a 95%
confidence interval for the total.

Results
Sampling Design
Sampling universe - The primary sampling universe in surveyed subregions (Coastal Maine to Eastern

Chesapeake Bay) consisted of 1,110 hexagons containing 280,722 ha of salt marsh (Table 2). The number
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of hexagons in each subregion ranged from 88 in Delaware Bay (59,956 ha of salt marsh), to 212 in Eastern
Chesapeake Bay (78,337 ha of salt marsh). Because we stratified our sampling effort independent of the
extent of salt marsh in a subregion, a large sample of total hexagons did not indicate a large quantity of
salt marsh. We excluded 259 hexagons (973 ha of salt marsh) from the initial GRTS hexagon selection
since these hexagons each contained less than 10 ha of marsh.

Sampled hexagons - We sampled 277 (135,042 ha of salt marsh) of the 1,110 total hexagons (25%) from
Coastal Maine to Eastern Chesapeake Bay. The number of hexagons surveyed in each subregion ranged
from 22 in Eastern Chesapeake Bay to 44 in Cape Cod to Casco Bay (Table 2). Marshes owned by state
agencies occurred in 127 of the surveyed hexagons; 60 surveyed hexagons contained both state and
federally owned marsh; an additional 32 surveyed hexagons contained marsh owned by federal agencies
only. Of the 92 surveyed hexagons containing federally owned marsh, 23 hexagons contained NPS-owned
marsh, 63 hexagons contained USFWS-owned marsh, and 6 hexagons contained marsh owned by both
agencies.

Sampled survey points - We sampled 1,780 survey points in the sampled hexagons. Surveyed points
were composed of 1,314 new points and 466 historical points from 18 of the 20 existing projects (Table 3).
The number of survey points in each subregion ranged from 119 points in Long Island to 340 points in
Cape Cod to Casco Bay (Table 2). The distribution of survey points on public versus private lands was 45%
and 55%, respectively. We sampled 1,642 points in 2011, 1,714 points in 2012, and 1,575 points in both
years.

Bayes Net Model Covariates

Saltmarsh Patches - We defined 13,332 saltmarsh habitat patches in the Northeast (Table 5). Total
patches per subregion ranged from 166 patches in Delaware Bay to 4,927 patches in Western Chesapeake
Bay. Delaware Bay had the fewest and largest patches (mean area = 360 + 145 ha). Patches north and
south of Delaware Bay in Coastal New Jersey and Coastal Delmarva also were large and shared similar
average area dimensions: roughly 500 patches in each subregion with a mean area of 95 + 27 ha. Cape
Cod to Casco Bay also contained approximately 500 patches, but patches were smaller (38 = 8 ha). Mean
patch areas were smaller in Long Island (14 + 1 ha) and Eastern Chesapeake Bay (23 = 9 ha). In Coastal
Maine, Southern New England, and Western Chesapeake Bay, saltmarsh patches consisted of over 1,000
patches <10 ha.

Land use and land cover - In patches with high-marsh spatial data, 45% of patches contained no high
marsh and 7% of patches contained all high marsh. Mean proportion of high marsh was greatest in Cape
Cod to Casco Bay (0.49 + 0.02). Remote sensing data necessary to classify marsh vegetation into high
marsh and non-high marsh areas did not exist for a proportion of the patches in each subregion (29% of
total patches = 2,416): Coastal Maine to Delaware Bay — 7% of patches or less, Coastal Delmarva — 16% of
patches, and Eastern Chesapeake Bay — 64% of patches.
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Table 5. Tidal marsh habitat patches (n) and mean (SE) patch covariates in Northeast USA, for eight subregions (north to south).

Subregion
Category _ Co_astal Cape Cod - Southern Long Island Coastal New Delaware Bay Coastal cE:f,sét:;Seake
Covariate Maine Casco Bay New England Jersey Delmarva Bay
Patches (n) 1,441 536 1,201 716 533 166 471 3,341
Dimension
Area (ha) 4 (0) 38(8) 8(1) 14 (1) 95 (26) 360 (145) 96 (29) 23 (9)
Perimeter (m) 1,580 (98) 7,269 (1,143) 2,663 (155) 3,883 (310) 10,662 (2,410) 33,502 (11,956) 11,388 (2,613) 2,971 (811)
Land use land cover '
High marsh  0.14 (0.01) 0.49 (0.02) 0.31 (0.01) 0.34 (0.01)  0.14 (0.01) 0.02 (0.0) 0.22 (0.01) 0.22 (0.01)
Natural 150 0.52 (0.01) 0.39 (0.01) 0.40 (0.01) 0.39 (0.01) 0.25 (0.01) 0.33(0.02) 0.22 (0.01) 0.25 (0.0)
Agriculture 150  0.03 (0.0) 0.04 (0.0) 0.01 (0.0) 0.03 (0.0) 0.03 (0.0) 0.19 (0.01) 0.09 (0.01) 0.35(0.0)
Developed 150  0.11 (0.0) 0.26 (0.01) 0.30 (0.01) 0.27 (0.01) 0.33(0.01) 0.12 (0.01) 0.08 (0.01) 0.05 (0.0)
Open water 150  0.34 (0.01) 0.32 (0.01) 0.28 (0.01) 0.32 (0.01) 0.39 (0.01) 0.36 (0.02) 0.61(0.02) 0.35(0.0)
Marsh 150 0.04 (0.0) 0.10 (0.0) 0.11(0.0) 0.19 (0.01) 0.10 (0.0) 0.07 (0.01) 0.08 (0.0) 0.08 (0.0)
Natural 1000 0.50 (0.01) 0.36 (0.01) 0.32(0.0) 0.29 (0.01) 0.26 (0.01) 0.37 (0.01) 0.26 (0.01) 0.25 (0.0)
Agriculture 1000  0.03 (0.0) 0.03 (0.0) 0.02 (0.0) 0.04 (0.0) 0.02 (0.0) 0.24 (0.02) 0.12 (0.01) 0.37 (0.0)
Developed 1000 0.09 (0.0) 0.27 (0.01) 0.31(0.01) 0.28 (0.01) 0.37 (0.01) 0.14 (0.01) 0.07 (0.0) 0.04 (0.0)
Open water 1000 0.38 (0.01) 0.33(0.01) 0.35(0.01) 0.39 (0.01) 0.35(0.01) 0.24 (0.02) 0.55 (0.01) 0.33(0.0)
Marsh 1000 0.03 (0.0) 0.09 (0.0) 0.07 (0.0) 0.12(0.0) 0.13 (0.01) 0.17 (0.01) 0.14 (0.0) 0.07 (0.0)
Sea level
Sea level trend (mm/yr)  1.95 (0.0) 2.24 (0.02) 2.46 (0.01) 2.61(0.01) 3.67 (0.02) 3.50 (0.01) 4.39 (0.05) 3.50 (0.0)

Human disturbance
Road density 27.58 (0.56) 53.39 (1.56) 52.73 (0.95) 43.4 (1.24) 54.38 (1.76) 28.98 (2.18) 28.23 (1.64) 27.91 (0.37)

' Land use land cover covariates are proportions; data was missing for 11 patches for the 150-m buffer calculation and for 6 patches for the 1,000-m buffer
calculation.



Across subregions, mean proportion of natural lands and open water typically ranged from 0.25 to 0.50
and mean proportion of agriculture and developed lands ranged from 0.0 to 0.35. Within subregion,
mean proportion of natural lands was similar for the 150-m and 1,000-m buffers. The same pattern was
true for agriculture, developed lands, and open water. For both buffers, Coastal Maine contained the
greatest mean proportion of natural lands; Eastern Chesapeake Bay, agriculture; Coastal New Jersey,
developed lands; and Coastal Delmarva, open water. Mean proportion of marsh was greatest in Long
Island for the 150-m buffer (0.19 = 0.01) and in Delaware Bay for the 1,000-m buffer (0.17 + 0.01), and was
lowest in Coastal Maine for both buffers (0.04 + 0.00 and 0.03 + 0.00 for 150 m and 1,000 m, respectively).

Geomorphic setting - The primary, broad geomorphic setting was estuarine embayment for 63% of
patches (n = 5,254), back-barrier lagoon marsh for 27% of patches (n = 2,296), and estuarine brackish
marsh for 8% of patches (n = 679. Minimal patches were classified as tidal fresh marsh (n = 153) or open
coast (n = 23). No patches were classified as nontidal brackish marsh.

Sea level trend - There were 33 NOAA long-term water-level stations in our study area, including all
Chesapeake Bay stations. On average, 3.7 stations occurred in each subregion, and six subregions
contained two or three stations. Southern New England contained the greatest number of stations (n = 6).
Although there were nine stations on the western shore of the Chesapeake Bay, some of these stations
informed sea level trend in patches on the Bay’s eastern shore. Sea level has been rising over the past 30
years for all stations, from 1.76 mm per year (Seavey Island, Maine) to 6.05 mm per year (Chesapeake Bay
Bridge Tunnel, Virginia). The northernmost (Eastport, Maine) and southernmost (Portsmouth, Virginia)
stations had sea level trends of 2.00 and 3.76 mm per year, respectively. Mean sea level trend by
subregion (x SE) ranged from 1.95 £ 0.0 mm per year in Coastal Maine to 4.39 £ 0.05 mm per year in
Coastal Delmarva.

Human disturbance - Road density within 500 m of each patch ranged from 0.0 to 221.70. Road density
was 0.0 for 9% of patches (n = 722), greater than 0.0 to 50.0 for 66% of patches (n = 5,569), and greater
than 50.0 for 25% of patches (n = 2,114). Overall, mean road density was greater in northern subregions
than in southern subregions and was greatest in Coastal New Jersey (54.38 + 1.76).

Tidal Marsh Bird Distribution and Abundance

SGCN Species - We estimated the distribution and abundance for 18 SGCN species breeding in the
Northeast (Table 6). Confidence intervals for abundance estimates were relatively high as the marshbird
sampling protocol we used is designed specifically for secretive marshbirds and not all species using tidal
marsh habitat. These results do however, provide the relative contribution of the tidal marsh habitat in
each state in supporting SGCN species. Black Rail detections were too infrequent (10 detections over two
years) to estimate abundance or trends, despite call-back surveys across USFWS Region 5, indicating a
complete collapse of these Mid-Atlantic populations.

Generally, the southern states (NJ, DE, MD, and VA) in the region tended to support greater abundances
(total number of individuals) of SGCN individuals than northern states (NY, CT, Rl, MA, NH, and ME).
American Black Duck, Forster’s Tern, Great Blue Heron, Glossy lbis, Great Egret, and Laughing Gull had the
greatest abundances in NJ, DE, MD, and VA (Table 6). Black-crowned and Yellow-crowned Night-herons
had the greatest abundance in NY and NJ. Common Tern was most abundant in NY, NJ, MA and VA. Little
Blue Heron, a species with a more southerly range, was most common in MD and VA (Table 6). Least



Bittern and Swamp Sparrow were most abundant in NJ, DE, and MD (Table 6). Notably, VA tidal marshes
support the greatest abundance of Virginia Rail (Table 6). American Black Duck density (birds / ha) was

19



Table 6. Estimated abundance' (+95% CI2) of tidal marsh species of greatest conservation need by state within USFWS Region 5, based on field

observations and modeling®, 2011-2012, shaded by quartile.

State
Species ME NH MA RI CT NY Northeast
American Black 04 662 0 22,162
Duck (5,274) (68,997)
Black-crowned 0 0 13 2,245
Night-Heron® (139) (26,663)
Common Tern 46 137 46,506
(4) (511) (268,298)
Common 3,942 113 341 110,482
Yellowthroat (5,441) (129) (491) (62,425)
Forster's Tern 0 69 13 0 101,970
5) (100) (70,865)
Great Blue Heron 415 146 74 16,937
(1,292) (129) (271) (15,617)
Glossy Ibis 137 91 698 455 33,087
(1,086) (7) (3,121) (982) (48,129)
Great Egret® 192 274 1,673 1,197 83,168
(343) (22) (3,130) (2,120) (94,066)
Laughing Gull” 183 0 58 0 366,814
(3,299) (195) (910,510)
Little Blue Heron 30 0 0 13 1,113
(100) (39) (3,917)
Least Bittern? 0 0 0 0 3,182
(1,450)
Marsh Wren? 1,066 382 816 0 274,031
(3,177) (137) (1,885) (129,583)
Snowy Egret 1,989 261 1,954 183 58,972
(2,272) (27) (2,834) (357) (61,154)




Table 6. Continued

State
Species ME NH MA RI CT NY NJ DE MD VA Northeast
Swamp Sparrow 670 04 0 0 465 614 2,745 3,232 9,150 188 16,900
(2,164) (679) (3,464) (4,087) (1,313) (3,132) (788) (22,896)
Tricolored Heron 0 0 0 0 33 19 2,933 0 1,858 3,534 6,884
(59) (186) (1,840) (5,273) (3,383) (8,103
Virginia Rail 65 16 230 26 51 0 186 174 8,703 552 9,360
(426) (29) (381) (91) (134) (39) (29) (3,175) (311) (4,774)
Willow Flycatcher 54 0 247 30 351 1,330 1,668 1903 0 0 6,098
(357) (1,872) (157) (552) (4,696) (2,258) (392) (20,289)
Yellow-crowned 0 0 31 0 15 913 1,001 0 0 0 1,797
Night-Heron (566) (109) (3,214) (1,825) (12,057)

' Estimates of abundance based on density estimates from surveyed patches extrapolated to un-surveyed patches to yield statewide population estimate.
2 Calculated using 5000 bootstraps. Note: lower boundaries of 95% confidence intervals not truncated at zero.

3 Using Unmarked in Program R (Fisk and Chandler 2011).

4 Insufficient data to estimate abundance.

5Model returned high estimates for some patches in each state in 2012, so substituted statewide average density from other patches to estimate abundance. See

text for methods.
6 Model did not converge in 2011, so estimate based on 2012 data only.
7 Model did not converge in 2012, so estimate based on 2011 data only.
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Table 7. Mean density' (birds/ha) of 18 Species of Greatest Conservation Need within surveyed patches of salt marsh during the breeding

season, 2011-2012.

State
Species ME NH MA RI CT NY NJ DE MD VA
American Black Duck Density 0.21 4 0.08 0.02 0.06 0.02 0.01 0.11 0.12
SE? 0.07 0.05 0.02 0.03 0.01 0.01 0.03 0.06
N3 167 26 97 36 58 73 70 10 24 21
Black-crowned Density <0.01 0.01 0.03 0.08 0.01 0.01 0
Night-Heron SE <0.01 0.01 0.02 0.03 0.01 0.01 0
N 166 26 96 36 56 70 58 9 24 21
Common Tern Density 0.11 <0.01 0.52 0.09 0.06 1.19 0.19 0.05 <0.01 0.04
SE 0.07 <0.01 0.35 0.05 0.02 0.47 0.10 0.03 <0.01 0.02
N 167 26 97 36 58 73 70 10 24 21
Common Yellowthroat Density 0.49 0.09 0.29 0.24 0.13 0.47 0.26 0.40 0.47 0.14
SE 0.05 0.03 0.05 0.05 0.02 0.06 0.04 0.14 0.12 0.05
N 167 26 97 36 58 73 70 10 24 21
Forster's Tern Density <0.01 <0.01 0.09 0.32 0.47 0.98 0.64
SE <0.01 <0.01 0.07 0.11 0.12 0.32 0.16
N 167 26 97 36 58 73 70 10 24 21
Great Blue Heron Density 0.05 0.07 0.02 0.05 0.01 0.02 0.06 0.20 0.08 0.05
SE 0.01 0.03 0.01 0.03 <0.01 0.01 0.01 0.07 0.03 0.04
N 167 26 97 36 58 73 70 10 24 21
Glossy lbis Density 0.01 <0.01 0.03 0.17 0.04 0.12 0.15 0.15 0.26 0.06
SE 0.01 <0.01 0.03 0.09 0.03 0.04 0.09 0.09 0.08 0.04
N 167 26 97 36 58 73 70 10 24 21
Great Egret Density <0.01 <0.01 0.12 0.51 0.17 0.44 0.47 0.24 0.12 0.16
SE <0.01 <0.01 0.03 0.20 0.04 0.09 0.19 0.20 0.04 0.07
N 163 26 97 36 52 72 69 10 24 21
Laughing Gull Density 0.03 <0.01 0.39 2.48 0.16 0.86 9.47
SE 0.03 <0.01 0.17 1.01 0.07 0.19 7.05
N 161 26 95 34 58 55 68 10 24 21
Little Blue Heron Density <0.01 <0.01 <0.01 0.01 0.01 0.02 0.01
SE <0.01 <0.01 <0.01 <0.01 0.01 0.01 0.01
N 167 26 97 36 58 73 70 10 24 21
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Table 7. Continued.

State
Species ME NH MA RI CT NY NJ DE MD VA
Least Bittern Density 4 <0.01 <0.01 0.02 0
SE? <0.01 <0.01 0.01 0
N3 161 26 95 34 58 55 68 10 24 21
Marsh Wren Density 0.05 0.05 0.03 <0.01 0.58 0.60 1.06 0.29 0.63 0.13
SE 0.03 0.03 0.02 <0.01 0.16 0.23 0.18 0.22 0.23 0.10
N 161 26 95 34 58 55 68 10 24 21
Snowy Egret Density 0.08 0.01 0.11 0.13 0.14 0.25 0.24 0.21 0.22 0.29
SE 0.02 0.01 0.03 0.03 0.05 0.06 0.11 0.09 0.06 0.20
N 167 26 97 36 58 73 70 10 24 21
Swamp Sparrow Density 0.06 0.05 0.05 0.06 0.07 0.03 0.02
SE 0.02 0.02 0.03 0.02 0.05 0.02 0.01
N 167 26 97 36 58 73 70 10 24 21
Tricolored Heron Density <0.01 <0.01 0.01 0.05 0.1
SE <0.01 <0.01 0.01 0.03 0.05
N 167 26 97 36 58 73 70 10 24 21
Virginia Rail Density <0.01 0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.04 <0.01
SE <0.01 0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.02 <0.01
N 167 26 97 36 58 73 70 10 24 21
Willow Flycatcher Density 0.01 0.02 0.03 0.08 0.12 0.04 0.02
SE <0.01 0.02 0.01 0.02 0.04 0.01 0.01
N 167 26 97 36 58 73 70 10 24 21
Yellow-crowned Density 0.01 <0.01 0.07 0.02
Night-Heron SE 0.01 <0.01 0.03 0.01
N 167 26 97 36 58 73 70 10 24 21

' Density was estimated by patch using “Unmarked” in Program R based on detections of focal species detections within 0-100 m during 5-min passive point

counts.
2 Standard Error.

3 Number of patches surveyed during 2011-2012 where density was estimated.
4 None detected within state.
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greatest in ME followed by MD and VA (Table 7). Forster’s Tern, Marsh Wren and Snowy Egret had
greatest densities in NY, NJ, DE, MD, and VA (Table 7). Glossy lbis density was greatest in MD (Table 7).

Clapper Rail - We developed BNs for Clapper Rail using cases for 255 surveyed marsh patches.
Occurrence models contained 74 to 832 probabilities, spherical payoff values ranged from 0.869 to 0.918,
and total confusion error was between 10.2 and 17.3%. The final-selected model (Sub 3) predicted
Clapper Rails occurred in 343 patches (6% of patches; Table 8). Clapper rails were most common in
Delaware Bay and least common in Southern New England, occurring on 19% and 2% of the patches
respectively (Table 9). Density models for Clapper Rail contained 111 to 1,248 probabilities, spherical
payoff values ranged from 0.822 to 0.903, and total confusion error was between 12.6 and 23.5%. The
final-selected model (All 4) predicted the Clapper Rail density >1 birds per ha in 309 (6%) of the patches
(Table 10). We estimated 109,758 Clapper Rails in the Northeast with 49% of the population occurring in
Coastal Delmarva (Table 11).

Willet - We developed BNs for Willet using cases for 582 surveyed marsh patches. Occurrence models
contained 74 to 1,156 probabilities, spherical payoff values ranged from 0.836 to 0.895, and total
confusion error was between 13.1 and 19.9%. The final-selected model (All 4) predicted Willets occurred
in 1,132 patches (13% of patches; Table 8). Willets were most common in Coastal Delmarva and least
common in Coastal Maine, occurring on 37% and 1% of the patches respectively (Table 9). Density models
for Willet contained 111 to 1,734 probabilities, spherical payoff values ranged from 0.809 to 0.866, and
total confusion error was between 15.8 and 22.5%. The final-selected model (All 4) predicted the Willet
density >1 birds per ha in 360 (4%) of the patches (Table 10). We estimated 111,021 Willets in the
Northeast with 54% of the population occurring in Delaware Bay and Coastal Delmarva (Table 11).

Nelson’s Sparrow - We developed BNs for Nelson’s sparrow using cases for 193 surveyed marsh
patches. Occurrence models contained 74 to 336 probabilities, spherical payoff values ranged from 0.857
to 0.906, and total confusion error was between 10.9 and 18.1%. The final-selected model (All 3)
predicted Nelson’s sparrows occurred in 206 patches (12% of patches; Table 8). Nelson’s sparrows were
similarly distributed in Cape Cod to Casco Bay and Coastal Maine, occurring on 14% and 12% of the
patches respectively (Table 9). Density models for Nelson’s sparrow contained 111 to 531 probabilities,
spherical payoff values ranged from 0.815 to 0.906, and total confusion error was between 10.9 and
23.8%. The final-selected model (All 4) predicted the Nelson’s sparrow density >1 birds per ha in 163
(10%) of the patches (Table 10). We estimated 6,640 Nelson’s sparrows in the Northeast with 70% of the
population occurring in Coastal Maine (Table 11).

Saltmarsh Sparrow - We developed BNs for Saltmarsh Sparrow using cases for 509 surveyed marsh
patches. Occurrence models contained 74 to 1,194 probabilities, spherical payoff values ranged from
0.748 to0 0.917, and total confusion error was between 10.6 and 35.2%. The final-selected model (All 4)
predicted Saltmarsh Sparrows occurred in 2,482 patches (33% of patches; Table 8). Saltmarsh sparrows
were most common in Long Island (99% of patches) and Southern New England (96% of patches) and least
common in Coastal Maine (4% of patches, Table )). Density models for Saltmarsh Sparrow contained 111
to 1,815 probabilities, spherical payoff values ranged from 0.708 to 0.895, and total confusion error was
between 12.8 and 39.9%. The final-selected model (All 4) predicted the Saltmarsh Sparrow density >1
birds per ha in 328 (4%) of the patches (Table 10). We estimated 60,058 Saltmarsh Sparrows in the



Northeast with 53% of the population occurring in Coastal New Jersey and Eastern Chesapeake Bay (Table
11).

Seaside Sparrow - We developed BNs for Seaside Sparrow using cases for 390 surveyed marsh patches.
Occurrence models contained 74 to 914 probabilities, spherical payoff values ranged from 0.805 to 0.912,
and total confusion error was between 10.8 and 26.7%. The final-selected model (All 4) predicted Seaside
Sparrows occurred in 1,294 patches (19% of patches; Table 8). Seaside sparrows were most common in
Long Island and least common in Cape Cod to Casco Bay, occurring on 50% and 2% of the patches
respectively (Table 9). Density models for Seaside Sparrow contained 111 to 1,365 probabilities, spherical
payoff values ranged from 0.773 to 0.903, and total confusion error was between 11.5 and 30.3%. The
final-selected model (Sub 4) predicted the Seaside Sparrow density >1 birds per ha in 169 (3%) of the
patches (Table 10). We estimated 234,542 Seaside Sparrows in the Northeast with 73% of the population
occurring in Delaware Bay and Eastern Chesapeake Bay (Table 11).
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Table 8. Model complexity and classification performance of the best-performing Bayesian network models predicting species occurrence or
density (birds per ha) as a function of tidal marsh habitat patch covariates for tidal-marsh-specialist bird species in Northeast USA. Models were
selected from a group of seven models for each response variable-species combination; for model complexity and classification performance
results, including 5-fold cross validation results, for all tested models.

Model complexity Model performance, confusion error rates, % (n)
gsse?;i(:egse variable Model’ Szl;sroi;:fal cg\(l,é. No. probs. Absent  Present Total? 0 >0 -1 >1 Total®
Occurrence
Clapper Rail Sub 3 0.905 11 230 10.4 (17) 143 (13) 11.8(30)
Willet Al 4 0.895 22 1,156 10.6 (44) 19.4(32) 13.1(76)
Nelson’s Sparrow All 3 0.905 15 308 7.4 (10) 19.3 (11) 10.9 (21)
Saltmarsh Sparrow All 4 0.917 22 1,194 13.9(32) 7.9(22) 10.6 (54)
Seaside Sparrow All 4 0.912 22 914 8.2 (22) 16.3(20) 10.8 (42)
Density
Clapper Rail Al 4 0.903 22 1,248 9.1 (15) 19.7 (14) 15.0(3) 12.6 (32)
Willet Al 4 0.866 22 1,734 6.5 (27) 32.5(39) 57.8(26) 15.8(92)
Nelson’s Sparrow Al 4 0.898 22 531 5.1(7) 23.5(8) 30.4 (7) 11.4 (22)
Saltmarsh Sparrow All 4 0.895 22 1,815 12.6 (29) 11.9(30) 22.2(6) 12.8 (65)
Seaside Sparrow Sub 4 0.862 16 528 10.1 (27) 34.8(32) 19.4(6) 16.7 (65)

" Number of cases in each species dataset used to parameterize the models: Clapper Rail = 255, Willet = 582, Nelson’s Sparrow = 193, Saltmarsh Sparrow = 509,
and Seaside Sparrow = 390.
2 The percent error of the absent and present states, or, the three density states, equals 100% of total error.



Table 9. Number of tidal marsh habitat patches where the best-performing Bayesian network models predicted the most probable occurrence state
for tidal-marsh-specialist bird species in Northeast USA, by subregion (north to south) and region-wide. Percent of patches relative to the number
of patches analyzed within a subregion is in parentheses.

Species’
Occurrence state

Subregion
Eastern
Coastal Cape Cod - Southern Long Coastal Delaware Coastal Chesapeake Northeast
Maine Casco Bay New England Island New Jersey Bay Delmarva Bar; USA

Clapper Rail
Absent
Present
Willet
Absent
Present

Nelson’s Sparrow
Absent

Present

Saltmarsh Sparrow
Absent

Present

Seaside Sparrow
Absent
Present

1,433 (99%)
8 (1%)

1,265 (88%)
176 (12%)

606 (96%)
23 (4%)

462 (87%)
72 (13%)

178 (86%)
30 (14%)

400 (75%)
134 (25%)

321 (98%)
6 (2%)

389 (98%)
7 (2%)

986 (82%)
215 (18%)

44 (4%)
1,157 (96%)

1,135 (95%)
66 (5%)

672 (94%)
44 (6%)

550 (77%)
166 (23%)

9(1)
707 (99%)

355 (50%)
361 (50%)

450 (84%)
83 (16%)

447 (84%)
86 (16%)

480 (90%)
53 (10%)

454 (85%)
79 (15%)

135 (81%)
31 (19%)

115 (69%)
51 (31%)

134 (81%)
32 (19%)

137 (83%)
29 (17%)

396 (84%)
75 (16%)

298 (63%)
173 (37%)

372 (79%)
99 (21%)

364 (77%)
107 (23%)

3,238 (97%)
103 (3%)

2,980 (89%)
361 (11%)

3,064 (92%)
277 (8%)

2,695 (81%)
646 (19%)

5,280 (94%)
343 (6%)

7,271 (87%)
1,132 (13%)

1,443 (88%)
206 (12%)

5,109 (67%)
2,482 (33%)

5,461 (81%)
1,294 (19%)

"Occurrence was predicted for patches south of 41.3390°N for Clapper Rail; north of 42.8520°N for Nelson’s Sparrow; south of 44.0753°N for Saltmarsh Sparrow;
and south of 42.9185°N for Seaside Sparrow.

2

= not applicable.
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Table 10. Number of tidal marsh habitat patches where the best-performing Bayesian network models predicted the most probable density state
(birds per ha) for tidal-marsh-specialist bird species in Northeast USA, by subregion (north to south) and region-wide. Percent of patches relative

to the number of patches analyzed within a subregion is in parentheses.

Subregion
Eastern
Density Coastal Cape Cod - Southern Long Coastal Delaware Coastal Chesapeake Northeast
Species' state Maine CascoBay New England Island New Jersey Bay Delmarva Bay USA
Clapper Rail 0 346 (89%) 672 (94%) 443 (83%) 96 (58%) 258 (55%) 3,038 (91%) 4,853 (86%)
>0-1 31 (8%) 32 (4%) 66 (12%) 67 (40%) 106 (23%) 152 (5%) 454 (8%)
>1 13 (3%) 11 (2%) 24 (5%) 3 (2%) 107 (23%) 151 (5%) 309 (6%)
Willet 0 1,431(99%) 476 (89%) 1,018 (85%) 557 (78%) 420 (79%) 121 (73%) 195 (41%) 3,217 (96%) 7,435 (88%)
>0-1 9 (1%) 52 (10%) 115 (10%) 53 (7%) 41 (8%) 39 (23%) 176 (37%) 123 (4%) 608 (7%)
>1 1 (0%) 6 (1%) 68 (6%) 106 (15%) 72 (14%) 6 (4%) 100 (21%) 1(0%) 360 (4%)
Nelson’
SS asr?(')‘vj 0 1,189 (83%) 184 (89%) 1,373 (84%)
>0-1 83 (6%) 21 (10%) 104 (6%)
>1 161 (11%) 2 (1%) 163 (10%)
Saltmarsh o o o o o o o o o
Sparrow 0 609 (97%) 380 (71%) 27 (2%) 7 (1%) 461 (86%) 98 (59%) 336 (71%) 2,934 (88%) 4,852 (64%)
>0-1 20 (3%) 148 (28%) 1,132 (94%) 681 (95%) 63 (12%) 20 (12%) 87 (18%) 260 (8%) 2,411 (32%)
>1 0 (0%) 6 (1%) 42 (3%) 28 (4%) 9 (2%) 48 (29%) 48 (10%) 147 (4%) 328 (4%)
gsgfr'gfv 0 324 (99%) 1,162 (97%) 444 (62%)  461(86%) 140 (84%) 389 (83%) 3,136 (94%) 6,056 (90%)
>0-1 3 (1%) 35(3%) 269 (38%) 47 (9%) 22 (13%) 44 (9%) 110 (3%) 530 (8%)
>1 0 (0%) 4 (0%) 3 (0%) 25 (5%) 4 (2%) 38 (8%) 95 (3%) 169 (3%)

" Density was predicted for patches south of 41.3390°N for Clapper Cail; north of 42.8520°N for Nelson’s Sparrow; south of 44.0753°N for Saltmarsh Sparrow; and
south of 42.9185°N for Seaside Sparrow.

2

= not applicable.
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Table 11. Estimated abundance (95% CI; number of birds) for tidal-marsh-specialist bird species in each state. NA, not

applicable.
State
. . New Rhode . New New o
Species? Maine Hampshire Mass. Island Connecticut York Jersey Delaware  Maryland Virginia
Clapper rail NA NA 187 35 146 1,655 34,064 7,669 10,735 55,095
(x154) (x44) (x120) (£544) (£24,974) (£7,586) (£5,953) (£41,008)
Willet 1,722 1,012 5,103 519 801 5,400 42,291 13,026 13,916 27,210
(£1,424) (£1,946) (£3,188) (£368) (£615) (x2,086) (+26,089) (+14,037) (£7,229) (£27,530)
Nelson’s 6,423 239
Sparrow (£2,754) (£218) NA NA NA NA NA NA NA NA
Saltmarsh 1,620 1,080 6,152 888 1,592 5,260 19,940 4,118 15,071 4,224
sparrow (£1,216) (£1,692) (£2,745) (£335) (£798) (x1,261) (x13,632) (£4,389) (£13,399) (£2,553)
Seaside NA NA 316 24 1,026 2,964 88,378 36,831 82,543 20,992
sparrow (£312) (x22) (£1,499) (£891) (+63,412)  (+54,117) (+85,448) (+21,582)

a Abundance estimates are for patches south of 41.3390°N for clapper rail; north of 42.8520°N for Nelson’s sparrow; south of 44.0753°N for
saltmarsh sparrow; and south of 42.9185°N for seaside sparrow. Estimates are for all patches for willet.
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Conclusions

The distribution of the 18 SGCN species for which we could estimate density and abundance was weighted
to the southern states (Table 12). New York supported more than 50% of one species population (Black-
crowned Night-Heron) as well as a large proportion of Common Tern populations; New Jersey supported
more than 50% of two species populations (Great Egret and Yellow-crowned Night-Heron) and large
proportions of Common Tern, Laughing Gull, Little Blue Heron, Marsh Wren, Snowy Egret, Tricolored
Heron, and Willow Flycatcher populations; Delaware supported large proportions of Common Yellow-
throat, Great Blue Heron and Willow Flycatcher populations; Maryland supported more than 50% of five
species populations (American Black Duck, Glossy lbis, Least Bittern, Swamp Sparrow, and Virginia Rail)
and large proportions of Common Yellow-throat, Forster’s Tern, Great Blue Heron, Marsh Wren, and
Snowy Egret; Virginia supported large proportions of Forster’s Tern, Laughing Gull, Little Blue Heron, and
Tricolored Heron populations (Table 12). Overall SGCN species richness ranged from 14 in NH to 25 in NJ
(Table 13).

Our Bayesian approach to predict tidal marsh bird distribution and population estimates provides the first
comprehensive estimates for these species in Northeast USA. We predicted species occurrence and
density with reasonable accuracy with BNs based on patch covariates at multiple spatial scales (Wiest
2015). Our best-performing predictive BNs provide population size estimates to determine the relative
importance of each Northeast subregion and state in supporting breeding populations for these species.
Long-term monitoring and conservation planning for tidal marsh birds are necessary to alleviate
population declines related to climate change, and our BN models provide a flexible framework built on
baseline monitoring and spatial data that can be modified into an adaptive management tool for this
purpose (Nyberg et al., 2006).

Our results show that overall, large expansive marsh complexes from Coastal New Jersey to Eastern
Chesapeake Bay supported the majority of Clapper Rail, Willet, Saltmarsh Sparrow, and Seaside Sparrow
individuals. Species were most common in Long Island ( and Seaside sparrows), Delaware Bay (Clapper
Rail), and Coastal Delmarva (Willet). Density and total abundance were greatest within the same
subregion for two species, Coastal Delmarva for Clapper Rail and Willet (Willet abundance was slightly
lower in Coastal Delmarva than in Delaware Bay, but similar). Saltmarsh sparrow density was greatest in
Delaware Bay while Saltmarsh Sparrow abundance was greatest in Coastal New Jersey and Eastern
Chesapeake Bay. Seaside sparrow density was greatest in Coastal Delmarva while Seaside Sparrow
abundance was greatest in Eastern Chesapeake and Delaware Bays. North of the last glacial maximum,
including all of Long Island, where marshes are characteristically smaller in area, Long Island and Cape Cod
to Casco Bay hosted the greatest abundances for these species. When species’ population sizes were
assessed in a state-context, New Jersey supported the greatest abundance for three species (i.e., Willet,
Saltmarsh Sparrow, and Seaside Sparrow) and Virginia supported half of the region’s Clapper Rails.

Our models’ greatest performance difficulties occured in correctly classifying ‘present’ for occurrence and
‘>1’ for density. Our training dataset contained fewer records for these states compared to the other
response categories and including additional known cases where species are present at >1 densities
should improve model accuracy. The misclassifications need to be minimized to avoid misrepresenting
species distribution and inflating abundance estimates; therefore, we prioritized selecting models with the
lowest error rates for the ‘present’ and >1’ states as they are the most critical from a species monitoring
perspective. Our population estimates coincided well with the abundance estimates for sampled,
occupied patches (Wiest et al. in press), since the surveyed patches that served as case data to build the
BNs constituted a large percent of the total marsh in the study area.



Table 12. Percent of northeast regional population of tidal marsh birds occurring in each of 10 states,
based on field observations' and modeling?, 2011-2013.

State
Species ME NH MA RI CT NY NJ DE MD VA
Clapper Rail 0 0 <1 <1 <1 2 31 7 10 50°
Willet 2 <1 5 <1 <1 5 38 12 13 25
Nelson’s Sparrow 96 4 0 0 0 0 0 0 0 0
Saltmarsh Sparrow 3 2 10 1 9 33 7 25 7
Seaside Sparrow 0 0 <1 <1 <1 1 38 16 35 9
American Black Duck 7 0 <1 2 6 9 54 18
Black-crowned Night-Heron 0 <1 6 54 25 0 13 0
Common Tern 2 <1 12 <1 <1 38 34 1 <1 12
Common Yellowthroat 3 <1 5 <1 <1 4 20 24 39 4
Forster's Tern 0 <1 <1 0 0 1 24 10 27 38
Great Blue Heron 2 <1 4 <1 <1 2 14 35 36 6
Glossy Ibis <1 <1 2 1 <1 5 26 7 52 6
Great Egret <1 <1 2 1 <1 6 66 6 10 7
Laughing Gull <1 0 <1 0 0 1 39 <1 11 49
Little Blue Heron 2 0 0 <1 4 5 21 0 41 26
Least Bittern 0 0 0 0 0 0 18 10 72
Marsh Wren <1 <1 <1 1 2 33 15 46 2
Snowy Egret 3 <1 3 <1 <1 6 42 9 23 13
Swamp Sparrow 4 0 0 0 3 4 16 19 54 1
Tricolored Heron 0 0 0 0 <1 <1 35 0 22 42
Virginia Rail <1 <1 2 <1 <1 0 2 2 87 6
Willow Flycatcher <1 0 4 <1 6 24 30 34 0 0
Yellow-crowned Night-Heron 0 0 2 0 <1 47 51 0 0 0

' Data from 5-minute, passive point counts, within 0-100 m from observer.
2 Using Bayesian methods for 5 focal species; using Unmarked in Program R for 18 remaining species.
3 Shaded values are the largest percentages contributing to the “first” 50% of regional population.

Our assessment for Nelson’s sparrow distribution and abundance occurred over a smaller geographic area
compared to the other specialist species due to Nelson’s sparrow’s relatively limited coastal range in the
United States (Hodgman et al., 2002). Nelson’s sparrows were similarly distributed in Cape Cod to Casco
Bay and Coastal Maine, but occurred at the greatest density and abundance in Coastal Maine. However,
Cape Cod to Casco Bay supported 30% of the population, indicating that patches at range peripheries can
support substantial local populations.

Our findings highlight the importance of expansive marshes to tidal marsh bird populations and our ability
to maintain these areas as viable habitats will likely determine the future persistence of these species in
the Northeast. Some of these larger patches are already degrading at high rates and losing habitat due to



accelerated sea level rise and land subsidence, particularly marshes in Dorchester County, Maryland,
including Blackwater National Wildlife Refuge and Fishing Bay Wildlife Management Area (Kearney, 2008;
Kearney et al., 2002). These marshes should have a greater opportunity for marsh transgression due to
the more gradual elevation gradient to adjacent uplands, as well as upland borders consisting of soft
edges (e.g., agricultural fields, forest; Scavia et al., 2002). Many of the marsh systems are sediment
deprived (Kearney et al., 1988; Mariotti and Fagherazzi, 2013; Stammermann and Piasecki, 2012) and
require sediment augmentation to maintain marsh elevation and/or achieve successful transgression
(Mariotti and Fagherazzi, 2013; Nittrouer et al., 2012).

Although preservation of sizable, Mid-Atlantic marsh patches is critical for maintaining most specialist-bird
populations in the Northeast, marshes on Long Island and northward also are vital for the tidal marsh
birds considered most at risk from accelerated sea level rise. Saltmarsh sparrow is formally listed as
globally vulnerable (IUCN Red List; BirdLife International, 2015) and the estimated population size prior to
this study was between 30,000 and 50,000 individuals (Elphick et al., 2009). We estimated 60,000
individuals, with almost 30% of the population occurring in New England and Long Island marshes.
Saltmarsh sparrows nest low to the ground in the high marsh zone and breeding success is closely tied to
the lunar tidal cycle (Greenberg et al., 2006). The species is subject to frequent nest failure from tidal
flooding and coastal storm events (Gjerdrum et al., 2008a; Shriver et al., 2007), and the effects of climate
change are expected to exacerbate flooding impacts to Saltmarsh Sparrow reproduction (Bayard and
Elphick, 2011). While marshes north of the last glacial maximum have fewer opportunities for marsh
transgression given the steeper elevation gradient and increased presence of hard shoreline barriers (e.g.,
development, infrastructure), this area of the Northeast is expected to experience lower rates of sea level
rise than the Mid-Atlantic and may prove to be a stronghold of Saltmarsh Sparrow in the future.

We assessed bird densities within the single, broad habitat estuarine emergent marsh and did not
distinguish among basic salt marsh zones (e.g., low marsh, high marsh, salt pans, and terrestrial border;
Bertness, 1999). Habitat use in marsh vegetation zones and adjacent habitats, such as tidal flats and
beaches, differs by species (Hanson and Shriver, 2006; Nocera et al., 2007; Shriver et al., 2010), and marsh
birds are typically concentrated in particular areas leading to high spatial variation in abundance within a
marsh (Conway and Droege, 2006). Distribution maps typically illustrate species’ ranges regardless of the
array of habitats used (Kantrud, 1982), and our mapping reflects species distribution and abundance
across all saltmarsh habitat regardless of species dependence for marsh vegetation zone. Therefore, our
results should not be construed as the overall species distribution in the study area, a caution common to
interpreting larger scale species distribution and abundance maps (Kantrud, 1982). Similary, occurrence
maps for some species do not necessarily correspond well with species nesting occurrence maps, as is the
case for Saltmarsh Sparrow (Meiman et al., 2012), warranting additional caution for this species. Still, our
baseline mapping effort provides wildlife conservation entities with a reasonable means to begin
synthesizing the distribution and abundance of tidal marsh birds across this broad geographic area.

A BN approach, such as the one implemented here, is one possible adaptive management framework to
be explored (Nyberg et al., 2006; for example application see Howes et al., 2010). BNs are flexible and can
be used to evaluate management decisions based on empirical data (Marcot et al., 2001; McCann et al.,
2006; Morrison et al., 2006). Networks can be continuously updated with current bird monitoring and
spatial data, incorporate variables from improved sea level rise and climate change models, and update
and add management decisions based on real-world examples (McCann et al., 2006). A tool that helps
identify the importance of local habitat patches to regional bird populations and provides guidance for
tidal marsh habitat management decisions, such as felling trees to promote marsh transgression, is
necessary to effectively combat species population declines due to climate change.
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Table 13. Species richness of tidal marsh birds among 10 northeastern states, based on field
observations', 2011-2012.

ME NH MA RI CT NY NJ DE MD VA

ABDU ABDU ABDU ABDU ABDU ABDU ABDU ABDU ABDU ABDU

BCNH n/o? BCNH BCNH BCNH BCNH BCNH BCNH BCNH BCNH
n/o n/o n/o n/o n/o n/o n/o BLRA BLRA n/o
n/o n/o n/o n/o n/o n/o BNST BNST BNST BNST

CLRA CLRA CLRA CLRA CLRA CLRA CLRA CLRA CLRA CLRA
COTE COTE COTE COTE COTE COTE COTE COTE COTE COTE
COYE COYE COYE COYE COYE COYE COYE COYE COYE COYE

n/o FOTE FOTE n/o n/o FOTE FOTE FOTE FOTE FOTE
GBHE GBHE GBHE GBHE GBHE GBHE GBHE GBHE GBHE GBHE
GLIB GLIB GLIB GLIB GLIB GLIB GLIB GLIB GLIB GLIB
GREG GREG GREG GREG GREG GREG GREG GREG GREG GREG
LAGU n/o LAGU LAGU n/o LAGU LAGU LAGU LAGU LAGU
LBHE n/o n/o LBHE LBHE LBHE LBHE LBHE LBHE LBHE
LEBI n/o LEBI n/o LEBI n/o LEBI LEBI LEBI LEBI
MAWR MAWR MAWR MAWR MAWR MAWR MAWR MAWR MAWR MAWR
NESP NESP NESP NESP NESP n/o NESP n/o NESP NESP
SALS SALS SALS SALS SALS SALS SALS SALS SALS SALS
SESP n/o SESP SESP SESP SESP SESP SESP SESP SESP
n/o n/o n/o n/o n/o n/o SEWR n/o n/o n/o
SNEG SNEG SNEG SNEG SNEG SNEG SNEG SNEG SNEG SNEG
SWSP n/o n/o n/o SWSP SWSP SWSP SWSP SWSP SWSP
TRHE n/o n/o n/o TRHE TRHE TRHE TRHE TRHE TRHE
VIRA VIRA VIRA VIRA VIRA VIRA VIRA VIRA VIRA VIRA
WIFL n/o WIFL WIFL WIFL WIFL WIFL WIFL WIFL WIFL
WILL WILL WILL WILL WILL WILL WILL WILL WILL WILL
n/o n/o YCNH n/o YCNH YCNH YCNH YCNH n/o n/o

21 14 20 18 21 21 25 24 24 23

"Includes any observations of species during 5-minute passive point count, responses to call-response surveys, and in
all distance bands.
2 n/o = Not observed during field surveys.



V. Population Trends
Methods
Field and remote imagery data collection

We combined the results of our bird surveys (as described above in section IV. Distribution and
Abundance) at 1,770 points with a historical survey database of point counts conducted in tidal marshes
from Maine to Virginia, a total of 3,064 survey locations monitored variously between 1994 and 2012 (Fig.
2). This historical database includes surveys conducted at 2541 points that were not resurveyed in 2011
and 2012 due to our point selection methodology (as described above). Rachel Carson National Wildlife
Refuge (NWR) (2000 — 2012), Parker River NWR (2000 — 2012), Monomoy NWR (2005 — 2012), and
Bombay Hook NWR (1997 — 2007)
provided longer term survey data

. 2 conducted annually. The Maine
I : % Department of Inland Fisheries and
Wildlife (MDIFW) and Greg Shriver
provided additional survey data from
1997 — 2000 (Shriver et al. 2004),
conducted in New England tidal marshes.

e

Rachel Carson NWR The Smithsonian, Massachusetts
l Audubon, New Hampshire Audubon, and
¥ Purker River NWR New Jersey Audubon made additional

contributions of historical data (Table 14).
All studies followed passive, fixed-point
count methodology, and were conducted
; between sunrise and 11 AM from April 15
- to August 15. All surveys recorded the
.é,', number and species of birds detected by

Monomoy NWR

1 sight or sound within either 50, 100 m (or
J both) of the survey point for at least five
3 "ﬂ.," minutes. While some studies (e.g., the
P{é;\\ i N | c9ntem p(?ra ry surveys) a.Iso recorded
?\;ﬁ SHARIl’f:f::;ii:;llM:Ii[]c birds in distance categories greater than
> ’_";__,._ y .f — 2 Cape Cod to Casco Bay 100 m, for time periods longer than five
(o 3 Southem New England minutes, or for periods of the year
: ¥ ooy outside of the breeding season, we only

j& used data over the shorter time and

: : spatial scales defined here to maintain

NN N T [N T T |
Figure 2. Locations of subregions, National Wildlife consistency across all studies. Except

Refuges, and survey points used in population trend where noted below, we only used data
analyses. from within 50 m of the survey point.

We collected data on marsh modification
around each survey point using Google Earth aerial imagery (Google Inc. 2013). We assessed the relative
degree of marsh ditching and Open Marsh Water Management (OMWM,; Fig. 3) at 50- and 100-m radius
circles around both the contemporary survey points (n = 1,770) and all additional historical survey
locations (n =1,294). For both OMWM and ditching we recorded their presence or absence at those two
spatial scales. To assess degree of ditching, we placed a set of North-South and Eeast-West crosshairs
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over each survey point. We then counted the number of ditches that intersected the transects at 50- and
100-m buffers from the survey point. We also recorded the number of tidal restrictions affecting each
survey point by counting anthropogenic structures (e.g., bridges, railroads, tide gates, causeways) that
spanned the tidal channel downstream from the survey location.

Table 14. Geographic and temporal scope of databases used for analyses of bird population changes
across USFWS Region 5.

Radius of Recorded
Detections'

SHARP subregions Contributor Years 50 m 100 m
Chesapeake Bay W. Deluca & P. Marra (Smithsonian) 2002 - 2003 X

Delaware Bay Bombay Hook NWR 1994 - 2007 X

Delaware Bay R. Greenberg (Smithsonian) 2001 - 2009 X
Casco Bay to Cape Cod NH Audubon 2007 X

Coastal Maine Maine DIFW 1997 - 2000 X X
Casco Bay to Cape Cod Maine DIFW 1997 - 2000 X X
Casco Bay to Cape Cod Massachusetts Audubon 1999 - 2001, 2005-07 X
Coastal New Jersey New Jersey Meadowlands Comm. 2005 - 2006 X
Casco Bay to Cape Cod Monomoy NWR 2005 - 2012 X X
Casco Bay to Cape Cod Parker River NWR 2000 - 2012 X X
Casco Bay to Cape Cod Rachel Carson NWR 2000 - 2012 X X
Coastal New Jersey New Jersey Audubon 2009 X X
Casco Bay to Cape Cod G. Shriver 1998 - 2000 X X
Southern New England G. Shriver 1998 - 2000 X X
All Subregions SHARP 2011 -2012 X X

T All surveys were point counts with fixed radii of 50 or 100 m (or both) where all birds using the marsh habitat were recorded for five
minutes without use of bird vocalization broadcasts

To investigate the importance of marsh modification relative to larger scale changes (e.g., rates of
geological plate subsidence, storminess, sea-level rise), we used data from the National Oceanic and
Atmospheric Administration’s (NOAA) Center for Operational Oceanographic Products and Services (CO-
OPS; http://tidesandcurrents.noaa.gov/) as a proxy for spatially explicit flooding risk from Maine to
Virginia. Specifically we used 30-year averages of sea-level rise trends and 1% exceedance values from
monitor buoys along the coast. Exceedance values are the mean tidal height above mean highest high
water for a flood with a given frequency. The 1% exceedance values calculated by NOAA CO-OPS, for
example, are the flooding heights of a one in a hundred year flooding event. Sites with higher exceedance
values thus experience floods of a given height more frequently than sites with lower exceedance values.
This metric can therefore serve as a proxy for flooding risk from the combination of astronomical and
storm tides. We recorded both exceedance values and relative rates of sea-level rise for each patch using
the station that was located in an area most similar to the patch; this was usually the nearest station and
applied to the majority of patches. We used the mean of nearby stations to estimate values for a patch
when no station existed in an area similar to the patch. For example, we recorded the mean sea level
trend of Kings Point, Port Jefferson, and Montauk stations as the sea level trend for patches on Long
Island’s southern shore (Far Rockaway to Southampton, New York) where a long-term water level station
is not present.
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Figure 3. Examples of A) tidally restricted marsh (white arrows show individual restrictions), B) ditched
marsh, and C) marsh treated with Open Marsh Water Management (OMWM).

Statistical Analyses
We conducted all analyses in a maximum likelihood framework in Program R (R Core Team 2014).

Overall Population Trends - We modeled population change for 19 of the SGCNs (Table 1) using
generalized fixed-and mixed-effect models. We were not able to model trends for the remaining seven
species due to very low total detections (Tricolored Heron, Yellow-crowned Night-Heron, Black Rail, Black-
necked Stilt, Sedge Wren) or extreme clumping in our detections due to colonial breeding (Laughing Gull,
Forster’s Tern). In all analyses we only used data from survey points within the published species’ range
(Rodewald 2015) that overlapped with the Estuarine Intertidal Emergent Wetland patch layer of the NWI.
The single exception to these rules was the coastal plain swamp sparrow, which is a tidal-marsh specialist
occurring regularly in brackish marshes outside of the delineated patches from New Jersey south (Beadell
et al. 2003).

For each of the 19 SGCNs, we modeled the sum of maximum detections at each survey point each year
(“abundance index”) within each tidal marsh patch (from the patch layer described in section IV above),
using a negative binomial distribution and the gim.nb function within the “MASS” package (Venables and
Ripley 2002). We included the fixed effects of year (as a continuous variable), patch area (logarithm
transformed), the number of points visited within a patch each year (logarithm transformed), and the
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number of visits to each patch per year (logarithm transformed). The parameter estimate for year in this
model thus represents a relative index of population change within the surveyed region, controlling for
the expected changes in detections due to the other fixed effects. For species with very low densities
within 50 m or species with high detection probabilities that primarily use habitats on the upland marsh
fringe (i.e., outside of areas where survey points were placed), we used counts from within 100 m of the
survey point to increase model fit (n = 10; Table 15). This methodological change did require the use of a
slightly different dataset than for species analyzed at the 50 m scale, although with similar spatial and
temporal coverage across the region (Table 14).

As the historical data were both spatially and temporally heterogeneous in their sampling across the
entire region, we also modeled population change for New England alone, considering time as a
categorical variable with two levels (1998 — 2000 and 2011 — 2012). Our contemporary surveys and the
historical surveys of T.P. Hodgman (MDIFW) and W.G. Shriver sampled all of New England adequately and
employ identical methodology, making this smaller scale comparison particularly robust and an indirect
method to validate the region-wide estimates.

For our each of our five focal species (Clapper Rail, Willet, and , Nelson’s, and Seaside sparrows), we
modeled relative change in abundance at three additional spatial scales using the maximum count
detected across all visits to a survey point each year as our response variable. We constructed
Generalized Linear Mixed Models for each species with a Poisson distribution using the gimer function
within the “Ime4” package (Bates et al. 2014). As the historical data from different regions varied widely
in temporal resolution (Table 14), we modeled change in maximum count at three different spatial scales:
national wildlife refuge, state, and SHARP subregion.

At the refuge scale we modeled population change for each of four NWRs that spanned the full survey
region (Rachel Carson, Parker River, Monomoy, and Bombay Hook NWRs), using survey year as a
continuous, fixed effect. We used our knowledge of each refuge to build an appropriate random-effect
structure specific to each model. All refuge models possessed a random effect for survey point identity, to
control for repeated visits. For refuges with a variable number of visits to survey points per year (Rachel
Carson and Parker River NWRs), we also included number of visits as a random effect. Lastly for Rachel
Carson NWR, where the surveys spanned a large number of independent marsh patches across multiple
watersheds, we also included patch area as a fixed effect. At the SHARP subregion and state scales we
modeled maximum count using fixed effects for time (as the two-level categorical variable) and patch
area. We included patch area to control for any changes in the mean size of patches surveyed by the
different data sets through time. We also included three random effects. We used PSU to control for
spatial autocorrelation at the scale of this sampling unit, and we included the number of visits to each
survey point per year to control for differences in survey effort between points. Finally, we included
categorical year to account for differences among years within each of the time steps. In effect, years
become random, independent samples of either the earlier (1998 — 2000) or later (2011 — 2012) time
periods. Trend estimates at the SHARP subregion and state scales were only estimated in New England
due to historical data availability; historical data were much more sparse south of New England,
preventing a robust analysis by state.

To assess whether there were statistically important changes in the populations of each species over
either the categorical (early vs. late) or continuous time frames at each spatial scale, we compared the
fully specified models above to a null model with the time variable removed using Akiake Information
Criterion (AIC). We considered trends to be significant when the model including the variable for time
improved model fit by a AAIC = 2.0. We calculated 95% confidence intervals for all parameter estimates
using the Wald approximation function.
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To assess model fit and validate our estimate further, we (A) confirmed a dispersion ratio (Pearson
residuals compared to degrees of freedom) between 0.33 and 3, (B) confirmed acceptable model fit using
Q-Q plots of the random effect residuals, and (C) held out 30% of our data as a validation dataset to assess
model accuracy for the two largest scale (New England and region-wide) analyses of the five focal species.
Our parameter estimates come from analyses of the full dataset (training and validation dataset
combined) after our model accuracy assessment.

In addition to parameter estimates, we estimate the linear annual percentage of population change for
each model. We estimated compound annual change percentages using model estimates for for the first
and last year of survey ([final/start]'¥/#¥¢a<).1). This approximates annual population change that is directly
comparable across our various spatial, temporal, and metric scales as well as among species.

Marsh Modification Effects — We explored interactions between marsh modification and bird population
change using AlC-based model selection for the five focal tidal-marsh specialists combined and for species-
specific models for each of these five species. For each of these six model selections, we considered the
performance of all combinations of four fixed effects: the interaction between ditching (at the 50 m radius
scale) and year, the interaction between number of downstream restrictions and year, the interaction
between local relative sea-level rise and year, and the interaction between the local 1% exceedance
flooding values and year. Single additive terms were included whenever the interaction term was
included, and all terms were scaled prior to analysis to allow for direct post-hoc comparison of parameter
estimates. With no known exceptions, the overwhelming majority of marsh modifications occurred prior
to our earliest survey data. Thus, each of these four interaction terms test whether more-modified
marshes show different changes in bird populations through time compared to less-modified marshes.
The extent of OMWM, while locally common, was highly restricted to only a few areas (i.e., New Jersey,
Delaware, and Maryland), and we were therefore unable to test its effect across the entire region. We
compared the performance of each of these models to a null model. Parameter weights were calculated
by summing the set of AIC model weights that included each parameter.

All models, including the null, predicted maximum count per year at each surveyed point (with a Poisson
link) as a function of two fixed effects. We included patch area (logarithm transformed) controlled for
expected differences in maximum count in larger patches. The distance of a point upriver (logarithm
transformed), measured as the straight-line distance to the coastline as defined by ArcGIS 10 state-outline
basemaps (ESRI 2014), was included to account for differences from the impacts of storm surges and sea-
level rise. All models also included the random effects of number of visits to the point for each year (to
control for expected increases in maximum count with greater visitations) and PSU identity nested within
NOAA gauge identity (to control for the pseudoreplication of NOAA gauge metrics across different points).
The null structure of the multi-species models were identical to this structure except that we also included
species as a random effect to control for variation across taxa.

We assessed model fit for all models similar to those for the raw trend estimates (above), including the
use of dispersion ratios and Q-Q plots and by withholding 30% of our data for later validation. As with
previous analyses, we report parameter estimates from the full dataset (training and validation datasets
combined) after validating model accuracy. Parameter estimates are model-averaged across the models
within 2.0 AAIC of the top-ranked model (Burnham and Anderson 2002). Further, to assess the sensitivity
of the conclusions from the top-ranked multi-species model, we reran the model on an additional 31
datasets, where each dataset excluded a different section of the global dataset. To produce these
additional datasets, we variously excluded each historical study, each species, one fifth of the latitudinal
range, extremely modified points (those with >5 tidal restrictions), and 10 randomly selected groups of
10% of the data.
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Table 15. Trend direction, percent annual change, parameter estimates for year (+ 95% confidence intervals), AAIC, and number of observations (n) for SGCN abundance
indices within tidal marshes across USFWS Region 5.

Species Survey radius (m) Trend % changelyr B (95% CI) A AIC n
Least Bittern 100 . . -0.33 (-1.2, 0.49) -1.39 403
Great Blue Heron 100 . : -0.09 (-0.25, 0.06) -0.52 1535
Great Egret 100 (+) 6.1 0.26 (0.11, 0.41) 9.88 1205
Snowy Egret 100 . . -0.11 (-0.25, 0.02) 0.60 1535
Tricolored Heron . . . .
Little Blue Heron 100 . . -0.44 (-1.73, 0.81) -1.53 1307
Black-crowned Night-Heron 50 . . 0.32 (-0.24, 0.98) -0.81 1550
Yellow-crowned Night-Heron . . . . .
Glossy Ibis 100 (+) 11.6 0.49 (0.22, 0.76) 9.69 1366
American Black Duck 100 . . 0.04 (-0.21, 0.29) -1.90 1535
Clapper Rail 50 (-) -4.6 -0.34 (-0.61, -0.06) 3.79 586
Virginia Rail 50 . . 0.23 (-0.32, 0.88) -1.39 1550
Black Rail

Black-necked Stilt . . . .
Willet 50 . : 0.13 (-0.01, 0.27) 1.25 1550
Laughing Gull . . . .
Common Tern 100 . . 0.02 (-0.32, 0.33) -1.99 1535
Forster's Tern . . . .
Willow Flycatcher 100 . . 0.22 (-0.07, 0.52) 0.25 1162
Sedge Wren . . . .
Marsh Wren 50 . : -0.07 (-0.33, 0.17) -1.67 1289
Common Yellowthroat 100 (+) 8.5 0.38 (0.29, 0.47) 67.51 1535
Nelson's Sparrow 50 (-) -4.2 -0.21 (-0.33, -0.08) 8.84 608
Saltmarsh Saprrow 50 (-) -9.0 -0.43 (-0.56, -0.31) 44.08 1383
Seaside Sparrow 50 . . 0.05 (-0.21, 0.3) -1.86 809
Coastal Plain Swamp Sparrow 50 . . -0.06 (-0.2, 0.09) -1.40 3691

' Trend directions are only reported when models with the term for time (a continuous term from 1994 — 2012) were AAIC < 2.0 than models without this term. Abundance
was modeled as the sum of observations across all visits to a tidal marsh patch, controlling for the number of visits to each patch and patch area.



Results
SGCN population trends

For the 19 SGCN species for which we modeled abundance over our 18-year period of observation (1994 —
2012) by tidal marsh patch, the abundance of six species was modeled better with a term for annual
change than without one (AAIC range = 3.79 — 67.51; Table 15). Three species (great egret, glossy ibis,
common yellowthroat) showed consistent increases over the period with mean annual increases of 6.5%,
11.6%, and 8.54%, respectively (Fig. 4). Three species (Clapper Rail, Nelson’s sparrow, Saltmarsh Sparrow)
showed consistent declines of 4.6%, 4.2%, and 9.0% respectively. The remaining 13 species appeared
stable over the period of observation (Fig. 4). The two sparrow species that were declining across the
region showed similar rates of decline within our more robust New England comparison across two time
steps (Table 16). Glossy ibis and common yellowthroat also showed increases at this scale, but great egret
and Clapper Rail were stable (Table 16).
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Figure 4. Estimates of the effect of year (+ 95% CI) on the summed maximum count per year per patch of
each Species of Greatest Conservation Need (SGCN). Surveys were conducted between 1998 and 2012
in tidal marshes across USFWS Region 5. Black boxes indicate our five foc species.

Focal species population trends

Clapper Rail — When modeled by survey point instead of marsh patch (as above), Clapper Rail showed
negative trends in our abundance index (modeled as maximum count at the point) at the refuge (Table
17), state (Table 18), and USFWS Region 5 (Table 19) scales. Across the entire region we estimate a 4.6%
decline for this species per year.

Willet — Willet counts appeared stable at both the state (Table 18) and regional (Table 19) scales. Smaller



scale models showed mixed results (Table 17), with increases at Rachel Carson and Monomoy NWRs, a
decrease at Bombay Hook NWR, and no detectable change at Parker River NWR.

Nelson’s Sparrow — Nelson’s sparrows showed decreases in abundance at both the New England (Table
18), and USFWS Region 5 scales (Table 19). Subregional models, however, lacked the statistical power to
detect any change (Tables 18 and 19). There also appears to be heterogeneity in trends at the local scale,
with Rachel Carson NWR showing an increase in abundance (Table 17), contrary to the estimates for that
subregion (no change), state (no change), and the larger scale analyses (decrease). Across the entire
region we estimated a 4.2% decline for this species per year.

Saltmarsh Sparrow — Saltmarsh sparrows showed declines in abundance index at the refuge (Table 17),
state (Table 18), subregional, and regional scales (Table 19). Annual declines ranged from 5.0% (Rachel
Carson NWR) to 18.5% (Coastal
Maine). We detected significant
declines in three of the four long-term
refuge datasets (Rachel Carson, Parker
River, and Bombay Hook NWRs), in two
of the five New England states (Maine
and Connecticut), in two of the three
New England subregions (Coastal
Maine and Cape Cod to Casco Bay),
and across New England and USFWS
Region 5 as a whole (Fig. 5). We
detected no population increases at
any scale, and parameter estimates for
four of the five non-significant analyses
were also negative. Across the entire
region we estimate that Saltmarsh
1o o e w0t Sparrows experienced the greatest
annual population change for any of
our five focal species over our period

BCR 30+

saltmarsh sparrow abundance index
s s :

New England

Figure 5. Estimates of the summed maximum count per year per
patch of Saltmarsh Sparrows (£ 95% Cl) by year for surveys ) )
conducted across USFWS Region 5 (BCR30+) and at two time of observation, a decline at the rate
points across New England, where surveys were conducted using ~ ©f 9.0% annually.

the same field methods over the same spatial extent.

Seaside Sparrow — We detected no change in our abundance index for Seaside Sparrows for all scales
except the refuge scale (Tables 17 — 19). Maximum yearly counts at Bombay Hook NWR (the only long-
term refuge dataset with sufficient detections to model Seaside Sparrows) declined from 1994 to 2007 at
a rate of 3.3% annually (Table 17). Across the entire region, we estimate that this species is stable (Table
19).

Our parameter estimates come from analyses of the full dataset (training and validation dataset
combined) after our model accuracy assessment and model averaged parameter estimates are presented
in Table 20.
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Table 16. Trend direction, percent annual change, parameter estimates for year (+ 95% confidence intervals), AAIC, and number of observations (n) for SGCN
abundance indices within New England tidal marshes.

Species Survey radius (m) Trend % changelyr B (95% CI) A AIC n
Least Bittern 100 . .
Great Blue Heron 100 -0.41 (-0.83, 0.02) 1.50 1307
Great Egret 100 0.61(0.12, 1.08) 3.91 980
Snowy Egret 100 -0.29 (-0.69, 0.09) 0.18 1307
Tricolored Heron . .
Little Blue Heron 100 -0.44 (-1.73, 0.81) -1.53 1307
Black-crowned Night-Heron 50 0.39 (-0.98, 1.93) -1.70 1307
Yellow-crowned Night-Heron . . . .
Glossy Ibis 100 (+) 9.0 0.95 (0.14, 1.72) 3.14 1138
American Black Duck 100 -0.18 (-0.97, 0.55) -1.78 1307
Clapper Rail 50 -0.39 (-1.29, 0.53) -1.31 516
Virginia Rail 50 1.27 (-0.64, 4.31) -0.51 1307
Black Rail

Black-necked Stilt .
Willet 50 0.09 (-0.3, 0.46) 0.65 1307
Laughing Gull . .
Common Tern 100 0.33 (-0.71, 1.23) -1.56 1307
Forster's Tern . .

Willow Flycatcher 100 0.44 (-0.54, 1.46) -1.23 960
Sedge Wren

Marsh Wren 50 -0.39 (-1.11, 0.28) -0.71 1111
Common Yellowthroat 100 (+) 6.9 0.74 (0.48, 1.00) 28.52 1307
Nelson's Sparrow 50 (-) -5.9 -0.67 (-1.09, -0.26) 8.28 448
Saltmarsh Saprrow 50 (-) -12.2 -1.22 (-1.57, -0.89) 49.68 1138
Seaside Sparrow 50 0.23 (-0.5, 0.95) -1.62 734

Coastal Plain Swamp Sparrow

"Trend directions are only reported when models with term for time (a categorical term for early — 1998-2000 — versus late — 2010-2012) were AAIC < 2.0 than models without this
term. Abundance modeled as sum of observations across all visits to a tidal marsh patch, controlling for the number of visits to each patch and patch area.



Table 17. Estimated annual population change' and parameter estimates (f and 95% confidence intervals) for five tidal marsh specialists from long-term
surveys at four National Wildlife Refuges (NWR).

Clapper Rail Willet Nelson's Sparrow Saltmarsh Sparrow Seaside Sparrow
Annual B Annual B Annual B Annual B Annual
Refuge change (95% CI) change (95% Cl) change (95% CI) change (95% Cl) change (95% Cl)
Rachel Carson . 09 0.25 o 0.15 £ 0o -0.19 .
NWR - out of species range - 7.1% (0.12, 0.39) 4.1% (0.02, 0.28) 5.0% (-0.33, -0.05) - out of species range -
(2000 - 2012)
Parker River NWR - out of species range - . -0 101'08 15) - out of species range - -5.6% -0 3'22_(2) 11) - out of species range -
(2000 - 2012) o e
Monomoy NWR - out of species range - 10.8% U2 - out of species range - i - out of species range -
) (0.04, 0.43) : (-0.3, 0.05)
(2005 - 2012)
Bombay Hook NWR  _4g 10 0.8 19 70 -0.55 . ; N 0.4 2 20 -0.14
(1994 - 2007) 18.1% (-0.97, -0.64) 12.7% (-0.64, -0.45) out of species range 9.5% (-0.67, -0.14) 3.3% (-0.19, -0.08)

"Trend directions are only reported when models with the term for time were AAIC < 2.0 than models without this term.

2Bold values indicate parameter estimates where the 95% confidence intervals do not overlap zero.



Table 18. Estimated annual population change' and parameter estimates (f and 95% confidence intervals) for five tidal marsh specialists within five states
with sufficient historical data.

Clapper Rail Willet Nelson's Sparrow Saltmarsh Sparrow Seaside Sparrow
Annual B Annual B Annual B Annual B Annual B
State change (95% Cl) change (95% Cl) change (95% Cl) change (95% CI) change (95% CI)
Maine - out of species range - - data too sparse - -0.26 -10.6% -1.232 - out of species range -
(-0.66, 0.13) ’ (-1.63, -0.82)
. . -1.29 .
New Hampshire - out of species range - - data too sparse - - data too sparse - (-2.93, 0.35) - out of species range -
Massachusetts - out of species range - v - data too sparse - 022 - out of species range -
) (-0.48, 0.62) ’ (-0.63, 0.2)
. -2.22 . 0.5 -0.49
Rhode Island - out of species range - (-5.83, 1.4) - out of species range - . (-0.27. 0.95) . (-2.06, 1.09)
-0.42
. -1.65 . -1.1 -0.26
- o, - - - - ! 0,
Connecticut 12.9% (-2.29, -1.02) . (-0.83, -0.01) out of species range 9.5% (-1.46, -0.73) . (-0.75, 0.23)

"Trend directions are only reported when models with term for time (a categorical term for early — 1998-2000 — versus late — 2010-2012) were AAIC < 2.0 than models
without this term.

2Bold values indicate parameter estimates where the 95% confidence intervals do not overlap zero.



Table 19. Estimated annual population change' and parameter estimates (f and 95% confidence intervals) for five tidal marsh specialists within
four subregions across USFWS Region 5 with sufficient data for analysis.

Clapper Rail Willet Nelson's Sparrow Saltmarsh Sparrow Seaside Sparrow
Annual Annual Annual Annual Annual
Subregion change (95% CI) change (95% Cl) change (95% CI) change (95% CI) change (95% Cl)
Coastal Maine? - out of species range - - data too sparse - 0.04 -18.5% 2,25 - out of species range -
(-0.18, 0.27) : (-3.55, -0.94)
Cape Cod to - out of species range - eh -0.53 -7.3% “Oil - out of species range -
Casco Bay? P 9 (-0.45, 1.06) (-0.95, -0.12) -5 (-1.29, -0.37) P 9
Southern New -1.34 . -0.41 -0.31
England? - data too sparse - (-2.66,-0.02) - outof species range - (-0.73,-0.1) (-0.78, 0.16)
0.41 0.09 -0.67 -1.22 0.23
4 - 0, - )
New England (-1.29, 0.53) (-0.3. 0.46) 59%  (1.00,-026) 42% (457, -0.89) (-0.5. 0.95)
FWS Region 5 469 -0.34 0.13 490 -0.21 D -0.43 0.05
(1998-2012¢  “46% (061, -0.06) 001,027) “42%  (033.008 9% (056 -031) (021, 0.3)

"Trend directions are only reported when models with term for time that were AAIC < 2.0 than models without this term.

2Early vs. late temporal analysis (11-year gap)

3Bold values indicate parameter estimates where the 95% confidence intervals do not overlap zero.

4Time modeled as continuous variation in year



Table 20. Model-averaged parameter estimates’ (95% confidence intervals) for top-ranked models (AAIC <
2.0) of tidal marshbird abundance (i.e., maximum counts per year at a survey point) for five focal species in

USFWS Region 5.
Marsh ditching X Tidal restriction X  Sea-level rise 1% Exceedance
Species Year Year trend X Year value X Year n
Clapper Rail 0.06 (-0.03, 0.35) 0.03 (-0.25, 0.31) 0.01 (-0.23, 0.37) -0.2 (-0.23, 0.37) 2161
Willet -0.05 (-0.08, -0.01)? 0(-0.1,0.1) -0.25 (-0.35, -0.15) . 5501
Nelson's Sparrow 0.05 (-0.02, 0.12) 0(-0.11,0.1) 0.02 (-0.03, 0.06) 0 (-0.04, 0.06) 2393
Saltmarsh Sparrow 3 -0.25 (-0.34, -0.16) 0.04 (-0.09, 0.17) 0.04 (0.02, 0.1) 5180
Seaside Sparrow . 0.33 (-0.02, 0.68) 0.05 (0.02, 0.32) -0.11 (-0.27, -0.04) 2577
All focal species -0.01 (-0.04, 0) -0.16 (-0.21, -0.11)  -0.09 (-0.15, -0.03) . 17812

" All data were scaled prior to analyses to allow for direct comparison of parameter estimates.

2Bold values indicate parameter estimates where the 95% confidence intervals do not overlap zero.

3Blank values indicate that the parameter was not included in the top model(s).

Marsh Modification Effects
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Marsh modification was widespread
across all states and subregions (Table 21).
We detected marsh ditching within 100
meters of 35.1% of our contemporary
(2011 —2012) survey points. We detected
at least one tidal restriction downriver of
42.6% of our survey points. We found
OMWM treatments at a lower proportion
of points (4.8%) across USFWS Region 5.
These points, however, were concentrated
mainly in Delaware (12.7% of points),
Maryland (12.0%) and New Jersey (12.8%).
Due to their local distribution, we did not
include OMWM in any of candidate
models during model selection.

Marsh ditching — The interaction

Figure 6. Parameter estimates (+ 95% CI) for the effect of ~ between marsh ditching (within 50 m of the survey point)
marsh ditching on an index of tidal marsh bird abundance and time was in the top model for three of the five focal

(the maximum count at a survey point over multiple visits species and the overall model with all five focal species
each breeding season). SESP = Seaside Sparrow; SALS = combined (Table 20). The interaction term for ditching,
Saltmarsh Sparrow; NESP = Nelson’s sparrow; WILL = however, was not significant in all but the Willet and the

Willet; CLRA = Clapper Rail

community models, where the effects on trends were

unclear (e.g., greatest declines with intermediate ditching).



For the full community analysis, there was a 56.9% probability (parameter weight) that the effect of
ditching on population trends was in the best model among the candidate model set. The parameter
weight for ditching among the single-species models ranged from 12.9% (Seaside Sparrow) to 86.3%

(Nelson’s sparrow) with a mean (+ SD) of 48.0% (+ 31.3%). The ditching interaction term alone, however,

was ranked lower than the null model in all six model selections. Abundance also did not appear to be

strongly impacted by the degee of ditching, with the exception of Clapper Rails, for which abundance was

significantly higher in unditched marshes (Fig. 6).
Table 21. Extent of tidal marsh modification by state across USFWS Region 5 as of 2014.

Open Water Marsh
Marsh ditching Management (OMWM) Percent
locations
Percent Percent Percent Percent affected by
locations locations locations locations downriver
affected affected affected affected tidal Total
State (50m) (100m) (50m) (100m) restriction locations'’
Maine 9.43 13.52 0.00 0.00 58.18 318
New Hampshire 41.94 50.00 0.00 0.00 67.74 62
Massachusetts 60.31 66.54 0.00 0.00 44.36 257
Rhode Island 33.33 46.30 0.00 0.00 72.22 54
Connecticut 66.33 74.49 0.00 0.00 47.96 98
New York 55.38 64.62 0.77 0.77 43.85 130
New Jersey 40.86 49.14 9.14 12.86 49.14 350
Delaware 38.24 49.02 6.86 12.75 28.43 102
Maryland 38.39 47.32 6.25 12.05 27.68 224
Virginia 0.47 0.47 0.00 0.00 11.16 215
Total (Region 5) 35.08 41.77 2.98 4.75 42.60 1810

"Locations where modifications were measured (i.e., bird survey points) were stratified by land ownership and ecological subregion

Tidal restrictions — The interaction between the number of tidal restrictions (downstream of the survey

point) and time was included in the top models for each of the five species and the community-level

analysis, although it was only significant for the community wide model and for Saltmarsh Sparrows (Table

20). In the community-level analysis, the abundance index was stable over the period of observation in
unrestricted marshes but declined in restricted marshes (Fig. 7). Declines were evidenced for both

restricted and unrestricted marshes for Saltmarsh Sparrows, although declines were steeper in restricted

marshes (Fig. 8). Models that included the interaction between tidal restriction and abundance index
trends were ranked higher than all models that did not (including the null) for the community model
(restriction interaction parameter weight > 99.9%) and all of the single-species models (parameters
weights all > 99.9%) except for Clapper Rail (parameter weight = 95.3%), where the first ranked model
without the restriction interaction was still 6.0 AAIC from the top-ranked model. Tidal restriction also
impacted abundance on average at marshes, controlling for temporal trends (Fig. 9).

47



084

0.6

— >4 restrictions

----- 1-4 restrictions

™

== no restrictions

abundance index

LIXY]

1998 2000 2002 2004 2006 2008 2010 2012

year
Figure 7. Effect of tidal restrictions on the maximum count at a survey point over time in all five focal
species for the USFWS Region 5, Model output accounts for patch area, distance upriver, species, number
of visits per point per year, and spatial autocorrelation among points.
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Figure 8. The predicted mean maximum count of Saltmarsh Sparrows per point (+ 95% Cl) for each year in
tidal marshes across USFWS Region 5 in marshes with tidal restrictions downriver of the survey point
(dotted line) and those without restriction (solid line).
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Figure 9. Parameter estimates (£ 95% CI) for the effect of tidal restriction downstream of a survey point on
an index of tidal marsh bird abundance (the maximum count at the point over multiple visits each breeding
season). SESP = Seaside Sparrow; SALS = Saltmarsh Sparrow; NESP = nelson’s sparrow; WILL = Willett,

and CLRA = Clapper Rail.
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Sea-level rise — Local trends for relative sea-level rise were also important predictors of changes in bird
counts during our observation periods. The interaction term between sea-level rise and time was in the
top models for all five, single-species analyses and in the focal-species community analysis (Table 20). The
parameter weight for the community model was 95.6%. Among the single-species analyses, parameters
weights were 24.8% (Clapper Rail), 34.1% (Seaside Sparrow), 80.6% (Saltmarsh Sparrow), 88.4% (Nelson’s
sparrow), and > 99.9% (Willet). The effect of sea-level rise on the population trend was variable by both
year and species (Fig. 10). The same was true for the effect of sea-level rise on abundance (Fig. 11). The
rate of sea-level rise, however, is strongly correlated with latitude, and finer scale analyses would be
required before we could eliminate position within the range as an alternative explanation of these
patterns.
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Figure 10. Parameter estimates (+ 95% CI) for the interaction between time (year) and either the number of
tidal restrictions downriver of a marsh or the 30-year average sea-level rise trend (measured by nearby
NOAA buoy data). The complete model predicts the maximum number of birds detected for five tidal-marsh
specialist species (Willet, Clapper Rail, and Nelson’s, , and Seaside sparrows), controlling for patch area,
distance upriver, species identity, and the number of visits to the survey point each year. Each point (n=31)
represents a different subset of our complete dataset to test the stability of the parameter estimates.
Parameter estimates from the complete dataset is shown in the box.
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Figure 11. Parameter estimates (£ 95% CI) for the effect of local rate of relative sea-level rise on an index
of tidal marsh bird abundance (the maximum count at the point over multiple visits each breeding season).
SESP = Seaside Sparrow; SALS = Saltmarsh Sparrow; NESP = nelson’s sparrow; WILL = Willett, and
CLRA = Clapper Rail.

High-marsh flooding probability — The frequency of flooding of the marsh surface (as indicated by 30-
year mean, 1% exceedance values) was not included in the top models for the entire community
(parameter weight = 16.5%) or for the model for Willet (weight = 12.5%). Further they were not
significant for the models for either Clapper Rail (weight = 88.8%) or Nelson’s sparrow (weight = 31.6%).
For Saltmarsh Sparrows (weight = 93.0%), declines were steepest in marshes with more frequent flooding
(those with exceedance values in the top third), and declines were similar among marshes in the bottom
two-thirds of exceedance values. Conversely, Seaside Sparrows (weight = 67.4%) increased in marshes
with exceedance values in either the bottom or top third of values, but declined in marshes with
intermediate exceedance values. Like sea-level rise, however, exceedance values are correlated with
latitude, with the highest values in the Long Island Sound and declines toward both the north and south.
Finer scale analyses would be necessary to eliminate this spatial pattern as the cause for these effects.

Tidal restriction versus sea-level rise — While the effects of both tidal restriction and relative rate of
sea-level rise were in the top models for all five species and the community model, the relative
importance of the two drivers of population change varied. For the community model using the full
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dataset, the effect of tidal restriction on population decline was greater than relative sea-level rise (Fig.
10). This ranked importance was stable across all regions and species (Fig. 10). Further the predicted
effect of restriction on population trend was very consistent, but the effect of local sea-level rise was
more variable (Fig. 10). It is clear, however, that both drivers are important for predicting changes in
populations through time. Models with both interaction terms ranked higher than models with just a
single interaction for all but the model for Seaside Sparrows, where restriction and exceedance values
were most important.

Conclusions

In coastal marshes of the northeast, tidal restriction drives declines both in the Saltmarsh Sparrow (Fig. 8)
and in the specialist avifaunal community as a whole (Fig. 7), and it supersedes relative sea-level rise as a
dominant driver of community decline (Fig. 10). On average, tidal-marsh specialists are declining in
locations that are tidally restricted, but are maintaining their populations in marshes that have no road
crossings affecting tidal flow. Anthropogenic modification of marshes directly affects soil chemistry and
sediment supply to coastal wetlands (Portnoy and Giblin 1997a,b), which in turn affect vegetative
communities in these areas (Warren and Niering 1993). Marsh accretion, driven both by sediment input
and accumulation of dead vegetative material as peat, is the primary mechanism available to coastal
marshes to keep pace with local and regional sea-level rise (Pont et al. 2002; Day et al. 1997). In short,
marshes need sediment to maintain high marsh communities with sea-level rise, and tidal restrictions
starve marshes of sediment supply.

The relative success of Monomoy NWR at maintaining tidal marsh bird populations may serve as an
appropriate object lesson due its geomorphological and human impact conditions. The refuge consists of
a semi-open beach system, where overwash from the beach can supply sediment to the marsh. This
refuge was the only area where we detected no declines in any tidal marsh species. Conversely, Bombay
Hook NWR shows the steepest declines for all tidal-marsh specialists and is more restricted, although only
upriver from the majority of the marsh. The relative rate of sea-level rise is higher in the Mid-Atlantic than
itis in New England, and that may explain much of the challenges to more southern systems. Sea-level
rise alone does not explain population declines, however, and for those areas with higher rates of sea-
level rise, a ready sediment supply is likely even more important for maintaining high marsh habitats and
the organisms they support.

The steepest significant decline detected was in the Saltmarsh Sparrow (Fig. 4), the species most
specialized to high marsh. Unlike other specialists, the Saltmarsh Sparrow exists completely in coastal
marshes of the eastern United States, and utilizes only the high-marsh zone for nesting and raising young
(Greenlaw and Rising 1994; Shriver et al. 2010). With no known alternate refugia for this species, the
negative trends we found at every spatial scale are alarming but not surprising. In light of sea-level rise
and declining sediment supplies from marsh restriction, the global population of the Saltmarsh Sparrow
will continue to shrink with declining high marsh extent. We found similar declines both locally and across
the region for the Clapper Rail, which also nests exclusively in the high marsh. The species did appear
stable in New England, although it is uncommon there overall.

The Seaside Sparrow is similar to the Saltmarsh Sparrow in that it also exists exclusively in tidal marshes of
the eastern United States, however its breeding range is much larger, encompassing much of western
Florida and the Gulf coast (Post and Greenlaw 2009). The only significant trend observed for this species
was at Bombay Hook NWR, a refuge that produced negative trends in all species examined. The
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difference in trend between this species likely reflects the Seaside Sparrow’s broader selection of
microhabitat for breeding within tidal marsh, which is inclusive of the wetter low-marsh zone (Kern 2015;
Pennings and Callaway 1992). This combined with the more expansive breeding range of this species may
be important in maintaining Seaside Sparrow breeding populations within northeastern tidal marshes.

We found no regional trends for Willets, despite them occurring across the entirety of USFWS Region 5.
Instead we found heterogenous trends at the local level, with three of the four refuges showing significant
trends in both directions. There is no emergent story for eastern Willet, although it appears that
prevailing population drivers exist at the local level. In contrast to our other tidal marsh specialists,
however, Willets do not nest exclusively in the marsh, also using coastal dune grass systems. The
heterogeneity in local population change we report here may reflect the local availability of alternative
nesting substrates.
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VI. Fecundity
Methods

Nest monitoring & nest success

From 2011 to 2013, we implemented a standardized data collection protocol (Appendix B) for our five

focal species plus American black duck at twenty-three study plots (Table 22) spanning a great circle
distance of approximately 575 km (Fig. 12). Our survey covered 59% of the Saltmarsh Sparrow’s breeding
range (based on distribution data reported in section IV, above) and 89% of the breeding range of the

nominate subspecies, Ammodramus caudacutus caudacutus (Montagna, 1942). Study plots consisted of

Figure 12. Our demographic study plots span seven
states within the Saltmarsh Sparrow breeding range

(shaded). Within each boxed area, we surveyed one
to five study plots (generally in different watersheds)

for a total of 23 plots.

1-28 ha areas of tidal marsh in the high-marsh
zone. At each study plot, we searched for nests
at least once per week throughout the breeding
season (May to August). Once we found a nest,
we revisited it every 2-4 days (with rare
exceptions) to determine success or failure. If a
nest failed, we determined the cause of nest
failure based on evidence at the nest site
(Appendix B).

Broadly, we assigned depredation as the cause of
nest failure to nests found with broken or
punctured eggs, mangled chicks, or to nests that
were empty and dry after nights that did not
have tides high enough to flood the high marsh.
We assigned flooding as the cause of failure to
nests that were wet after nights with tides high
enough to inundate the high marsh, contained
drowned chicks, or had intact eggs outside the
nest (presumably because they floated out). We
classified nests as failed for unknown reasons in
cases of conflicting evidence (e.g., nest bowl was
visibly wet and contained punctured eggs). We
considered nests successful if, after survival on all
previous visits, they were found empty when at
least one nestling would have been 10 days old,
the age at which chicks are able to leave the nest
(Greenlaw & Rising, 1994).

We captured females at nests with mist nets and
individually marked them with uniquely-
numbered aluminum leg bands (United States
Geological Survey) to track multiple breeding
attempts within the same season (see Seasonal
Fecundity, below). In part of their range,
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Saltmarsh Sparrows are sympatric and interbreed with their sister species, the Nelson’s sparrow. Within
this hybrid zone (Gulf of Maine), we only identified a nest as belonging to either species if we successfully
caught the female, whereas outside of the hybrid zone (Long Island Sound and south), species identity was
assigned by egg and nest characteristics. Species identity within the hybrid zone was assigned using a
linear discriminant function analysis developed with to predict the genetic species identity (separating
pure and back-crossed Saltmarsh Sparrows from pure and back-crossed Nelson’s sparrows) using
morphometric and plumage characteristics (Walsh et al. 2015). First and second generation hybrids (F1 &
F2) are exceedingly rare in this hybrid zone (measured at our study plots: Walsh et al. 2015).

We used the program MCestimate (Etterson et al., 2007, 2014) to calculate daily probabilities of nest
survival and failure from competing risks. MCestimate employs a Markov chain algorithm to estimate
daily nest-failure probabilities via a generalization of the Mayfield method (Mayfield, 1975). Unlike more
traditional logistical exposure models (Dinsmore et al., 2002; Rotella et al., 2004; Shaffer, 2004),
MCestimate can separately estimates probabilities of failure due to competing risks, in additional to total
daily nest survival probability. To report the daily probabilities of nest depredation, nest flooding, and
total nest survival by study plot, we created models with study plot as the sole fixed-effect covariate to
allow for maximum variation. We only calculated cause-specific failure probabilities, however, for the
species for which we had the most data (Saltmarsh Sparrow). For the remaining species we estimated
failure risk as a single daily probability.

We also report annual nest abundance (total nests found during each breeding season) and nest density
(nest abundance divided by plot area) for all six species by study plot. To capture relative effort at each of
these areas, we present the date of the first-laid egg (either observed, or back-calculated from hatching
dates) and the date of the first-laid egg in the last observed nest across all six species on each study plot.
Nests were observed for up to 25 days after this first-laid egg, depending on nest outcome.

Seasonal Fecundity

For the three species where we individually marked females (Seaside, , and Nelson’s sparrows), we used
the program MCnest to estimate average seasonal fecundity of females via population projections at each
study plot (Saltmarsh Sparrow) or US State (Seaside and Nelson’s sparrows). For full details on MCnest,
see Bennett and Etterson (2007) as well as Etterson and Bennett (2013). In short, MCnest creates a
compound Markov chain, composed of time-varying transition probabilities from one state to another
based on daily nest failure probabilities (calculated in MCestimate, as above) and various life history
parameters. We modeled female transitions among seven states: pre-breeding, rapid follicle growth, egg
laying, incubation, nestling brooding, waiting to renest following a failed nesting attempt, waiting to
renest following a successful attempt, and post-breeding. The compound Markov chain ultimately
describes the probabilities of every transition from one state to another for each day of the breeding
season. Projections then simulate females within this Markov chain and calculate the expected number of
successful broods per season for each simulated female. We estimated fecundity for each study plot or
US State by multiplying this value by the mean successful brood size for each species (brood size did not
vary significantly among study plots for any of the three sparrows). For each projection, we modeled a
population of 100 females to estimate seasonal fecundity and its variance.

We parameterized the length of each state using either field data or values from the literature. We
included observed spatial variation in these parameters whenever appropriate. For each parameter, we
first identified if the trait varied locally by testing for differences in mean trait values across study plots
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Table 22. Location and associated covariate information for 23 plots for the study of tidal marsh bird reproduction, 2011-2013.
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Oyster Creek NJ 39.5 -74.4 Atlantic City, NJ 1.60 Atlantic City, NJ 1.47 Atlantic City, NJ 4.63 5807.2
Mullica Wilderness NJ 39.5 -74.4 Atlantic City, NJ 1.60 Atlantic City, NJ 1.47 Atlantic City, NJ 4.63 5807.2
AT&T NJ 39.7 -74.2 Atlantic City, NJ 1.60 Atlantic City, NJ 1.47 Atlantic City, NJ 4.63 2174.6
Four Sparrow Marsh'’ NY 40.6 -73.9 Sandy Hook, NJ 1.64 Sandy Hook, NJ 2.06 Sandy Hook, NJ 419 16.8
Sawmill Creek’ NY 40.6 -74.2 Bergen Pt., West Reach, NY 1.65 The Battery, NY 1.68 The Battery, NY 3.47 87.5
Marine Nature Park? NY 40.6 -73.6 Sandy Hook, NJ 1.64 Sandy Hook, NJ 2.06 Sandy Hook, NJ 4.19 16.9
Idlewild’ NY 40.7 -73.8 Sandy Hook, NJ 1.64 Sandy Hook, NJ 2.06 Sandy Hook, NJ 419 94.7
East River CT 41.3 -72.7 New Haven, CT 2.50 Bridgeport, CT 1.65 New London, CT 3.53 436.8
Hammonasset CT 41.3 -72.5 New Haven, CT 2.50 New London, CT 1.89 New London, CT 3.53 244.7
Pattagansett CT 41.3 -72.2 New London, CT 1.50 New London, CT 1.89 New London, CT 3.53 25.8
Waterford CT 41.3 -72.1 New London, CT 1.50 New London, CT 1.89 New London, CT 3.53 8.1
Barn Island CT 41.3 -71.9 New London, CT 1.50 New London, CT 1.89 New London, CT 3.53 134.3
John H. Chaffee RI 41.4 -71.5 Newport, RI 1.44 Newport, RI 1.84 New London, CT 3.53 73.5
Sachuest Point RI 41.5 -71.2 Newport, RI 1.44 Newport, RI 1.84 New London, CT 3.53 20.0
Parker River MA 42.8 -70.8 Fort Point, NH 2.27 Seavey Island, ME 1.14 Boston, MA 2.88 1322.2
Chapman's Landing NH 43.0 -70.9 Fort Point, NH 2.27 Seavey Island, ME 1.14 Portland, ME 0.94 69.7
Lubberland Creek NH 431 -70.9 Fort Point, NH 2.27 Seavey Island, ME 1.14 Portland, ME 0.94 22.4
Eldridge Road ME 43.3 -70.6 Wells, ME 2.41 Seavey Island, ME 1.14 Portland, ME 0.94 381.2




Table 22. Continued.
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Little River ME 43.3 -70.5 Wells, ME 2.41 Seavey Island, ME 1.14 Portland, ME 0.94 86.4
Jones Creek ME 43.5 -70.4 Portland, ME 2.46 Portland, ME 1.23 Portland, ME 0.94 888.5
Nonesuch River ME 43.6 -70.3 Portland, ME 2.46 Portland, ME 1.23 Portland, ME 0.94 888.5
Libby River ME 43.6 -70.3 Portland, ME 2.46 Portland, ME 1.23 Portland, ME 0.94 888.5
Scarborough River ME 43.6 -70.4 Portland, ME 2.46 Portland, ME 1.23 Portland, ME 0.94 888.5

" Water level values were obtained from 2012 and 2013 data only because this study plot was not surveyed in 2011 when Hurricane Irene resulted in particularly high water levels in

this area.
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(or US states in the case of Nelson’s and Seaside sparrows). For parameters that did not vary significantly
by study plot or for which we had too little data to test for differences among study plots, we used either
a value from the literature or the global mean trait value across all study plots. For parameters that varied
significantly by study plot, we used the mean trait value at the smallest scale that met a required
minimum (more justification on this minimum below). For parameters where the number of cases was
not high enough to estimate by study plot in all years, we used either the U.S. state (i.e., ME, NH, MA, R,
CT, NY, NJ) or subregional mean trait value (i.e., Gulf of Maine, Long Island Sound, New York Harbor, or
New Jersey Coast). We did not perform MCnest projections for study plots that failed to meet the
minimum number of observations for all parameters, though nests at excluded study plots are included in
the subregional and global mean trait value estimates.

For Saltmarsh Sparrows, where individual study plot projections were run, we set a minimum sample size
necessary to estimate traits at that small of a scale. We set this minimum by determining the smallest
sample size of random draws where the mean of no more than one draw out of twenty was significantly
different than the true mean of the measured population. Twenty observations within each draw were
sufficient to estimate plot-level means for our most variable life history parameter. Conservatively, we
used this minimum sample size for all our parameters that were approximately normally distributed. For
three of our parameters with different distributions (renesting probability and the beginning and end
dates of the breeding season) we doubled our minimum number of observations. As the start and end of
the breeding season varies widely from year to year, we treated years separately when calculating the
observed sample size for these parameters.

Default state lengths — For all three species we assumed that the period of rapid follicle growth lasted
for four days, that eggs were laid one per day until clutch completion, and that the nestling period lasted
for ten days based on values from the literature (Greenlaw et al. 1994; Shriver et al. 2011; Post and
Greenlaw 2009). Because the Markov-Chain structure of MCnest requires that stages are discrete, clutch
size must be modeled as an integer (to allow for one egg to be laid each day). Although clutch size does
vary across latitude (see below), it does so by less than a complete egg across the range of our study plots.
We thus modeled the egg-laying period as the modal clutch size for each species across all plots (four for
all species). We also assumed that incubation began with the laying of either the penultimate (Nelson’s
sparrow: Shriver et al. 2011) or the ultimate egg (Seaside and Saltmarsh sparrows: Post and Greenlaw
2009; Greenlaw et al. 1994) and continued for the mean incubation period observed across all of our sites
(after confirming that it did not vary systematically with latitude). This resulted in incubation periods of
twelve (Seaside and Saltmarsh sparrows) and thirteen (Nelson’s sparrows).

We set the start of the season for each year using observed values from the field. Each female for a given
region was assigned a start date based on the date of the earliest field-observed nesting attempt for that
year and region. We calculated the first and last nesting attempt dates for Seaside Sparrows for each year
and U.S. state within the species range (i.e., CT, NY, NJ); dates for Saltmarsh Sparrow were assigned by
subregion (i.e., Gulf of Maine, Long Island Sound, New York Harbor, and New Jersey Coast); and first and
last breeding dates for Nelson’s sparrow were calculated for each year across all U.S. states where we
modeled fecundity (i.e., ME and NH). We calculated first-laid egg dates from our field observations in
three ways: 1) for nests that were observed in the midst of egg-laying, we back-counted to the date the
first egg was laid (assuming 1 egg laid per day); 2) for nests that hatched, we back-counted based on the
estimated age of chicks at the first visit post-hatch, combined with the expected incubation and laying



interval; 3) for nests that were neither observed during egg-laying nor hatched, we used all the nests that
were found during egg-laying or hatched from that year and study plot to estimate the average number of
days between first egg date and nests discovery. We then subtracted this average from the discovery date
for all nests without calculatable first-laid egg dates, assuming that the local habitat (e.g. height of the
vegetation, accessibility of the marsh) and observers (crews included different technicians in each year)
were most likely to influence discovery probability of nests. We used the date of the last field-observed
nest initiation year, region, and species as the end of nest initiation (see transition probability to non-
breeding discussion below).

For all three species, we set the length of the two waiting states (following either failure or fledging) in the
same way for each site, because the average length of this state did not vary by plot. Upon completion of
each nesting attempt, females either transitioned into renesting or post-breeding. Females that
transitioned to renesting were assigned a waiting period length as a randomly selected value among the
appropriate set of field-observed waiting period lengths for their species across all sites and years.
Renesting females then waited their assigned interval before initiating egg-laying for a subsequent nesting
attempt.

Transition probabilities among states — Once each female was assigned a season start date for the
region and year, we modeled the transition probability from pre-breeding to rapid follicle growth (i.e., the
first breeding stage) for Seaside and Nelson’s sparrows using the default value from MCnest (0.25 per
day), which was originally calculated for white-crowned sparrows. For Saltmarsh Sparrows, however, we
first calculated the mean number of days between a female’s first observed nest of the season and the
first observed nest of the season in each subregion (i.e., Gulf of Maine, Long Island Sound, New York
Harbor, and New Jersey Coast) and year. The inverse of this average is an estimate of the mean daily
probability of breeding initiation, assuming that the probability of a female entering into breeding from
pre-breeding is uniform across that period. This resulted in a daily transition probability of 0.04 for all
subregions and years for Saltmarsh Sparrows.

For Seaside and Nelson’s sparrows we modeled the transition probability from those states with an active
nest (laying, incubating, or brooding) to those without (waiting following a successful or waiting following
a failed nesting attempt) using the daily probabilities of failure due to either flooding or predation
estimated independently for each U.S. state. For Saltmarsh Sparrows, where we had a higher sample size
for nests, we used the failure probabilities estimated for each study plot.

Further, because of the higher sample size for Saltmarsh Sparrow nests, we were able to allow flooding
probability to covary with the local tidal height. Nest flooding probability is not a linear function of
observed water depth due to the relatively homogeneous elevation profile of tidal marshes. Flooding risk
is low until water spills over the stream channels of the lower marsh and into the high marsh plain.
Further, the steepness of the non-linear relationship between water depth and high marsh flooding
probability varies by marsh according to local microtopography. Thus, we tested a variety of
transformations (Table 23) to model the threshold function of flooding probability for Saltmarsh Sparrows
in the high marsh zone by study plot. We modeled nest flooding probability for each study plot as a
function of the observed daily maximum observed water level at the nearest NOAA station to incorporate
flooding from both astronomical tides and storm surges. We used second order Akaike’s Information
Criterion (AIC.) to compare candidate model transformations while accounting for small sample size, using
the criteria that models with AAICc < 2.0 were equivalent (Akaike 1974; Burnham and Anderson 2002).
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We used the top model for each study plot as the transformation of water-level data for all subsequent
steps. At two study plots (Hammonassett and Lubberland Creek), we observed no depredated nests. For
those study plots, we modeled overall daily nest failure probability, rather than just the component nest
flooding probability, as functions of the daily observed water level data. Daily nest predation probability
for Saltmarsh Sparrows at each site was modeled as a constant transition probability throughout the
breeding season and among years.

Table 23. Sample sizes and transformations for modeling tide-level-dependent failure probabilities for
Saltmarsh Sparrows by study plot, 2011-2013.

Nests with  Nest failure

Nests Observations Exposure Identified probability
Study Plot State Observed (visits) Days Females transformation
Oyster Creek NJ 30 80 244 10 (daily water level)*4
Mullica Wilderness NJ 70 178 588 40 (daily water level)*4
AT&T NJ 68 205 659 36 (daily water level)*4
Parker River MA 26 106 339 26 (daily water level)*4
Jones Creek ME 78 337 886 78 107 (-daily water level)
Nonesuch River ME 28 124 308 28 (daily water level)*4
Libby River' ME 4 NA NA 4 N/A
Scarborough Marsh ME 58 235 593 58 (daily water level)*4
East River CT 60 145 511 24 107(-daily water level)
Hammonasset CT 50 140 486 33 2/\(-daily water level)
Pattaganset' CT 5 NA NA 2 N/A
Waterford" CT 1 NA NA 0 N/A
Barn Island CT 33 62 238 8 1.57(-daily water level)
Eldridge Road ME 60 228 576 60 2/\(-daily water level)
Lubberland Creek NH 25 119 327 25 107(-daily water level)
Little River! ME 4 NA NA 2 N/A
Chapman's Landing NH 129 700 1648 129 (daily water level)*2
John H. Chaffee RI 28 74 263 4 (daily water level)*4
Sachuest Point RI 20 33 126 0 (daily water level)*4
Idlewild? NY 6 86 326 5 (daily water level)*4
Four Sparrow Marsh? NY 15 86 326 12 (daily water level)*4
Sawmill Creek NY 26 60 227 21 10/(-daily water level)
Marine Nature Park? NY 10 86 326 7 (daily water level)*4

" Fecundity nest success was not modeled for plots with fewer than 20 observed nests across all years.

2 Three plots were combined into a single “Jamaica Bay” plot due to sample size.
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On the first day following the completion of a nesting attempt (due to either success or failure), females
had a given probability of transitioning to the post-breeding state. Thus females could quit the breeding
pool after any breeding attempt. We estimated daily quitting probabilities via logistic regressions,
modeling whether or not a female was observed to renest in the field as a function of the calendar day of
the completion of the previous nesting attempt. We modeled quitting probabilities for Saltmarsh
Sparrows at either the study plot level or the subregion, depending on sample size. For Nelson’s and
Saltmarsh sparrows we used a single quitting probability for all study plots. If a nesting attempt ended,
however, (by either success or failure) after the latest field-observed nest iniation date for that species,
region, and year, the transition probability to post-breeding was set as 1.0. In this way we did not model
any nesting attempts that began later than our field observations. If the modeled female did not quit on
the first day after the completion of an attempt, it transitioned to the appropriate waiting period, as
described above.

Spatial Patterns

In addition to plot by plot descriptions of nest success for all of the nesting species and estimates of
seasonal fecundity for the three individually marked species, we also explored spatial correlates of nest
success and fecundity for the species for which we had the most information, Saltmarsh Sparrow.
Specifically, we 1) tested for differences in overall nest success and in the causes of nest failure (flooding
verus predation) across the Saltmarsh Sparrow range and 2) tested whether there was a “range center”
for peak seasonal fecundity.

Tradeoffs between flooding and predation in Saltmarsh Sparrows — Organismal distributions are
often hypothesized to be limited by abiotic stressors at high latitudes and biotic stressors at low latitudes
(Dobzhansky, 1950; MacArthur, 1984; Brown, 1995; Brown et al., 1996). Normand et al. (2009) called this
the Asymmetric Abiotic Stress Limitation (AASL) hypothesis. Broadly, it postulates that a tradeoff exists
between physiological hardiness, which increases fitness in stressful abiotic conditions, and competitive
ability, which increases fitness in areas of low abiotic stress. The AASL hypothesis has been supported by
a wide range of tests in a diverse array of species (see Parmesan et al., 2005 for a review). Absolute
empirical support for this hypothesis requires quantifying demographic rates as functions of biotic and
abiotic stressors across the range of a species, but the AASL hypothesis has almost never been tested with
demographic data.

We directly tested the AASL hypothesis by investigating patterns of reproduction at our sites across the
majority of the Saltmarsh Sparrow range. We quantified nest survival probabilities using MCestimate (as
described above), separately estimating the probability of nest loss due to biotic (predation) and abiotic
(flooding) stressors. Finally, we explored how the different failure probabilities vary across the landscape,
to test whether biotic stressors become increasingly important moving toward low latitudes and abiotic
stressors are more important toward high latitudes, in accordance with the AASL hypothesis.

Within the Saltmarsh Sparrow breeding range, abiotic stressors follow a roughly north-south gradient.
Abiotic stressors include climate, the stressor that formed the basis of the AASL hypothesis, and the
magnitude of tidal flooding, which has been identified as the leading cause of Saltmarsh Sparrow nest
failure across a wide geographic range (Greenlaw & Rising, 1994; Gjerdrum et al., 2005, 2008; Shriver et
al., 2007). Marshes at the high-latitude edge of the Saltmarsh Sparrow range experience astronomical
high tides that are almost two times greater than those experienced in more southerly marshes (Fig. 12).
Conversely, in tidal marshes across the range of the Saltmarsh Sparrow, lower latitude wetlands host nest
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predators that have no high-latitude analog (e.g., rice rats, Oryzomys palustris; Post, 1981)). Further, ina
meta-analysis of all the avian taxa endemic to tidal marshes in North America, nest predation rates
decreased with latitude (Greenberg et al., 2006a).

We included two covariates as potential predictors of nest depredation probabilities: latitude and serial
date. We recorded the latitude and longitude of each study plot (Table 22) at its approximate center using
ArcGIS version 10.1 (Environmental Systems Research Institute, Redlands, USA). We included serial date
as a covariate to control for potential increases in predation throughout the breeding season as has been
reported in a variety of avian taxa (see Verhulst & Nilsson, 2008 for a review).

To describe nest flooding, we used latitude, serial date, and three additional potential predictors to reflect
distinct inputs to tidal marsh hydrology: maximum high tide, extremity of rare flooding events, and
relative sea-level rise (Table 22). Tidal marshes are shaped by both regular flooding caused by
astronomical tides and irregular flooding caused by weather. Both types of flooding contribute to marsh
development and maintenance (Teal, 1986). In addition, recent anthropogenic sea-level rise has
contributed to higher water levels and increased flooding of tidal marshes (Wong et al., 2014). We used
latitude as a proxy for maximum high tide based on the observed relationship between the two variables
in our study region (Fig. 13) to test the

. AASL Hypothesis. We also included
o.”. maximum observed high tide within the
study period as a more direct measure of
"" o tidal height. We obtained water-level data

from the National Oceanic and
Atmospheric Administration (NOAA) using
the observation station with available data
that was closest to each demographic study
39 40 ed . 43 44 | plot (approximately 15-50 km by water).
Latiide {deckmal degrees) We used NOAA’s recorded water levels
above the mean daily high tide (mean

Maximum High Tide (meters)
O = N W ko 3~ 0 O

Figure 13. Maximum high tide height by study plot, as ) )
measured by maximum observed water level, May-Augustin  Nigher high water datum, hereafter
2011-2013. Maximum high tide height generally increases MHHW) for 1% annual exceedance
with latitude in the northeastern coast of the USA. probabilities to reflect the extremity of

rare flooding events at a study plot.
Exceedance probabilities describe the likelihood that water level will surpass a given level; for example, a
1% annual exceedance probability level of 1.23 m above MHHW means that only once in 100 years will the
water level likely reach 1.23 m above MHHW. This datum is corrected for local relative sea level rise.
Finally, we collected linear sea-level rise estimates based on 1969-2011 water levels from Boon et al.
(2012), using the location nearest to each demographic study plot (approximately 15-55 km by water).
Finally, we included serial date as a covariate because monthly high tides decrease in height throughout
the breeding season.

We used MCestimate to generate daily nest survival and failure probabilities as functions of nest- and
study plot-level covariates from nest monitoring data (Shaffer, 2004; Etterson & Stanley, 2008). We
adopted a two-stage approach for model selection (Table 24). First, we separately compared candidate
models for biotic and abiotic nest failure probabilities. We compared models containing all additive
combinations of potential covariates of nest depredation probability (latitude and serial date) while
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modeling nest flooding probability as constant, plus an intercept-only null model (4 candidate models
total: Table 24 A). Similarly, we modeled nest depredation probability as constant while we compared all
additive combinations of the potential covariates of nest flooding probability (latitude, maximum high
tide, 1% exceedance value, linear sea-level rise rate, and serial date) and an intercept-only null model (32
candidate models total: Table 24 B). We used second order Akaike’s Information Criteria (AIC.) to
compare candidate models in each set while accounting for sample size. Models with AIC. < 2.0 were
considered equivalent (Akaike, 1974; Burnham & Anderson, 2002). For the second stage of model
selection, we built a combined model based on the best models for nest depredation and flooding
probabilities, and compared the combined model to an intercept-only null model and the best models
from the previous stage (Table 24 C).

Testing for a range-wide center of fecundity in Saltmarsh Sparrows — We explored the relationship
between seasonal fecundity and latitude across the Saltmarsh Sparrow range. We used a linear regression
in R (R Core Team 2014) to test whether latitude predicted seasonal fecundity as estimated by MCnest
population projections by study plot (as described above). Specifically, we modeled a quadratic
relationship between latitude and seasonal fecundity, because we predicted that seasonal fecundity
would be highest at the geographic center of the Saltmarsh Sparrow range and decline linearly toward the
range margins. We then tested for spatial correlation in fecundity by comparing variance within study
plots to variance among study plots and by regressing all pairwise differences in fecundity by study plot to
all pairwise differences in latitude. Because there were many more pairwise comparisons that were
geographically close than distant, we controlled for sampling effort through subsampling. We binned
pairwise differences by single degrees of latitudinal distance, and for each bin we randomly subsampled
the number of comparisons in the bin with the fewest comparisons. We randomly subsampled the
dataset 10 times and ran a simple linear regression between latitudinal difference and difference in
seasonal fecundity for each subset of data.

Historical Changes

We estimated trends in nest density using data collected at 121 one-hectare plots that were surveyed
across Connecticut from 2002-2009 (for Methods see Nest Monitoring, above). These plots have a
standardized area, were all surveyed using the same methods, and were small enough to be thoroughly
searched, making them well-suited for looking at long-term trends in the number of unique nests. For
each plot, we calculated the number of unique nests found over the breeding season for Saltmarsh
Sparrow, Seaside Sparrow, and Clapper Rail. Nest density over time was analyzed using Bayesian
hierarchical models that account for marsh size (because larger marshes tended to be surveyed during the
first years of the survey). Most plots were surveyed in only one year, but some plots were repeated, and
some plots were added to marshes sampled in previous years. Consequently, we also ran a model using
data just from marshes that were surveyed in multiple years, to provide a more conservative analysis that
eliminates any concern about marsh size, or other marsh-specific factors, being confounded with time. We
did not have enough data to conduct an analysis using this more conservative approach for Clapper Rail.
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Table 24. Model comparisons for explaining the daily probability of A) nest predation, B) nest flooding, and C) nest success including failure from
both sources for Saltmarsh Sparrows from Maine to New Jersey, 2011-2013.

Predictors of nest predation Predictors of nest flooding AIC. AAIC. Weight

A) Model selection for predicting daily nest predation risk

latitude intercept-only 2996.59 0 0.57
latitude + serial date intercept-only 2997.18 0.59 0.43
intercept-only intercept-only 3017.74 21.15 <0.01
serial date intercept-only 3019.74 23.15 <0.01
B) Model selection for predicting daily nest flooding risk

intercept-only maximum high tide + 1% exceedance value + serial date 2988.25 0 0.35
intercept-only latitude + maximum high tide + 1% exceedance value + serial date 2989.20 0.95 0.22
intercept-only maximum high tide + sea level rise rate + 1% exceedance value + serial date 2989.53 1.29 0.18
intercept-only latitude + 1% exceedance value + serial date 2991.09 2.84 0.08
intercept-only latitude + maximum high tide + sea level rise rate + serial date+ 1% exceedance value 2991.19 2.94 0.08
intercept-only sea level rise rate + 1% exceedance value + serial date 2992.64 4.39 0.04
intercept-only latitude + sea level rise rate + 1% exceedance value + serial date 2993.03 4.79 0.03
intercept-only 1% exceedance value + serial date 2996.30 8.05 0.01

intercept-only maximum high tide + 1% exceedance value 3002.21 13.97 <0.01
intercept-only maximum high tide + sea level rise rate + serial date 3002.40 14.15 <0.01
intercept-only latitude + maximum high tide + sea level rise rate + serial date 3003.43 15.18 <0.01
intercept-only latitude + maximum high tide + 1% exceedance value 3004.14 15.89 <0.01
intercept-only maximum high tide + sea level rise rate + 1% exceedance value 3004.21 15.97 <0.01
intercept-only latitude + maximum high tide + serial date 3005.09 16.84 <0.01
intercept-only latitude + 1% exceedance value 3005.15 16.91 <0.01
intercept-only latitude + sea level rise rate + serial date 3005.35 17.10 <0.01
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Table 24. Continued

Predictors of nest predation Predictors of nest flooding AlC. AAIC. Weight

B) Model selection for predicting daily nest flooding risk (continued)

intercept-only serial date 3005.86 17.61 <0.01
intercept-only 1% exceedance value 3005.90 17.66 <0.01
intercept-only latitude + maximum high tide + sea level rise rate + 1% exceedance value 3005.91 17.66 <0.01
intercept-only maximum high tide + serial date 3006.17 17.93 <0.01
intercept-only sea level rise rate + 1% exceedance value 3006.20 17.95 <0.01
intercept-only latitude + sea level rise rate + 1% exceedance value 3006.81 18.56 <0.01
intercept-only sea level rise rate + serial date 3007.15 18.90 <0.01
intercept-only latitude + serial date 3007.83 19.58 <0.01
intercept-only maximum high tide + sea level rise rate 3013.02 24.77 <0.01
intercept-only latitude + maximum high tide + sea level rise rate 3014.20 25.95 <0.01
intercept-only maximum high tide + 1% exceedance value + serial date 2988.25 0 0.35
intercept-only latitude + maximum high tide + 1% exceedance value + serial date 2989.20 0.95 0.22
intercept-only maximum high tide + sea level rise rate + 1% exceedance value + serial date 2989.53 1.29 0.18
intercept-only latitude + 1% exceedance value + serial date 2991.09 2.84 0.08
intercept-only latitude + maximum high tide + sea level rise rate + serial date+ 1% exceedance value 2991.19 2.94 0.08
intercept-only sea level rise rate + 1% exceedance value + serial date 2992.64 4.39 0.04
intercept-only latitude + sea level rise rate + 1% exceedance value + serial date 2993.03 4.79 0.03
intercept-only 1% exceedance value + serial date 2996.30 8.05 0.01
intercept-only maximum high tide + 1% exceedance value 3002.21 13.97 <0.01
intercept-only maximum high tide + sea level rise rate + serial date 3002.40 14.15 <0.01
intercept-only latitude + maximum high tide + sea level rise rate + serial date 3003.43 15.18 <0.01
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Table 24. Continued

Predictors of nest predation Predictors of nest flooding AlC. AAIC. Weight
B) Model selection for predicting daily nest flooding risk (continued)

intercept-only latitude + maximum high tide + 1% exceedance value 3004.14 15.89 <0.01
intercept-only maximum high tide + sea level rise rate + 1% exceedance value 3004.21 15.97 <0.01
intercept-only latitude + maximum high tide + serial date 3005.09 16.84 <0.01
intercept-only latitude + 1% exceedance value 3005.15 16.91 <0.01
intercept-only latitude + sea level rise rate + serial date 3005.35 17.10 <0.01
intercept-only serial date 3005.86 17.61 <0.01
intercept-only 1% exceedance value 3005.90 17.66 <0.01
intercept-only latitude + maximum high tide + sea level rise rate + 1% exceedance value 3005.91 17.66 <0.01
intercept-only maximum high tide + serial date 3006.17 17.93 <0.01
intercept-only sea level rise rate + 1% exceedance value 3006.20 17.95 <0.01
intercept-only latitude + sea level rise rate + 1% exceedance value 3006.81 18.56 <0.01
intercept-only sea level rise rate + serial date 3007.15 18.90 <0.01
intercept-only latitude + serial date 3007.83 19.58 <0.01
intercept-only maximum high tide + sea level rise rate 3013.02 24.77 <0.01
intercept-only latitude + maximum high tide + sea level rise rate 3014.20 25.95 <0.01
intercept-only latitude + sea level rise rate 3015.25 27.01 <0.01
intercept-only sea level rise rate 3016.36 28.12 <0.01
intercept-only latitude + maximum high tide 3016.38 28.13 <0.01
intercept-only intercept-only 3017.74 29.50 <0.01
intercept-only latitude 3018.26 30.01 <0.01
intercept-only maximum high tide 3019.63 31.39 <0.01
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Table 24. Continued

Predictors of nest predation Predictors of nest flooding AIC. AAIC. Weight
C) Model selection for predicting daily nest success with combined daily predation and flooding risk

latitude maximum high tide + 1% exceedance value + serial date 2967.73 0 >0.99
intercept-only maximum high tide + 1% exceedance value + serial date 2988.25 20.52 <0.01
latitude intercept-only 2996.59 28.86 <0.01
intercept-only intercept-only 3017.74 50.02 <0.01
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Figure 14. Daily nest flooding probability of Saltmarsh Sparrows was best predicted by maximum observed
high tide during the study period (May-August, 2011-2013); meters above mean higher high water (MHHW,
the monthly high tide) for the 1% annual exceedance probability; and serial date.



Results

Nest success & seasonal fecundity

From 2011-2013 we found a total of 45 Clapper Rail nests (Table 25), 142 Willet nests (Table 26), 80
Nelson’s sparrow nests (Table 27), 349 Seaside Sparrow nests (Table 28), 1,022 Saltmarsh Sparrow nests
(Table 29), and 6 American black duck nests. Among study plots with Clapper Rails, nest density ranged
from 0.05 (Oyster Creek, Edwin B. Forsythe NWR, NJ) to 0.97 (Idlewild, NY) nests per hectare per year with
a mean (+ SD) of 0.36 + 0.32 nests per hectare per year. Among plots with nesting Willets, nest density
ranged from 0.08 (John H. Chaffee NWR, RI) to 1.62 (Four Sparrow Marsh, NY) nests per hectare per year
with a mean of 0.39 + 0.35 nests per hectare per year. Among plots with nesting Nelson’s sparrows, nest
density ranged from 0.04 (Parker River NWR, MA) to 1.42 (Scarborough Marsh, ME) nests per hectare per
year with a mean of 0.42 + 0.40 nests per hectare per year. Seaside sparrow nesting density was much
higher and ranged from 0.17 (Barn Island, CT) to 22.67 (Idlewild, NY) nests per hectare per year with a
mean of 1.83 + 4.70 nests per hectare per year. Saltmarsh sparrow nesting density was the highest on
average, ranging from 0.04 (Parker River NWR, MA) to 23.52 (Four Sparrow Marsh, NY) nests per hectare
per year with a mean of 2.35 + 3.47 nests per hectare per year. We found one American black duck nest
along the East River in Connecticut, two nests in the Barn Island Wildlife Management Area in
Connecticut, and three nests in Edwin B. Forsythe NWR in New Jersey.

Daily nest success probability (+ SE) for Clapper Rails ranged from 0.97 + 0.02 (Oyster Creek, NJ) to 1.0 +
0.0 (Hammonasset, CT, where all eight nests successfully hatched) with a mean (* SE) of 0.99 + 0.01 (Table
25). Willet nest success ranged from 0.88 + 0.05 (Scarborough Marsh, ME) to 0.97 £ 0.02 (Mullica
Wilderness, NJ) with a mean of 0.94 + 0.01 (Table 26). Nest success rates for Nelson’s sparrows ranged
from 0.89 (Eldridge Road, Rachel Carson NWR, ME) to 0.98 (Chapman’s Landing, NH) with a mean of 0.93
1 0.01 (Table 27). Seaside sparrow daily success probability ranged from 0.88 (Hammonasset State Park,
CT) to 0.96 (Oyster Creek, NJ) with a mean of 0.93 + 0.01 as well (Table 28). Saltmarsh sparrow nest
success ranged from 0.86 (Idlewild, NY) to 0.97 (Parker River NWR, MA) with a mean, again, of 0.93 £ 0.01
(Table 29).

Given the low rate of renesting in both Clapper Rail and Willet, nest success is likely a good proxy for
seasonal fecundity (although our estimates of nest success for these precocial species do not include
offspring mortality post-hatching). Among the three sparrow species, however, where renesting is more
common, our estimates of seasonal fecundity varied. For Nelson’s sparrows, fecundity was highest at the
New Hampshire sites (mean [95% ClI] = 1.40 [1.32-1.47] broods per female per season; 3.93 [3.7-4.13]
offspring per female per season) which are further upriver than the Maine sites (0.71 [0.59-0.84] broods
per female per season; 1.99 [1.67-2.36] offspring per female per season). For Seaside Sparrows, fecundity
was highest in New Jersey (0.88 [0.75—1.0] broods per female per season; 2.40 [2.04-2.73] offspring per
female per season) and declined to the north (Table 28). Saltmarsh sparrow fecundity was highest in New
Hampshire (0.64 [0.56-0.73] broods per female per season; 1.89 [1.63—2.14] offspring per female per
season), although fecundity was highly variable across sites and years (Fig. 15).
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Table 25. Nest monitoring results for Clapper Rails in Connecticut, New York, and New Jersey, 2011-2013.

Site Mean Daily Nest Survival
Latitude Longitude  Area # Yearly Probability’
Study Plot State (°N) (°E) (ha) Nests Nests/ha (95% CI)

Oyster Creek NJ 39.5056 -74.4268 18.5 9 0.162 0.972 (0.92 - 0.991)
Mullica Wilderness NJ 39.5363 -74.4392 17.4 1 0.057
New Jersey Summary 10 0.136 0.978 (0.933 — 0.993)
Four Sparrow
Marsh NY 40.6001 -73.9054 1.2 1 0.811
Sawmill Creek NY 40.6088 -74.1933 3.9 1 0.256
Marine Nature Park NY 40.6204 -73.6213 3.8 3 0.798
Idlewild NY 40.6530 -73.7508 3.1 3 0.972
New York Summary 8 0.709 0.983 (0.935 - 0.996)
Hammonasset CT 41.2611 -72.5491 13.2 8 0.202 1.000
East River CT 41.2725 -72.6520 19.0 19 0.332 0.989 (0.967 — 0.996)
Connecticut Summary 27 0.268 0.991 (0.973 — 0.997)

" Nest survival probabilities were only calculated for plots or states with at least seven observed nests
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Table 26. Nest monitoring results for Willets in New Jersey, New York, and New England, 2011-2013.

Site Mean Daily Nest Survival
Latitude Longitude Area # Yearly Probability’
Site State (°N) (°E) (ha) Nests Nests/ ha (95% Cl)

Oyster Creek NJ 39.5056 -74.4268 18.5 34 0.180 0.964 (0.943 — 0.977)
Mullica Wilderness NJ 39.5363 -74.4392 17.4 12 0.229 0.973 (0.92 - 0.991)
AT&T NJ 39.6973 -74.2137 14.3 10 0.795 0.944 (0.86 — 0.979)
New Jersey Summary 56 0.402 0.963 (0.945 — 0.975)
Four Sparrow
Marsh NY 40.6001 -73.9054 1.2 1.622
Sawmill Creek NY 40.6088 -74.1933 3.9 0.256
Marine Nature
Park NY 40.6204 -73.6213 3.8 3 0.798
New York Summary 7 0.733 0.924 (0.81 - 0.972)
Hammonasset CT 41.2611 -72.5491 13.2 16 0.404 0.956 (0.916 — 0.977)
East River CT 41.2725 -72.6520 19.0 17 0.298 0.937 (0.883 — 0.967)
Pattaganset CT 41.3179 -72.2129 8.4 1 0.119
Barn Island CT 41.3383 -71.8686 23.5 23 0.327 0.893 (0.833 — 0.933)
Connecticut Summary 57 0.321 0.934 (0.91 — 0.952)
John H. Chaffee RI 41.4452 -71.4639 121 1 0.083
Rhode Island Summary 1 0.083
Jones Creek ME 43.5421 -70.3509 11.5 0.348 0.965 (0.872 — 0.991)
Nonesuch River ME 43.5554 -70.3257 13.9 0.216
Scarborough River ME 43.5655 -70.3596 9.8 10 0.339 0.883 (0.761 — 0.947)
Maine Summary 21 0.322 0.926 (0.866 — 0.96)

" Nest survival probabilities were only calculated for plots with at least seven observed nests.
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Table 27. Nest monitoring results for Nelson’s Sparrows in New England, 2011-2013".

Mean Daily Nest
Site Yearly Survival Seasonal
Latitude Longitude  Area # Nests / Probability? Fecundity®
Site State (°N) (°E) (ha) Nests ha (95% Cl) (95% CI)

Parker River MA 42.7749 -70.8105 27.9 1 0.036
Massachusetts Summary 1 0.036
Chapman's 0.975
Landing NH 43.0411 -70.9239 12.0 11 0.305 (0.935 - 0.991)
Lubberland
Creek NH 43.0748 -70.9119 8.1 1 0.124

0.977 1.40
New Hampshire Summary 12 0.260 (0.94 — 0.991) (1.32-1.47)

0.892
Eldridge Road ME 43.2926 -70.5725 11.5 11 0.320 (0.827 — 0.934)
Jones Creek ME 43.5421 -70.3509 11.5 4 0.174
Nonesuch 0.927
River ME 43.5554 -70.3257 13.9 17 0.552 (0.88 — 0.957)
Libby River ME 43.5567 -70.3128 13.0 0.154
Scarborough 0.917
Marsh ME 43.5655 -70.3596 9.8 33 1.120 (0.883 — 0.941)

0.917 0.71
Maine Summary 67 0.504 (0.893 — 0.936) (0.59 - 0.84)

" Based on plumage identification of the attending female (hybrid nests are not included in either this table or that of Saltmarsh

Sparrows)

2 Nest survival probabilities were only calculated for plots or states with at least seven observed nests

3 Estimated number of successful broods per female per year (mean brood size of successful nests across all plots is 2.81 fledglings)
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Table 28. Nest monitoring results for Seaside Sparrows in Connecticut, New York, and New Jersey, 2011-

2013.
Mean Daily Nest
Site Yearly Survival Seasonal
Latitude Longitude Area # Nests/  Probability’ Fecundity?
Site State (°N) (°E) (ha) Nests ha (95% ClI) (95% ClI)
Oyster Creek NJ 39.5056 -74.4268 18.5 116 2.090 0.961
(0.947 - 0.972)
Mullica NJ 39.5363 -74.4392 17.4 52 0.994 0.959
Wilderness (0.94 - 0.972)
AT&T NJ 39.6973 -74.2137 14.3 49 1.146 0.924
(0.891 -0.947)
New Jersey Summary 217 1.410 0.953 0.88
(0.942-0.962) (0.75-1.00)
Sawmill Creek NY 40.6088 -74.1933 3.9 5 0.640
Idlewild NY 40.6530 -73.7508 3.1 72 11.661 0.933
(0.909 — 0.951)
New York Summary 77 6.150 0.936 0.71
(0.913 - 0.953) (0.62-0.81)
Hammonasset CT 41.2611 -72.5491 13.2 15 0.379 0.877
(0.802 — 0.926)
East River CT 41.2725 -72.6520 19.0 22 0.386 0.889
(0.825-0.932)
Barn Island CT 41.3383 -71.8686 235 18 0.256 0.927
(0.881 — 0.956)
Connecticut Summary 55 0.340 0.903 0.47
(0.869 —0.929) (0.31-0.62)

" Nest survival probabilities were only calculated for plots or states with at least seven observed nests

2 Estimated number of successful broods per female per year (mean brood size of successful nests across all plots is 2.73 fledglings)
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Table 29. Nest monitoring results for Saltmarsh Sparrows in New England, New York, and New Jersey, 2011-2013".

Daily Nest Survival

Latitude Longitude Site Area Mean Yearly Probability? Seasonal Fecundity®
Site State (°N) (°E) (ha) # Nests Nests / ha (95% ClI) (95% ClI)

Oyster Creek NJ 39.5056 -74.4268 18.5 43 0.775 0.925 (0.889 — 0.950) 0.483 (0.380 — 0.587)
Mullica Wilderness NJ 39.5363 -74.4392 17.4 92 1.760 0.936 (0.915 — 0.952) 0.54 (0.430 — 0.653)
AT&T NJ 39.6973 -74.2137 14.3 111 2.596 0.930 (0.904 — 0.95) 0.487 (0.387 — 0.587)
New Jersey Summary 246 1.710 0.932 (0.918 — 0.943) 0.503 (0.399 — 0.609)
Four Sparrow Marsh NY 40.6001 -73.9054 1.2 40 16.218 0.962 (0.927 — 0.981) 0.585 (0.480 — 0.695)
Sawmill Creek NY 40.6088 -74.1933 3.9 41 5.247 0.926 (0.882 — 0.955) 0.595 (0.470 -0.72)
Marine Nature Park NY 40.6203 -73.6212 3.8 22 5.855 0.918 (0.829 — 0.963) 0.585 (0.480 — 0.695)
Idlewild NY 40.6530 -73.7508 3.1 11 3.563 0.856 (0.703 — 0.937) 0.585 (0.480 — 0.695)
New York Summary 114 8.725 0.932 (0.905 — 0.952) 0.59 (0.475 - 0.708)
Hammonasset CT 41.2611 -72.5491 13.2 59 1.492 0.929 (0.904 — 0.948) 0.380 (0.293 — 0.47)
East River CT 41.2725 -72.652 19.0 69 1.209 0.917 (0.888 — 0.939) 0.370 (0.277 — 0.467)
Waterford CT 41.3052 -72.1058 3.4 1 0.296
Pattaganset CT 41.3179 -72.2129 8.4 5 0.298
Barn Island CT 41.3383 -71.8686 23.5 40 0.569 0.868 (0.813 — 0.909) 0.163 (0.117 — 0.213)
Connecticut Summary 174 0.892 0.915 (0.898 — 0.929) 0.304 (0.229 — 0.383)
John H. Chaffee RI 41.4452 -71.4638 121 36 0.992 0.964 (0.927 — 0.982) 0.687 (0.553 — 0.817)
Sachuest Point RI 41.4891 -71.2496 3.7 35 3.141 0.860 (0.780 — 0.914) 0.240 (0.137 — 0.337)
Rhode Island Summary 71 2.067 0.934 (0.908 — 0.953) 0.463 (0.345 - 0.577)
Parker River MA 42.7749 -70.8105 27.9 26 0.311 0.970 (0.945 — 0.983) 0.373 (0.293 — 0.457)
Massachusetts Summary 26 0.311 0.966 (0.943 — 0.98) 0.373 (0.293 — 0.457)

74



Table 29. Continued.

Daily Nest Survival

Latitude Longitude Site Area Probability? Seasonal Fecundity?®
Site State (°N) (°E) (ha) # Nests Nests / ha (95% ClI) (95% CI)

Chapman's Landing NH 43.0411 -70.9239 12.0 129 3.578 0.967 (0.958 — 0.975) 0.753 (0.663 — 0.843)
Lubberland Creek NH 43.0748 -70.9119 8.1 25 1.550 0.962 (0.939 - 0.976) 0.48 (0.395 — 0.56)
New Hampshire Summary 154 2.767 0.966 (0.958 — 0.973) 0.644 (0.556 — 0.73)
Eldridge Road ME 43.2926 -70.5725 11.5 62 1.803 0.915 (0.891 - 0.934) 0.343 (0.247 — 0.437)
Little River ME 43.3441 -70.5400 6.9 2 0.289
Jones Creek ME 43.5421 -70.3509 11.5 79 3.435 0.963 (0.948 — 0.973) 0.705 (0.615 - 0.795)
Nonesuch River ME 43.5554 -70.3257 13.9 29 0.696 0.92 (0.881 —0.947) 0.337 (0.233 — 0.437)
Libby River ME 43.5567 -70.3128 13.0 4 0.309
Scarborough Marsh ME 43.5655 -70.3596 9.8 61 2.070 0.938 (0.915 — 0.955) 0.493 (0.387 — 0.6)
Maine Summary 237 1.629 0.939 (0.928 — 0.948) 0.448 (0.348 — 0.546)

" Based on plumage identification of the attending female (hybrid nests are not included in either this table or that of Nelson’s Sparrows)

2 Nest survival probabilities were only calculated for plots or states with at least seven observed nests.

3 Estimated number of successful broods per female per year (mean brood size of successful nests across all plots is 2.93 fledglings).
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Figure 15. A) Significant decreased in daily nest predation probability for Saltmarsh Sparrows as a function
of increasing latitude; B) Daily nest flooding probability is independent of latitude; C) Total daily nest
survival probability increased modeled with latitude.



Spatial patterns

Tradeoffs between flooding and predation in Saltmarsh Sparrows — Despite much local
heterogeneity, we observed clear large-scale patterns in nest failure probabilities of Saltmarsh Sparrows.
The model containing only latitude best predicted daily nest predation probability (wi=0.57) and
performed much better than the null model (AAIC.=23.15, wi<0.01). Nest predation probability increased
moving toward low latitudes (Fig. 15). An additive combination of date, maximum high tide, and
extremity of rare flooding events best predicted daily nest flooding probability (wi=0.43) and performed
much better than the null model (AAIC.=29.5, wi<0.01). Nest flooding probability decreased throughout
the breeding season, increased with increasing maximum high tide, and increased with increasing
extremity of rare flooding events (Fig. 14). The nest flooding model using latitude as the sole predictive
variable performed worse than the null model (AAIC.=30.01, wi<0.01; Fig. 15). The combined model (nest
depredation probability predicted by latitude, nest flooding probability predicted by serial date, maximum
high tide, and exceedance value; wi=1.0) predicted nest failure probabilities better than the top model for
nest depredation probability (AAIC.=28.86, w;<0.01), the top model for nest flooding probability
(AAIC.=20.52, w;=<0.01), and the null model (AAIC.=50.2, wi<0.01). Total daily nest survival probability
increased toward the high-latitude edge of the Saltmarsh Sparrow breeding range (Fig. 14). Total nest
survival probability decreased with increasing exceedance value and increased throughout the breeding
season. There was no relationship between maximum high tide and total nest survival probability.

Our findings are consistent with the AASL hypothesis that abiotic stressors (flooding) pose greater risks to
population growth at high latitudes than biotic stressors (depredation). Further, we found that nest
depredation probability varied with latitude, suggesting that biotic stressors become increasingly
important moving toward low latitudes. Nest flooding probability did not vary with latitude, however.
Instead, nest flooding probability was best predicted by an additive combination of three variables that
vary independently from latitude. Therefore, in opposition to modern formulations of the AASL
hypothesis, our results suggest that in this system, there is not a direct tradeoff between physiological
tolerance and competitive ability. Without experimental manipulation, we cannot be certain that nest
flooding and nest predation probabilities limit Saltmarsh Sparrow populations where they are highest. We
can conclude, however, that the relative importance of each competing stressor changes across the
species range and through time.

Testing for a range-wide center of fecundity in Saltmarsh Sparrows — Saltmarsh sparrow clutch size
varied by study plot (P < 0.01 compared to the intercept-only null model) and there was a trend of
increasing clutch size with latitude, but it was only marginally significant (F1g15= 3.5, P = 0.06 R?< 0.01).
The difference in mean clutch size between the study plots at the lowest and highest latitudes, however,
was less than one egg, so we used the global modal clutch size of four eggs in MCnest projections at all
study plots. The global mean clutch size + SD was 3.66 £ 0.70 eggs. Brood size did not vary by study plot
(P =0.13 compared to the intercept-only model), and thus the global mean brood size of 2.73 + 1.05 was
used in all MCnest projections for all study plots. Incubation interval did not vary by study plot (P = 0.27
compared to the intercept-only model), and the global mean incubation interval was 12.09 + 0.98 days
(inclusive of the final egg-laying day and the day of the first hatch) and the mode across all study plots was
12 days. Thus, we used 12 days as the incubation interval in MCnest projections for all study plots.
Number of nesting attempts varied by study plot (P < 0.01 compared to the intercept-only model) and
increased with latitude (F1494=12.2, P < 0.01, R*=0.02; Fig. 16). Only four study plots had enough
observations to characterize number of nesting attempts at the study-plot level by our conservative
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minimum. Pooled subregional means + SD were as follows: Gulf of Maine = 1.29 + 0.51 nesting attempts
per female; Long Island Sound = 1.10 + 0.29; NY Harbor = 1.36 + 0.60; NJ Coast = 1.06 + 0.24. Earliest first
egg date varied by study plot (F=2.0,2,30, p=0.04) and increased with latitude (F1s:=11.2, P<0.01, R?=

0.16; Fig. 16).
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Figure 16. Mean (x SE) of the number of nesting
attempts observed by marked female Saltmarsh
Sparrows each year across our study plots.

Seasonal fecundity did not vary with latitude
across the Saltmarsh Sparrow range (F2,44=1.5,
p=0.23 R?=0.02; Fig. 17). We observed
significantly more variance in seasonal
fecundity estimates among than within study
plots (F11079=40.8, p<0.01, R2=0.04). At the
scale of U.S. states, however, the variance in
seasonal fecundity was similar among and
within states (F1,1036=0.2, p=0.66). Together this
suggests that fecundity within plots is
consistent (at the time scales we observed), but
spatial heterogenity in fecundity is high both
within and among subregions. Oddly, similarity
in seasonal fecundity estimates increased with
latitudinal distance between projections
(F1,1079=5.3, p=0.03, R?=0.003). This pattern
was consistent in 9 of the 10 subsamples used

to control for sampling effort across the latitudinal range. This result is likely due to the higher
heterogeneity of fecundity estimates in sites along the Long Island Sound than elsewhere (Fig. 17). Once
we removed these study plots, there was no relationship between geographic distance and similarity in
seasonal fecundity (F1494=0.2, P = 0.63). This pattern was consistent in 10 of 10 subsamples.

Historical Changes

The nest density of specialist saltmarsh nesting birds is declining in Connecticut for Saltmarsh Sparrow,
Seaside Sparrow, and Clapper Rail, with Saltmarsh Sparrows showing the strongest decline (Fig. 18A).
Estimates from the complete dataset show declines over time with credible intervals that do not overlap
zero for all three species (Figure 18A). Estimates from just marshes that were surveyed in multiple years
show the same patttern for Saltmarsh Sparrow, but with slightly larger credible intervals, while the trend
for Seaside Sparrow was centered on zero. Marsh size was not a strong predictor of nest density for any

species.
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Figure 17. Annual seasonal fecundity for Saltmarsh Sparrows by study plot (£ 95% CI). Star denotes the
geographic center of the Saltmarsh Sparrow’s latitudinal breeding range. The map of the northeast US
coastline beneath the figure is aligned to indicate the region for each of the estimated fecundity values above.
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Figure 18. Change in the number of nests per hectare for Saltmarsh Sparrow, Seaside Sparrow, and
Clapper Rail in Connecticut. Panel A shows estimates using data from all plots (n = 121 plots). Panel B
shows estimates using only data from marshes that were surveyed in multiple years: Hammonasset State
Park (Madison), East River marsh (Madison/Guilford), Connecticut River complex (Old Lyme), and Barn
Island Wildlife Management Area (Stonington). White dots are mean estimates and black bars are 95%
credible intervals.

Conclusions

We report nest densities and daily failure probabilities for our five focal species across 23 study plots and
three years of study. Further, we estimated seasonal fecundity (successful broods per female annually)
for the three sparrow species. Nelson's Sparrow reproductive success exhibited no large-scale patterns
across the survey area but was considerably higher at the single well-sampled upriver marsh compared to
multiple coastal sites. Seaside Sparrow fecundity was greatest in our most southern plots (toward the
center of their range) and generally declined to the north. The study plot with the highest Saltmarsh
sparrow fecundity was in New Hampshire, but fecundity was highly variable across the range (the nearest
plot to the maximum fecundity exhibited a fecundity value in the 48" percentile of those measured).
Flooding risk is the highest cause of nest loss across the Saltmarsh Sparrow range, but varied locally, while
nest predation increases on average from north to south. Female reproductive behavior varied with plot
as well, with more northern females exhibiting a higher probability of renesting following nest loss and a
longer breeding season in general. The high spatial heterogeneity in both flooding risk and fecundity
suggests that Saltmarsh Sparrow reproductive success is driven more by local than regional processes and
may respond to local management actions. Clapper Rail and Seaside and Saltmarsh sparrows all showed
significant declines in nest densities over the last decade in Connecticut (the only area with data
available), mirroring the trends reported in singing males across USFWS Region 5 (V. Population Trends).
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VIl. Sparrow Survival Methods
Methods
Field methods

We conducted standardized mist-netting at 21 plots in major marsh complexes from New Jersey to
Maine, USA (Table 30). We surveyed most plots in 2011, 2012, 2013, and 2014 (see Table 30 for specific
years each plot was surveyed). Plots were 1-28 ha and divided into 1-5 subplots that could be surveyed
using two or three arrays of six, 12-m mist-nets in a continuous string. Each subplot was surveyed on
three days each year, distributed across the summer, cycling through the subplots such that each was
visited once before the next round of visits. The survey period at each site began between mid-May and
early June, with lower latitude sites starting earlier, and corresponded with the period at which most
individuals at a plot could reasonably be assumed to be resident. Standardized mist-netting ended once
three visits were made to each subplot, and ran no later than mid-August. Each visit consisted of three
hours of mist-netting that was completed by approximately 11:00. Mist-netting was not conducted
during rain, heavy fog, or strong winds. Birds were caught passively and by field crews walking in a line
across the subplot to flush birds into the net array at regular intervals throughout the netting period.

Mark-recapture data from systematic surveys were augmented by targeted mist-netting of adult birds at
nests at all study sites; by banding nestlings shortly before they fledge from nests that we were
monitoring; by mist-netting birds during spring and fall migration at our Connecticut sites; and by
captures of birds at migration and wintering sites south of our main study area (Borowske 2015).
Because the present analyses are focused on apparent survival of adults (second year or older), we only
used capture-recapture data from individuals after they were caught as adults, as first year individuals
likely have different rates of mortality and/or dispersal (cf. DiQuinzio et al. 2001). Some individuals
caught on study plots as adults may have been captured previously during migration or as nestlings;
however, this subset comprises less than 5% of our total dataset.

We fitted captured birds with United States Geological Survey-issued aluminum bands and a site-specific
color band. We aged each individual based on plumage, and determined the sex by looking for a brood
patch or cloacal protuberance. All birds were measured, scored for body condition and plumage
features, and released.

Statistical methods

We estimated apparent annual survival of adults using the complete-data likelihood of Cormack-Jolly-
Seber (CJS) models (Lebreton 1992; Schofield et al. 2009; Reed et al. 2014). Like other CJS models, the
complete-data likelihood approach accounts for imperfect detection of marked individuals by using
estimates of capture probability (p) to correct estimates of apparent survival (S). The complete-data
likelihood approach allows one to include latent variables and encounter data obtained outside of the
primary sampling scheme, potentially improving parameter estimation. For more details on the
advantages of the approach, see Schofield et al. (2009) and Reed et al. (2014).



Table 30. Demography study sites at which mark-recapture data for tidal marsh sparrows were collected,

2010-2014.

No. of No. of No. of No. of

Indiv. indiv. indiv. indiv. Plot

SALS HYBRID NESP SESP size

Lat. Long. Marsh complex name banded' banded banded banded (ha) Years
39.5059 -74.4256  Oyster Creek 178 0 0 373 19  2011-14
39.5355 -74.4425 Mullica Wilderness 372 0 0 132 17 2011-14
39.6969 -74.2112 ATT 377 0 0 97 14 2011-14
40.5997 -73.9072  Four Sparrow Marsh 22 0 0 1 2012-14
40.6084 -74.1927  Sawmill Creek 54 0 0 4 2012-14
40.6201 -73.6212  Marine Nature Study 39 0 0 4 2012-14
Area

40.6518 -73.7515 Idlewild 64 0 0 133 3 2012-14
41.2621 -72.5520 Hammonasset 442 0 0 64 13 2010-14
41.2694 -72.6516 East River 379 0 0 81 19  2010-14
41.3055 -72.1066 Waterford 30 0 0 0 3 2011-13
41.3170 -72.2117  Pattagansett 42 0 0 1 8 2011-13
41.3370 -71.8703 Barn Island 253 0 0 66 23 2010-14
41.4425 -71.4657 John H. Chaffee NWR 94 0 0 0 12 2011-14
414872 -71.2491  Sachuest Point NWR 80 0 0 0 4 2011-14
42.7755 -70.8081  Parker River NWR 307 0 2 0 28  2013-14
43.0391 -70.9269 Chapman’s Landing 287 19 36 0 12 2011-14
43.0754 -70.9153  LubberlandCreek 97 0 7 0 8 2012-14
43.2936 -70.5762  Eldridge Marsh 218 29 65 0 11 2011-14
43.5397 -70.3544  Jones Creek 285 204 55 0 17  2012-14
43.5539 -70.3284  Nonesuch River 87 82 77 0 14 2011-14
43.5632 -70.3584  Scarborough Marsh 236 195 113 0 10 2011-14

" Number of unique individuals captured at each study site is given for Saltmarsh Sparrow (SALS), Saltmarsh x Nelson’s Sparrow
hybrids (HYBRID), Nelson’s Sparrow (NESP) and Seaside Sparrow (SESP).

We modeled systematic variation in both S and p using logistic regression. We modeled variationin S
using sex (male = 1), marsh complex size, latitude, and random year and site effects. We modeled
variation in p using sex (male = 1), study plot size, and the research institution overseeing a site. Plot
size was included to account for any differences in capture rate caused by differences in the amount of
area that was being surveyed and institution was included to account for minor variations in methods

among field teams (all field teams used a common set of field protocols and were in constant

communication throughout the project, but we recognize that small differences remain inevitable). We

identified influential variables by constructing a normally-distributed prior distribution on the

independent variables that was centered on zero and has a variance that was estimated by the model
(cf. Gelman et al. 2004). This prior represents the knowledge that most independent variables have a
small effect (potentially zero) on the response variables, but a few could have a large effect. The
estimate of the variance parameter gives a measure of how important the modeled group of variables is
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likely to be. The posterior distributions of the regression coefficients for each independent variable
include the uncertainty associated with estimating the effect of all other variables, and can be examined
directly to test how likely it is that the coefficient is non-zero. We report 95% credible intervals for each
coefficient. Similarly, we assessed the relative importance of the random effects by plotting the
posterior distributions of the variance parameters to see whether they were strongly non-zero.

We ran one model for Seaside Sparrows and another for Saltmarsh and Nelson’s combined. Saltmarsh
and Nelson’s sparrows cannot always be positively identified in the field, creating a subset of unknown-
species individuals from their hybrid zone, which extends from northern Massachusetts into Maine
(Walsh et al. 2015). Ignoring this subset has the potential to bias estimates of apparent survival, in the
same way that ignoring unknown-sex individuals can create biases (cf. Nichols et al. 2004). To avoid this
bias, for birds caught in the hybrid zone we used a two-step process to 1) reduce the size of the
unknown subset using linear discriminant function analysis (LDA) and 2) explicitly incorporate
uncertainty for individuals that could not be assigned by the LDA. Walsh et al. (2015) created an LDA
that assigns species to a “Saltmarsh” group and a “Nelson’s” group based on measurements taken on
every individual: wing chord, weight, and tarsus length. Using molecular methods, however, Walsh et al.
(2015) found that it was not possible to distinguish hybrid backcrosses reliably from members of their
parental species using structural or plumage metrics. Consequently, we took a conservative approach to
assigning individuals to avoid bias from misclassification: individuals were only assigned with certainty if
their LDA value fell within the range that had no misclassifications. We coded the remaining individuals
as being of uncertain identity and used a Bayesian approach that explicitly incorporates uncertainty in
species identification. Our approach is based on Schofield et al.’s (2009) method for dealing with
covariate uncertainty. Species identification is treated as a Bernoulli random variable with pi being the
prior probability of an unknown individual belonging to the Saltmarsh group:

Eq. 1: species ~ Bernoulli(pi)

pi, is defined as the proportion of Saltmarsh-group individuals in the hybrid zone, 0.69 (Walsh et al.
2015). The species identity of all individuals outside of the hybrid zone was treated as known.
Unknown-species individuals were assigned to a species group for each step of the MCMC algorithm
with a frequency determined by the prior, pi, and the model likelihood, according to Bayes’ theorem.
An indicator variable was included in the model code to select the appropriate species-specific variables
depending on the value of species; for individual i at each step in the MCMC algorithm.

Results

For all species, models that had both site and year random effects for S did not converge. Site had a
slightly stronger effect on S individually than did year (Figs. 19 and 20) and was of greater inferential
interest. Accordingly, we report results from models with site effects, although results were essentially
the same regardless of whether we included site effects, year effects, or neither.
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Figure 19. Year effects on “sharp-tailed sparrow” (data for Saltmarsh and Nelson’s were analyzed
simultaneously to account for hybridization, see text for details) and Seaside Sparrow survival. White dots
are means and black bars are 95% credible intervals. The overlap between bars suggests no differences
in survival across years.
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Figure 20. Apparent annual survival of female Saltmarsh, Nelson’s, and Seaside sparrows by latitude.
Survival of females is shown; males have the same site effects but have slightly different mean survival
(higher for Saltmarsh and Seaside, lower for Nelson’s) with credible intervals that are largely overlapping
with females. White dots are means and black bars are 95% credible intervals. Solid horizontal line is
for an average site. Average female survival for Seaside Sparrows (short dashes on top and middle
panel), Nelson’s sparrow (long dashes on top and bottom panel), and Saltmarsh Sparrow (long dashes
on the middle panel; short dashes on the bottom panel) are also shown. The overlap between bars
suggests no site differences in survival for all three species.
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All of the fixed effects, except the sex effect on p for the Saltmarsh group, had 95% credible intervals
that overlapped zero (Fig. 21) indicating that they affected neither survival nor detection. For Saltmarsh-
group birds, detection of males was lower than that for females. Effect sizes of predictors were
essentially the same regardless of whether we included site effects, year effects, or neither. We found
evidence for higher than average capture probability for “sharp-tailed” sparrows related to the research
institution overseeing one site (i.e., the posterior distribution of that institution’s effect lies above 0),
but there was no evidence for differences among institutions, potentially due to limited precision of
institution effects (the credible intervals of individual effects overlap; Fig. 22); no similar effect was
found for Seaside Sparrows.
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Figure 21. Left panel: Effect sizes for survival (S) and detection (p) for Saltmarsh and Nelson’s Sparrow,
as derived from a combined model for both species. White dots are means, black bars are 95% credible
intervals for Saltmarsh Sparrow, and gray bars are for Nelson’s Sparrow. Bars represents the effects of
the named variables. Credible intervals for all bars include zero suggesting no effects, except for the sex
effect on detection in Saltmarsh Sparrow. Two rightmost bars provide estimates for species effects,
which were not found. Right panel: Effect sizes for Seaside Sparrow. White dots are means, black bars
are 95% credible intervals.

Female Saltmarsh Sparrow survival at an average site was 0.46 (credible interval: 0.41, 0.51); male
survival was 0.49 (0.44, 0.55). Apparent survival for female (0.47; 0.37, 0.59) and male (0.43; 0.26, 0.59)
Nelson’s Sparrows were not significantly different from the equivalent rates for Saltmarsh Sparrows.
Apparent survival of Seaside Sparrows was 0.52 (0.37, 0.71) for females and 0.57 (0.44, 0.75) for males.

Conclusions

Adult survival rates obtained during this study were similar among the three species and typical of those
found in other species of North American sparrow (DeSante et al. 2015). Our overall estimate of survival
for Seaside Sparrows was higher than for the two other species, but the credible intervals for all three
species overlapped considerably. Although we have only four years of data for most of our sites, the
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uncertainty around our point estimates is not especially large, suggesting reasonable confidence in our
use of these numbers for population modelling (see section VIII, below). Nonetheless, we consider it
important to continue monitoring our banded populations into the future in order to improve estimates
further and better characterize annual variation in survival. Survival rates for all three species were
similar across all sites and showed no clear evidence of latitudinal or other geographic patterns.
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Figure 22. The effects of six research institutions on “sharp-tailed” sparrow capture rates. White dots are
means and black bars are 95% credible intervals. One institution had higher capture rates than the overall

mean, but there was overlap in credible interva intervals among all institutions suggesting no strong
differences.
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VIIl. Sparrow Population Viability Analysis
Methods

For Saltmarsh, Seaside, and Nelson’s sparrow, we created individual-based population models that
propagate uncertainty from both parameter estimation and demographic stochasticity. A conceptual
diagram of how uncertainty was accounted for is given in Fig 23. First, we drew values for the
demographic parameters from their posterior
distributions (taken from analyses of data
described above, see sections VI and VII; we
bt e 4R assumed that fecundity and survival
demographic stochasticity parameters were not correlated in any given
year). Using this set of demographic
# iterations = ¥ popsize(t) for tis 1:50 parameters, we simulated replicate
population populations (100 for each site for Saltmarsh
simulation Sparrow; 100 for each state for Seaside and

Nelson’s Sparrow, for which we had smaller
sample sizes) for 50 years starting in 2013. A
single replicate population is represented by
the green box in Fig 23. The variation in
growth rates among the replicate populations

Figure 23. Conceptual model of population simulations.
Demographic parameters are sampled from their

posterior distributions 1000 times to account for gives a measure of the demographic
estimation uncertainty. For each of these draws, 100 stochasticity for the current set of
populations using the sampled values for the demographic parameters (represented by the

demographic parameters are simulated over 50 years.
Using this method, the extinction risk estimates include
uncertainty from both demographic stochasticity and
uncertainty in estimating demographic parameters.

purple box in Fig. 23). Second, we drew new
values for the demographic parameters from
their posterior distributions and simulated
replicate populations as described above. We
repeated this process for 1000 draws of demographic parameters (represented by the orange box in Fig.
23) to represent variation from the estimation uncertainty of our survival and fecundity analyses
described above.

All simulations modelled only females because the number of females is most critical to the demography
of these species, especially Saltmarsh Sparrow, which has a sex ratio that is heavily skewed toward
males (Hill et al. 2013). We took starting population sizes from Wiest et al. (in review; see section IV
above) and assumed a 1:1 sex ratio for Seaside and Nelson’s Sparrow and a 2:1 sex ratio for Saltmarsh
Sparrow.

The demographic parameters used for Seaside and Nelson’s sparrows were annual survival, first year
survival (assumed to be 50% of annual survival), number of broods per season, and average brood size.
For Saltmarsh Sparrow, our larger data set enabled us to separate the different components of fecundity
more finely, which allows for more realistic estimates of uncertainty. This finer resolution also
potentially results in more accurate estimates of extinction risk, as we were able to model certain
parameters by latitude, date, and year, while also incorporating individual variation. This extra
complexity was considered especially important because preliminary modeling suggested that the global



population could be threatened with extinction in the short term. We also had sufficient data to
estimate Saltmarsh Sparrow fecundity and survival parameters at each demographic plot, enabling site-
specific estimations of population growth rates across the species’ geographic range. The demographic
parameters used for Saltmarsh Sparrow include adult annual survival (as described above in section VIl),
first year survival (taken from a normal distribution assumed to have a 95% confidence interval that
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nest building days @ @
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seasonal variation

ranged from 25-75% of adult
survival), and the parameters used
for fecundity estimation (see section
VI): days until first nest initiation
(since the first egg date for that site),
re-nesting rates after success and
failure, days between nesting
attempts after success and failure,
daily nest failure probabilities, clutch
size, brood size, and quitting
probability. For Saltmarsh Sparrows,

most of these parameters were
allowed to vary by individual, year,
and/or across the season to create as
much realism in the simulations as
possible (Fig. 24). To estimate global
extinction risk for Saltmarsh
Sparrows, we also ran a model
treating the population as a single
panmictic population (starting
population size of 25,800 females
based on information in section IV).

egg laying days @ o
chick days @ @ ()
clutch size ®®®

Figure 24. Demographic parameters for Saltmarsh Sparrow
models and whether they are allowed to vary by individual
(green), year (blue), and/or within a season (purple). Dots are
filled in if the parameter has the associated variation built in. All
of the parameters, except those that are intervals (to cut down
on computation time), are allowed to vary by individual, year,
and season.

Sea-level rise and habitat loss scenarios

The amount of future habitat that is suitable for nesting depends on both the rates of sea-level rise and
sediment accretion. Various models exist for portions of our study area to project how habitats will
change in the future (e.g., SLAMM), but none cover the entire region, uncertainty over accretion rates
remains high, and none have been rigorously tested against field data. Moreover, the demographic
impact of sea-level rise is largely mediated in the near term through the flooding of nests.
Consequently, we modelled the effects of sea-level rise directly by increasing the daily nest failure rates
commensurate with different relative sea-level rise scenarios.

We ran models for three scenarios. Our worst case scenario assumed no accretion and accelerating sea-
level rise using global estimates from Vermeer and Rahmstorf (2009) that assume an IPCC A1F1 warming
scenario. Our best case scenario assumed that accretion keeps up with sea-level rise, leading to no
relative sea-level rise. Finally, our intermediate scenario assumed no accretion, but used linear rates of
sea-level rise based on regional estimates from Boon et al. (2012). For each scenario we assumed the
mean high tide would increase according to the projected rate of relative sea-level rise.
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All of these scenarios are likely to be conservative because they assume that differences among sites
with different mean high water or tidal exceedance probabilities mimic the long-term effects of sea-
level change. Since, the effects of these variables in the contemporary data are small (Ruskin et al. in
review; see section VI above), sea-level rise has only a small effect on model trajectories. In reality, we
might expect sea-level rise to have more severe threshold effects on reproductive success, as has been
found with a longer time series of nesting data from Connecticut (Elphick and Field, unpublished data).
Additionally, our models include an effect on nest failure only and assume no effects on any of the other
model parameters. Qualitative patterns of population growth were not very sensitive to the sea-level
rise scenario used (see below) and we report only projections using the intermediate scenario of linear
rise and no accretion.

For each species, we calculated the amount of habitat area in each state required for persistence by 1)
determining the required starting population size for a 50% change in persistence over the next 50 years
and 2) using density estimates from Wiest et al. (in review; see section IV above) to estimate the amount
of habitat required to support a population of that size. For each species, we calculated the amount of
habitat area in each state required for persistence by 1) determining the required starting population
size for a 50% change in persistence over the next 50 years and 2) using statewide density estimates
from Wiest (2015 ( see section IV above) to estimate the amount of habitat required to support a
population of that size.

Results

Differences in estimated population growth rates between the worst case and intermediate scenarios
were all within the estimation error of our models, which was ~1% for growth rate estimates. This
similarity arose because sea-level rise acceleration is minimal over the next 50 years. The best case
scenario, which has no net sea-level rise, has consistent growth rates over time that are equal to those
from the first five years of the other two scenarios (e.g., left panel of Fig. 25). Although, this scenario is
better than the others, the consequences are minor because we found that the tidal variables used to
estimate the sea-level effect have only small effects on nest failure rates (Ruskin et al. in review; see
section VI above) and were assumed not to affect other variables.
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Figure 25. Saltmarsh Sparrow growth rates at 21 demographic plots, by latitude. White circles are mean
estimates and black bars are 95% confidence. Left panel = growth rates for 2013-2018. Right panel =
growth rates for 2058-2063, with 2013-2018 growth rates shown in pale gray for comparison (see Table
30 for more details on individual plots).
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We estimated that, based on vital rates over the course of this study, mean growth rates for Saltmarsh
Sparrows over the next five years will be negative at all of our demographic plots and that only eight out
of 21 plots have 95% confidence intervals that overlap zero (Fig. 25, Table 31). By 2063, only one site will
have a 95% confidence interval that includes positive growth rates (Fig. 25). Assuming that our
demographic plots are representative of the species range, only ~5% of sites will have positive growth
over the next 50 years (Fig. 26).

Global extinction risk for Saltmarsh

wn
g o 7] Sparrow over the next 50 years is less
o & than 5%. Although the global
g’ o population can persist over this time
;E frame, the population is expected to
§ g _ decline by 92% (95% confidence
£ interval: 7 — 100%), putting the species
2 o~ on a clear trajectory towards extinction.
E 2 If individual states are to ensure a 50%
E 1 ! chance of avoiding Saltmarsh Sparrow
° G VA A A / extirpation over the next 50 years, then
(= U \ T . .
o 4“\']‘\_‘\' e ‘/\“/; e w ‘N they will need to ensure a statewide
a g — population that includes at least 7,500

females. Of the states for which we

2020 2030 2040 2050 2060  have demographic data, only New Jersey
currently has a population this large, and
most states will need considerably more
than their current marsh area in order to

Year

Figure 26. Estimated proportion of sites in the Saltmarsh )
Sparrow range with positive population growth. The black line  SUPPOrt such a large population (Table
is the mean and the dotted line is the upper 95% confidence 32).

interval. The lower bound of the interval, which is at zero for . -,
the entire period, is left off for clarity. Our estimates suggest that Maine’s

Nelson’s Sparrow population is likely not

viable in the long-term without
immigration from other regions (80% chance of extinction within 50 years; Fig. 27, Table 33). For New
Hampshire, extinction risk is less than 50% if the starting female population size is 100 individuals. This
higher persistence probability for New Hampshire arises because of higher estimated fecundity than in
Maine. It is worth noting, however, that a high proportion of “Nelson’s-group” birds in New Hampshire
are likely to be hybrids (Walsh et al. 2015).

We found minimal risk of extinction over the next 50 years for Seaside Sparrows south of Connecticut,
but we estimate that there is an ~50% chance of being extirpated from Connecticut over the next 50
years (Fig. 27, Table 33). Although we lack data on Seaside Sparrow for states farther north, it is likely
that their small populations would also go extinct. In order to reduce the extinction risk in Connecticut
to less than 50%, the starting population size would need to be increased to 5000 females, considerably
higher than the current population in southern New England (Weist 2015; see section VI, above). For
New York and New Jersey, extinction risk is less than 25% if the female population size remains above
100 individuals.
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Table 31. Estimated population growth rates and median time to extinction for Saltmarsh Sparrows at

each demographic study site. Time to extinction estimates assume no immigration from other sites.

Mean Mean Lower Median Lower Upper
Marsh complex rame 970V Lowet upper grovth Cogl upper  fmelo oo son
2018 2063 (years)*

Oyster Creek  -0.15 -0.36  -0.056 -0.23 -0.51 -0.091 50+ 50+ 50+

Mullica Wilderness  -0.013 -0.25 0.15 -0.20 -1 0.0024 50+ 46 50+
ATT -0.085 -0.32 0.090 -0.33 -1 -0.036 50+ 13 50+

Four Sparrow Marsh ~ -0.43 -0.57 -0.29 -0.83 -1 -0.40 9 2 35
Sawmill Creek  -0.32 -0.47 -0.19 -0.58 -1 -0.28 23 4 50+
Marme Nature SUY 040 055 025 076 1 037 12 3 49
Idlewild  -0.34 -0.52 -0.17 -0.71 -1 -0.27 14 4 45
Hammonasset  -0.21 -0.42 -0.029 -0.58 -1 -0.12 27 9 50+

East River  -0.15 -0.32 0.016 -0.38 -1 -0.086 50+ 13 50+

Waterford  -0.52 -0.63 -0.44 -0.89 -1 -0.63 6 4 31
Pattagansett  -0.40 -0.53 -0.25 -0.64 -1 -0.33 13 2 50+

Barn Island WMA  -0.33 -0.50 -0.15 -0.74 -1 -0.24 14 4 46
John H Chaffee N\WR  -0.30 -0.47 -0.15 -0.60 -1 -0.24 22 6 50+
Sachuest Point N\WR  -0.34 -0.50 -0.21 -0.64 -1 -0.30 18 4 50+
Parker River N\WR  -0.025 -0.28 0.11 -0.14 -1 0.00007 50+ 50+ 50+
Chapmans Landing  -0.068 -0.32 0.11 -0.23 -1 -0.017 50+ 27 50+
Lubberland Creek  -0.20 -0.39  -0.063 -0.33 -1 -0.017 50+ 12 50+
Eldridge Marsh ~ -0.13 -0.36 0.026 -0.24 -1 -0.080 50+ 50+ 50+
Jones Creek 0.0059  -0.22 0.18 -0.13 -1 -0.026 50+ 50+ 50+
Nonesuch River  -0.22 -0.45 -0.13 -0.39 -1 -0.22 50+ 6 50+
Scarborough Marsh ~ -0.11 -0.36 0.037 -0.23 -1 -0.0013 50+ 50+ 50+
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Table 32. The amount of habitat required for a 50% probability of persistence for Saltmarsh, Nelson’s
and Seaside sparrows in individual states. There were no realistic scenarios for protecting viable
populations of Nelson’s Sparrow in Maine.

Population target (females) Area (ha) of
for 50% probability of marsh required % of state’s current
State persistence for persistence marsh area
Saltmarsh Sparrow
NJ 7,500 59,324 72
NY 7,500 29,098 260
CT 7,500 46,364 941
RI 7,500 22,450 1,660
MA 7,500 40,502 230
NH 7,500 44,875 1,382
ME 7,500 84,405 925
Nelson’s Sparrow
NH 100 208 6
ME NA NA NA
Seaside Sparrow
NJ 100 115 1
NY 100 213 2
CT 5,000 11,905 241

Conclusions

Although our results suggest that Saltmarsh Sparrow populations are unlikely to go extinct within the
next 50 years, the finding that they will have positive growth at only ~5% of sites over that period is

alarming. Although Saltmarsh Sparrow is recognized as globally vulnerable with extinction by the IUCN
and is considered a SGCN in many states, it is not currently afforded special protection in the USA (e.g.,
under the US Endangered Species Act). Our results suggest that the species may disappear from many
of our study sites, most of which are located in well protected areas and were chosen because they have
good habitat and relatively large populations, and much of its current range within the next few
decades.

Like all models, our viability analyses make a number of assumptions and are subject to certain data
limitations. In particular, the lack of long-term data for vital rates suggests that we may underestimate
risk (cf. Reed et al. 2003). Moreover, throughout our model development we aimed to err in the
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direction of conservative decisions so as not to overestimate extinction risk. Finally, our demographic
data do not come from randomly selected study sites. When choosing sites for the collection of
demographic data, we selected marshes known to support relatively high densities and to have
apparently high quality habitat, in order to ensure that we were able to obtain large samples for
estimating reproduction and survival rates. It is quite likely, therefore, that our data represent some of
the best sites for tidal marsh sparrows within each state. If this is true, then it would further suggest
that our results are conservative and that extinction risk is higher than our current models suggest.
None of our models account for immigration into populations, which has not been rigorously quantified,
and immigration could, theoretically, increase the chance of persistence at some sites. Given how
widespread the projected declines are, however, it is unlikely that there will be substantial source
populations or that immigration will make a substantial difference. New work has begun to evaluate
some of these issues, to collect additional data, and to develop a new generation of models that will test
the importance of these concerns.

Given the small area of tidal marsh in any one state, and the fact that most states lack sufficient habitat
to ensure long-term viability of Saltmarsh Sparrow populations, is it important that conservation
planning take place at a larger spatial scale. Although we lack such detailed demographic analyses for
other tidal marsh birds, our results for Seaside and Nelson’s sparrows suggest that such coordination is
likely to be important for these species as well. Indeed, the small total area of tidal marsh habitats and
the consistent pattern of decline for tidal marsh specialists (see section V above), suggests that the same
coordinated conservation planning is needed for the entire avian community (see section IX, below)

Table 33. Estimated population growth rates and median time to extinction for Seaside and Nelson’s
sparrows in each state for which we have demographic data. Time to extinction estimates assume no
immigration from other states. NA indicates that a state is outside of the species’ primary breeding range.

Seaside Sparrow Nelson’s Sparrow
State Median time Lower Upper Median time to Lower Upper
to extinction  95% CI 95% ClI extinction 95% CI 95% CI
(years) (years)

New Jersey 50+ 45 50+ NA NA NA
New York 48 20 50+ NA NA NA
Connecticut 38 16 50+ NA NA NA
New Hampshire NA NA NA 50+ 42 50+
Maine NA NA NA 30 15 50+
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Figure 27. Probability of extinction, by state, for Seaside and Nelson’s Sparrow. Extinction risk was
calculated taking into account both parameter estimation uncertainty and demographic stochasticity.
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IX. Decision Support Tools
Delaware case study (see Appendix C for complete report)

To prepare for the challenges tidal marshes face from global climate change, conservation decisions
must be made using objective, quantitative and repeatable methods that incorporate sea level rise
uncertainties. Such decision-making should effectively prioritize land acquisitions and efficiently
allocate limited conservation funds while proactively addressing potential future habitat changes. Two
selection methods used by conservation planners to identify priority projects for land acquisition or
easement opportunity vary in their capacity to select cost-effective projects given the fiscal constraints
of limited budgets. Benefit targeting is a rank-based method that uses a “greedy agent” algorithm to
acquire parcels with the highest conservation value, independent of project costs, until a specified
budget is exhausted. These “greedy heuristic algorithms” are routinely used in conservation planning
for reserve site selection and, given the availability of avian data, these taxa are well represented as a
measure of the conservation benefit in reserve selection projects. Although benefit targeting continues
to be the most used method for developing conservation planning strategies, the method’s outcomes
can lead to inefficient monetary spending and suboptimal conservation gains. Alternative methods to
benefit targeting include linear, binary, and mixed integer programming. These optimization algorithms
find solutions that minimize the expenditure of financial resources while simultaneously maximizing a
desired conservation target. Optimization algorithms are being used more frequently to answer a
variety of conservation questions.

We tested these two approaches as a case study in Delaware to compare the site prioritization between
benefit targeting and optimization and then determines the future persistence of the selected parcels
given three sea level rise scenarios and the implications for the tidal marsh bird community. The specific
objectives of this case study were to: 1) determine the tidal marsh areas in Delaware that support the
greatest density of breeding tidal marsh obligate birds, 2) identify the extent of protected and
unprotected salt marsh habitat in the state, 3) identify and compare benefit targeting- and optimization-
selected parcel portfolios that maximize bird density on unprotected marsh habitat in three budget
scenarios, and 4) determine the effect of three sea level rise scenarios on the proportion of land cover
types within the optimized parcels.

We used three budget level scenarios, $10M, $15M, and $S20M, to develop budget specific parcel
portfolios based on benefit targeting and optimization, and used tidal marsh obligate breeding bird
density as our conservation target. We used three sea level rise scenarios (0.5 m, 1.0 m, 1.5 m) to
estimate the land cover types that would remain within each selected parcel. The optimization method
selected more parcels, protected more marsh area, and conserved more tidal marsh obligate birds, than
the more traditional benefit targeting method. Total marsh area ranged from 7.2-9.6% greater and bird
density ranged from 7.3—-12.8% greater given the optimization method. When benefit targeting and
optimization protected the same number of birds, optimization provided a cost savings of $1.75M-
$2.9M. All sea level rise scenarios inundated greater than 95% of the wetland area on selected parcels.
Agricultural land had the greatest amount of area remaining of any land cover type in all scenarios,
ranging from 79.9 ha, 82.0% of total portfolio area (510M-1.5 m scenario), to 648.7 ha, 70.8% of total
portfolio area (520M—-0.5 m scenario). Optimization models can be used to develop comprehensive
strategies that protect marshes with current core tidal marsh bird populations. Increasing rates of
inundation from sea level rise, however, will likely lead to losses of existing wetland areas. The potential
future benefits of adjacent agricultural lands to tidal marsh birds through marsh migration should be



incorporated into optimization models for more effective conservation planning and spending of limited
financial resources

Connecticut case study (see Appendix D for complete report)

Conservation practitioners in Connecticut are beginning to invest resources in decision support tools
(DSTs) that will guide them in making sense of the bewildering array of options for land protection and
restoration, especially along the coastline. One such tool, currently being developed by Fountains
Spatial, is intended to guide the Long Island Sound Stewardship site selection process. Further
development of a wildlife complement to this tool is a high priority for several organizations, including
the State Department of Energy and the Environment (DEEP), Audubon Connecticut, and the
Connecticut Audubon Society. This report outlines a pilot DST to guide decisions for coastal bird
conservation. At 2010's Connecticut “Avian Summit” — a meeting of representatives of most of the
major organizations involved with bird conservation in the state — saltmarsh and beach-nesting birds
were identified as a high conservation priority and, because data already exist for many species, a logical
systems for which to develop a set of prototype DSTs. The prototype presented here is based on a
systematic planning process (Margules and Pressey 2000). Following this science-based process will
ensure that decisions based on the resulting tools are defensible, transparent, and based on the latest
peer-reviewed evidence on how to make smart conservation decisions.

Saltmarsh and beach systems are complex, dynamic, and surrounded by uncertainty. Salt marshes in
Connecticut are expected to undergo drastic changes in the next 100 years as sea levels continue to rise
(Hoover 2010). One adaptation strategy, already being implemented by several conservation
organizations, is to protect open space adjacent to salt marshes (often by purchasing the land outright)
to create avenues for the potential landward migration of marshes. Because land prices in Connecticut
are high, a successful implementation strategy will hinge on achieving efficiency in decision-making that
will give the greatest conservation benefit per dollar spent. A challenge to achieving this efficiency is
that land prices change with markets over time, and are not predictable with complete certainty.
Therefore, the DST we have developed explicitly accounts for the uncertainty of how much it will cost to
protect land, providing practitioners with the decision-making framework to make low-risk, high-
efficiency decisions.

Setting targets

In-person meetings to discuss quantitative conservation targets were held in early 2010 at the Center
for Environmental Science and Engineering at the University of Connecticut, and in early 2011 at a
breakout session during the Connecticut Conference on Natural Resources. These sessions were
followed by surveys in which conservation practitioners ranked salt marsh and beach-nesting birds and
their habitats in order of conservation priority. Using the results of these surveys, we narrowed the list
of conservation targets to 5 species and 2 habitat types (Table 1). For each of the targets on this priority
list, we developed three alternatives for quantitative population or habitat-area targets, and used a
second survey to determine which target was favored by the stakeholder group. DSTs were developed
with the goal of protecting sufficient land to ensure that these quantitative targets are met. Given
current population sizes, some targets are impossible to meet via protection alone, and will require
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active management for population growth (e.g., habitat restoration or creation) if they are to be
achieved.

For the prototype DST analysis, we focused on the two tidal marshes species, Saltmarsh Sparrows and
Seaside Sparrow, and conducted analyses to address the following questions: (1) Are all of the marsh
complexes for which comprehensive data exist needed to meet the target population sizes? (2) How
much of the land at each of these marsh complexes is currently protected via land ownership or
conservation easements? (3) Can land parcels at individual marshes be prioritized according to the
trade off between conservation benefits versus economic cost of protection? Although beyond the
scope of this contract, work on a DST focused on the beach-nesting priority species was also begun.

Data compilation

Sparrow abundance data were obtained from standardized point counts of tidal marsh birds (see
Gjerdrum et al. 2008, Elphick et al. 2009, Meiman 2009). Land value data were compiled from the Town
of Stonington's tax assessor and trulia.com. Additional data on beach-nesting birds were also compiled
from the Connecticut DEEP's Piping Plover and Least Tern Recovery Project, although these were not
used for the pilot tidal marsh DST.

Estimating priority bird species abundance

We analyzed the raw point count data using Bayesian hierarchical models to estimate marsh-level
abundance of Saltmarsh and Seaside sparrows for six major marsh complexes: Milford area; East River,
Guilford/Madison; Hammonasset, Madison; Lower Connecticut River; Bluff Point, Groton; and Barn
Island, Stonington. For both species, the target statewide population size was within the estimated
confidence intervals of the total population size for the 6 marsh complexes combined. This result
suggests that these sites all need to be protected in order to meet the targets (Figure 1).

Current protected status of salt marshes

We determined the proportion of total marsh habitat in the six major marsh complexes that is under
some kind of protected status (i.e., conservation easement or in conservation ownership) using DEEP's
Connecticut Parcels for Protected Open Space Mapping (POSM) database and data from the U.S.
Geological Survey's GAP analysis program (http://gapanalysis.usgs.gov/). For this initial analysis, we did
not include land that is simply protected by the existence of wetland legislation. The protected status of
Connecticut's marshes is variable, with Stonington's Barn Island closest to being fully protected (Figure
2).

Incorporating land costs

To help guide management decisions we developed a method for prioritizing land parcels based on the
trade-off between their cost and their conservation benefits. We implemented this method for the
marshes at Barn Island to illustrate the approach and demonstrate its utility. For each tax parcel in this
marsh complex, we compiled two pieces of information: 1) the total area of high and low marsh,
calculated using a raster developed by Hoover (2010) and 2) the assessed value of the property from the
Town of Stonington's Tax Assessor. Because information from the assessor's office does not reflect the
most up-to-date property values, we also conducted a regression-based economic analysis of recent
land sales in Stonington using information from trulia.com. From these analyses we estimated that
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Stonington's overall housing market has likely declined by ~30% since properties were last assessed, and
that 95% of properties were sold within the range of £ 20% of market value. By combining the assessed
values with the estimated market change we were able to estimate both the current market value and
uncertainty in that value (i.e., £ 20%) for each parcel.

Prioritization using the “fraction of the spares”

We determined that the “fraction of the spares” (FOS) conservation index (Phillips et al. 2011) was the
most flexible way to identify which tax parcels were the highest priorities for acquisition. The FOS is
conceptually simple and computationally inexpensive, which makes it possible to easily recalculate the
index to keep up-to-date with changing land markets and the most recent conservation actions. We
calculated the FOS for each parcel in the Barn Island complex, and ranked parcels according to their
relative contributions to our targets based on the area of high and low marsh in each parcel. These
values were then prorated by dividing the FOS value by the cost of purchasing the parcel, in effect
turning the index into a cost/benefit ratio. This ratio was calculated for every parcel in Stonington that
contained marsh habitat. The uncertainty of the likely sales price (represented by the + 20% interval
around the market value) was propagated in the calculation of the index, resulting in FOS values with
95% confidence intervals.

Recommendations for region-wide expantion

Now working prototypes have been developed in both CT and DE, we anticipate that the next stages will
be to extend the analysis to a region-wide scale and to incorporate predictions of future marsh
distributions. Doing this would make it possible to prioritize purchase of land parcels in order to most
efficiently ensure that marshes are capable of migrating landward (naturally or with assistance) in the
long-term. Most of tidal marshes are currently protected by legislation for wetland protection, but
potential areas for landward migration are not, and for the next several decades these sites will likely be
the main focus of attention for saltmarsh conservation in the state.

Existing wetland conservation programs on private lands, such as the Wetlands Reserve Program (WRP)
and Wildlife Habitat Incentives Program (WHIP), provide landowners with funding for technical and
financial support for conservation projects and could provide opportunities for tidal marsh conservation
in the future. Both programs are authorized through the U.S. Farm Bill (Food, Conservation, and Energy
Act of 2008) and administered by the U.S. Department of Agriculture’s Natural Resources Conservation
Service (NRCS). Through the WRP, landowners protect or enhance wetlands on their property, including
restore wetlands from former agriculture fields, and may be reimbursed up to 100% of conservation
easement costs (NRCS 2008). The program is best “suited for frequently flooded agricultural lands,
where planned restoration will maximize habitat for migratory birds and other wildlife, and improve
water quality” (NRCS undated a). WHIP assists landowners in creating priority fish and wildlife habitat
through cost-share agreements and landowners may be reimbursed up to 90% of the costs (NRCS 2011).
While the WRP and WHIP have been successful in creating and conserving habitat in and for the present,
more incentives and long-term agreements are needed to bolster private landowners’ voluntary
program participation to ensure the future existence of habitats and associated species.

Working Lands for Wildlife, a new partnership between NRCS and U.S. Fish and Wildlife Service
announced in September 2012, directly addresses conservation for declining species on working
agricultural lands and may be able to provide critical additional support for tidal marsh conservation in
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the future. The program provides technical and financial assistance through WHIP to farmers, ranchers,
and forest owners to reverse declining populations of seven specific wildlife species (i.e., Bog turtle,
Gopher tortoise, New England cottontail, Greater sage-grouse, Lesser prairie chicken, Southwestern
willow flycatcher, and Golden-winged warbler). Considering predictions for the future of tidal marshes,
current avenues for wetland conservation will likely need to take on new dimensions to achieve
conservation goals in the face of global climate change. Regardless of how conservation programs are
supported, policies that provide opportunities for wetlands to migrate inland are likely to be less
expensive and will have a greater probability of success if planning occurs before these lands are
developed.

The approaches we have developed here are purposefully very flexible, easy to calculate and
understand, and based on the latest research in conservation biology and decision theory. We have
deliberately applied the approaches to simple examples with a small set of conservation targets and a
single conservation action in order to illustrate the method as a “proof-of-concept”. Both approaches,
however, can easily be expanded or applied to other systems by including a larger set of targets and
considering a wider range of conservation actions (e.g., restoration), or even explicitly trading-off the
costs and benefits of alternative conservation actions. It also would be possible to combine information
from disparate areas of conservation (e.g., by examining the trade-offs between conservation actions for
beach-nesting birds vs. tidal marsh birds). An additional extension of the current models would be to
incorporate information on each parcel's vulnerability to development or ability for marshes to
transgress into the optimization which would likely shift conservation priorities to those parcels that are
likely to persist or become marshes in the future.

X. Future Directions
Data Storage and Maintenance

In spring 2015, SHARP entered into an agreement with Winning Solutions Inc. a professional database
development and data management company (https://www.winningsolutionsinc.com/). The initial
phase of this agreement was to normalize all SHARP avian and vegation survey data 2011 — present into
multi-year combined Microsoft SQL Server database; create a web based data entry input form to allow
individuals to enter data into a web form and have it committed directly to the multi-year database; and
create a Microsoft Access 2013 database with connections to all the SQL tables in the new database.
The webbased interface was created using a framework called “Bootstrap” that enables the automatic
scaling of the webpage from phone to desktop monitor size screens. http://getbootstrap.com/. Long-
term data storage will occur on a SQL server located at the University of Maine and the SHARP Database
will be linked directly off the SHARP webpage (www.tidalmarshbirds.org). All hard copy data (field
forms) are photocopied, scanned as PDF, and stored with the USFWS Region 5 I&M data manager and at
the University of Delaware.

Hurricane Sandy Studies

Following Hurricane Sandy, the data set produced by this project provided an unprecedented
opportunity to investigate the effects of a major storm on coastal marshes, and on coastal resilience
more generally. Using the data presented in this report as a platform, we have since received additional
grants that are allowing us (a) to evaluate the effects of the storm using SWG-funded data as pre-storm
baseline data and (b) to extend our sampling to quantify baseline conditions where post-storm
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restoration work is being done. Additional work will be conduted to provide before- and after-
restoration sampling at sites throughout the mid-Atlantic and New England states will be used to
investigate the efficacy of different recovery actions. By pooling information from multiple restoration
sites using a standardized set of survey protocols (all available at http://www.tidalmarshbirds.org/), our
sampling will allow rigorous quantification of whether methods work, how they compare, and what they

contribute to coastal resilience. We also participated in a 2014 multi-agency conference organized by
the North Atlantic Landscape Conservation Cooperate at Hadley, MA, and a 2015 symposium at the
Society for Wetland Scientists’ conference in Providence, Rl, both of which were intended to bring
together a diversity of scientists working on storm impacts and coastal resilience.

Eastern Tidal Marsh Conservation Business Plan

As a result of this grant, we have convened three symposia at bird conservation and management
meetings organized by Partners in Flight (PIF) in the eastern US (2010: Plymouth, MA; 2012: Plymouth,
MA; 2014: Virginia Beach, VA) in order to keep stakeholders up to date on our work. The culmination of
these symposia has been the convening of a group to develop an eastern North America tidal marsh
conservation business plan under the National Fish and Wildlife Foundation’s business planning model.
In addition to the 2014 symposia, at the Virginia Beach PIF meeting we organized a special session
focused on setting the scope for the plan, identifying focal species, and conducting a comprehensive
threat assessment for the highest priority species. A follow-up meeting to identify action items, an
implementation plan, and assessment metrics is planned for winter 2015-16. Details of the
conservation plan’s status are provided here: http://www.tidalmarshbirds.org/?page id=1682. Details
of the symposia we have held and a complete listing of the 125 presentations given by our group since
the start of this project are provided here: http://www.tidalmarshbirds.org/?page id=1414.

Future Research Needs

A. Collaborate with identified investigators from the Southeastern US to implement a consistent
platform for tidal marsh conservation from the Gulf of Mexico to the Gulf of Maine

B. Develop sub-marsh-scale management techniques to maintain bird-suitable high marsh habitats in
the face of sea-level rise (e.g., tree-cutting, tidal booms, floating islands, tide gate manipulation,
runnel cutting)

C. Experimentally test methods to convert marsh-adjacent agricultural lands into bird-suitable high
marsh (To develop an NRCS program for adaptation to sea-level rise)

D. Experimentally test the impacts of nutrient subsidies on the resilience of marshes to sea-level rise,
and trace the landscape sources of such subsidies (To rank marshes at risk of eroded resilience and
provide actions for increasing local marsh resilience)

E. Determine the effects of dams and dam removal on tidal marsh bird community stability and
resilience

F. Quantify the ecosystem services of restored and unrestored marshes (and regional marsh
complexes) using methods comparable to service estimators in other systems world-wide

G. Expand our state-level decision-support tools to optimize tidal marsh conservation for the entire
region, combining our biological knowledge with social science data and modeling

H. Trial Saltmarsh Sparrow husbandry techniques to allow for the quick and successful development of
a breeding program, should it become necessary
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XIl. Appendices

Appendix A: Model Evaluation Tables from Bayes Net

Table B1. Model complexity, performance, and validation of the Bayesian network models predicting species occurrence as a function of patch

covariates.
Model validation (5-fold),
. Model performance, .
Model complexity . mean confusion error rates,
confusion error rates, % 0
mean %
Speci Spherical No. No.
pec1esb pnerica oy O Absent  Present Total® Absent Present Total
Model® payoff covariates probabilities
Clapper rail
All 1 0.869 3 74 11.6 27.5 17.3 17.8 27.5 22.0
Sub 2 0.895 7 158 12.8 13.2 12.9 16.6 20.2 18.4
All 2 0.901 9 194 9.8 15.4 11.8 16.5 24.2 19.6
Sub 3* 0.905 11 230 10.4 14.3 11.8 13.2 20.9 16.5
All 3 0.916 15 296 8.5 14.3 10.6 10.7 31.0 18.4
Sub 4 0.910 16 338 8.5 14.3 10.6 11.5 25.5 16.5
All 4 0.918 22 832 9.8 11.0 10.2 16.7 30.5 21.2
Willet
All 1 0.836 3 74 5.8 55.8 19.9 8.3 58.1 22.9

Sub 2 0.857 7 158 7.0 43.6 17.4 9.5 45.8 20.3



Model validation (5-fold),

Model performance,

Model complexity _ mean confusion error rates,
confusion error rates, %

mean %
Species Spherical No. No. Presen Presen
Model®® pzyoff covariates  probabilities Absent t Total®  Absent t Total*
All 2 0.854 9 194 7.4 41.8 17.2 10.8 46.1 21.3
Sub3 0.855 11 236 11.3 37.0 18.6 13.6 42.8 22.4
All 3 0.861 15 308 113 32.7 17.4 13.6 43.7 22.5
Sub 4 0.862 16 338 12.2 33.3 18.2 13.7 42.1 22.0
All 4* 0.895 22 1,156 10.6 19.4 13.1 13.9 40.6 21.8
Nelson’s sparrow
All'1 0.857 3 74 12.5 31.6 18.1 12.5 53.0 24.4
Sub 2 0.894 7 164 9.6 26.3 14.5 12.5 41.2 20.8
All 2 0.882 9 200 11.0 29.8 16.6 14.7 42.2 22.8
Sub 3 0.906 11 236 6.6 21.1 10.9 12.4 51.5 23.9
All 3* 0.905 15 308 7.4 19.3 10.9 11.9 46.0 21.8
Sub 4 0.906 16 270 6.6 21.1 10.9 11.0 51.2 22.8
All 4 0.898 22 336 6.6 28.1 13.0 12.5 41.0 20.8
Saltmarsh sparrow
Alll 0.748 3 74 61.3 13.6 35.2 61.1 16.8 36.5
Sub 2 0.789 7 158 36.1 20.1 27.3 45.8 26.9 35.2
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Model complexity

Model performance,

confusion error rates, %

Model validation (5-fold),

mean confusion error rates,

mean %
Species Spherical No. No. Presen Presen
Model®® pzyoff covariates  probabilities Absent Total®  Absent Total*
All 2 0.788 9 200 37.8 19.7 27.9 48.4 27.9 36.9
Sub3 0.853 11 236 21.7 16.1 18.7 28.3 22,6 25.2
All 3 0.859 15 308 18.7 17.6 18.1 28.6 21.6 24.8
Sub 4 0.863 16 328 19.6 16.1 17.7 24.8 20.6 22.6
All 4* 0.917 22 1,194 13.9 7.9 10.6 18.3 13.8 15.9
Seaside sparrow
All'1 0.805 3 74 9.7 63.4 26.7 18.5 59.3 32.1
Sub 2 0.832 7 164 124 39.8 21.0 15.3 47.7 26.2
All 2 0.838 9 194 10.9 38.2 19.5 15.9 52.9 28.2
Sub 3 0.849 11 230 11.2 35.0 18.7 14.5 43.1 23.8
All 3 0.853 15 296 13.5 30.1 18.7 16.9 41.8 254
Sub 4 0.881 16 344 12.0 22.8 154 14.5 31.0 20.3
All 4* 0.912 22 914 8.2 16.3 10.8 12.9 28.1 17.9

#Number of cases in each species data set used to parameterize the models: clapper rail = 255, willet = 582, Nelson’s sparrow = 193, saltmarsh
sparrow = 509, and seaside sparrow = 390.

®Final selected models are indicted by an “*’.
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“The percent error of the absent and present states equals 100% of total error.

Table B2. Model complexity, performance, and validation of the Bayesian network models predicting species density (birds per ha)
as a function of patch covariates.

Model complexity

Model performance,

confusion error rates, %

Model validation (5-fold),

mean confusion error rates,

mean %
Species Spherical  No. No.
Model?® payoff covariates  probabilities 20-1 1 Total® 0 20-1 1 Total
Clapper rail
Alll 0.822 3 111 8.5 40.8 85.0 235 14.7 38.1 100.0 28.6
Sub 2 0.863 7 237 10.4 21.1 55.0 16.9 14.9 321 717 255
All 2 0.872 9 291 9.8 254 50.0 173 15.5 37.9 91.7 28.2
Sub 3 0.875 11 336 9.1 23.9 25.0 145 14.5 38.7 65.0 259
All 3 0.900 15 444 8.5 22.5 15.0 155 10.6 40.8 63.3 25.1
Sub 4 0.890 16 498 8.5 254 15.0 13.7 13.8 36.7 65.0 25.1
All 4* 0.903 22 1,248 9.1 19.7 15.0 126 16.6 45.0 450 275
Willet
All1 0.809 3 111 5.0 55.0 97.8 225 7.6 56.1 100.0 24.9
Sub 2 0.834 7 237 5.5 48.3 73.3 19.6 8.3 57.1 89.5 249
All 2 0.826 9 291 8.6 52.5 62.2 218 8.6 58.2 90.8 25.3
Sub 3 0.835 11 345 8.9 49.2 64.4 215 12.0 63.2 86.0 284
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Model validation (5-fold),

Model performance,

Model complexity _ mean confusion error rates,
confusion error rates, %

mean %
spectes Spherical = No. No.- >0-1 > Total® 0 >0-1 >1  Total
Model®® payoff covariates  probabilities
All 3 0.841 15 453 115 40.8 444  20.1 12.2 61.0 829 27.7
Sub 4 0.833 16 507 11.8 42.5 51.1 211 14.9 57.2 80.2 28.7
All 4* 0.866 22 1,734 6.5 32.5 57.8 15.8 12.2 56.3 773  26.6
Nelson’s sparrow
Alll 0.815 3 111 5.9 55.9 82.6 23.8 10.3 65.3 92.7 30.0
Sub 2 0.866 7 255 7.4 41.2 47.8 181 14.0 70.3 84.7 326
All 2 0.870 9 300 7.4 294 435 155 13.2 67.3 75.7 30.6
Sub 3 0.888 11 354 5.1 26.5 348 124 124 74.7 843 321
All3 0.906 15 471 5.1 17.6 348 109 8.8 66.0 87.7 285
Sub 4 0.901 16 414 51 20.6 348 114 9.5 74.0 84.3 30.0
All 4* 0.898 22 531 51 23.5 304 114 8.1 70.0 79.3 275
Saltmarsh sparrow
Alll 0.708 3 111 57.0 17.9 100.0 39.9 60.2 21.0 100.0 42.6
Sub 2 0.753 7 246 37.0 234 815 326 48.6 29.7 95.0 41.7
All 2 0.755 9 300 37.0 242 77.8 328 44.7 34.1 100.0 42.1
Sub 3 0.820 11 345 19.6 21.4 59.3 226 29.1 27.5 92.1 318
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Model complexity

Model performance,

confusion error rates, %

Model validation (5-fold),

mean confusion error rates,

mean %
peces spherical - No. - No- g 50-1 >1  Total® 0 50-1 >1  Total
Model®® payoff covariates  probabilities
All 3 0.832 15 453 18.7 22.2 545 218 28.5 26.8 921 31.0
Sub 4 0.834 16 492 19.6 20.6 481 216 245 28.3 97.1 303
All 4* 0.895 22 1,815 12.6 11.9 22.2 12.8 19.8 18.8 943 23.2
Seaside sparrow
Alll 0.773 3 111 8.2 84.8 58.1 303 9.7 85.9 79.6  33.8
Sub 2 0.811 7 246 13.9 59.8 29.0 259 14.6 69.8 509 31.0
All 2 0.812 9 291 11.6 62.0 29.0 249 14.1 68.5 525 305
Sub 3 0.830 11 345 11.2 55.4 19.4 223 14.8 69.2 53.0 31.0
All3 0.836 15 444 11.2 50.0 129 205 15.8 61.2 58.7 30.8
Sub 4* 0.862 16 528 10.1 34.8 19.4 16.7 15.7 55.7 46.8 28.2
All 4 0.903 22 1,365 6.4 26.1 12.9 115 10.3 46.2 62.7 231

2Number of cases in each species data set used to parameterize the models: clapper rail = 255, willet = 582, Nelson’s sparrow =

193, saltmarsh sparrow = 509, and seaside sparrow = 390.

®Final selected models are indicted by an “*’.

“The percent error of the three density states equals 100% of total error.
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Appendix B: Saltmarsh Habitat and Avian Research Program Nest Monitoring Protocols

Available online at www.tidalmarshbirds.org

NEST SEARCHING

Formal nest searches should be conducted as frequently as possible, but not so frequently as to cause
detrimental disturbance to the birds. At a minimum, plots should be comprehensively searched at least
once per week throughout the breeding season. When nest searching, the procedure is simply to walk
back and forth in a zigzag fashion, with each path ~5-10 m from the previous one. Look carefully for
behavioral cues, particularly birds that flush within 15 meters of you as you walk. Also watch for
repeated flushes from the same spot, noticing when birds are carrying food (your impression will be of a
decidedly "front-heavy" bird, because of the bits of prey sticking out of the bill) or fecal sacs (gleaming
white). There is also an indescribable element involved with finding nests that just comes with
experience. Your best bet is to go out with someone who has found some nests and look at where the
nests are. Most people get quite good at finding nests quite quickly, though no one ever believes that
they will. Finally, always pay attention for behavioral cues and opportunistically nest search at all times
on the plot (e.g. while conducting nest checks, vegetation surveys).

MARKING NESTS

Once nests have been found, they should be marked with flags and the geographic coordinates taken
directly over the nest recorded with a geographic positioning system device. A nest card should be filled
out right away, and it is usually helpful to draw a small map of the immediate area on the back of the
card, in order to help re-find the nest on subsequent visits (especially if it is not you who will be coming
back). The types of thing worth marking on the map include the relative position within the plot,
location of nearby ditches or pools, any boundaries between vegetation types (e.g., the border of a
patch of Juncus sp.), etc.

We avoid putting flags right next to nests so as not to alert predators to the nest’s location.
Instead, use one of these methods; (a) place a flag ~5 m (5 strides) away, such that the nest lies on a line
between the flag and some easily identified marker (e.g., an osprey platform or plot boundary marker),
(b) if there is no suitable marker, put out two flags each ~5 m away from the nest, such that the nest lies
directly between them, or (c) use a standard compass bearing to set the line between the flag and the
nest. For any particular research group it is a good idea to make the convention consistent.

Nest numbering

To make it easier to combine data sets from different research groups, we will all use a common nest
numbering system. Each nest should be given a number that consists of (1) the two letter study plot
code, (2) the last two digits of the year, (3) the 4-letter banding code denoting the species, and (4) three
numbers denoting the Nth nest found that year, so that numbers take the form: ZZYYXXXX###, where ZZ
is the two-letter code for the study plot where the nest occurred, YY denotes the year, XXXX is the
species code, and ### is the nest number.

Within each research group, all nests are numbered sequentially, without regard to species. For
example, if the first three nests found in Connecticut in 2011 were a Saltmarsh Sparrow at Barn Island, a



Willet at Hammonasset, and another Saltmarsh Sparrow at East River, they would be numbered
BI11SALS001, HM11WILLOO2, ER11SALS003.

If multiple field teams are working in the same area in the same year, or if people are working
separately during nest searching, then each should be designated a separate set of numbers to use, so
as to ensure that no number is used twice. For example, one person could take numbers starting from
ZZYYXXXX001, while another takes numbers starting from ZZYYXXXX201.

Under-construction nests

For nests found without eggs, usually via a female flush during the construction phase, mark them as
you would an active nest with a stake flag. Record the date found and the location using geographic
coordinates for each nest found under construction on a new nest card.

To prevent disturbance that could lead a female to abandon her nesting attempt during the
construction stage, do not revisit under-construction nest until at least 5 days after discovery when it
might have eggs. In the meantime, stay away from the nest as much as possible; ideally leave an
approximately 50m buffer, although the presence of other nests that need monitoring may influence
the buffer radius). To this end, you might find it useful to mark the flag differently, such as with colored
flagging that denotes “under construction” so the area can be avoided at a distance.

If an under-construction nest has eggs on a subsequent visit, assign it a uniqgue number and
open a new nest card for it if you haven’t already. If the nest never has eggs on subsequent visits, be
sure you recorded the date of discovery and geographic coordinates, and then remove the flag after a
few weeks.

NEST MONITORING

Nests should be visited every 3-4 days after finding to track nest contents. Three days is preferred for
use in the fecundity model required by a SHARP deliverable. Nest visits should be brief and every
attempt should be made to minimize disturbance. If you can see into the nest and count contents
without getting right up close, then do so (carrying a narrow bamboo stick can be helpful as it allows you
to part the vegetation without getting right up next to the nest). If nestlings are present, make note of
physical features indicating their approximate age (feather development, body size, open eyes). If any
eggs or nestlings are seen outside of the nest (especially after a flooding event), make note of that.

If any eggs or chicks are missing since your last visit, make a thorough search of the area around
the nest to see if there are drowned chicks, or eggs that have floated out. If a nest appears to have
flooded and has lost an egg or two, continue monitoring with nest checks at the normal intervals,
because females will persist in incubation and the remaining eggs often hatch. If a nest with chicks
appears to be empty, but it is too soon for them to fledge, also keep monitoring, because young chicks
can climb out of nests and hide in the surrounding vegetation. Make sure to check where you put your
feet.

Details of each visit should be recorded on the appropriate nest record card (see below). When
nest contents have gone missing, it is important to provide as much detail as possible, both about what
you do see and what you do not (e.g., broken egg shell, chewed body parts, any nest damage, nest
empty but dry, etc.) Information about other nests lost in the same area and timeframe can be
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especially helpful to record, although the fate of one nest should not be simply inferred from the fate of
others. All of this information will be used to assign nest fates at a later date.

NEST CARDS

Whenever you go out in the field, carry a batch of blank nest cards so that you can fill in basic
information when you first find a nest. When doing a series of nest checks, take the relevant nest cards
with you so that you (a) have a map and directions to the nest, (b) know the conditions on the last visit,
which can sometimes help explain what you find, and (c) can fill the information in directly to avoid
transcription errors later on. Nest cards should be printed on fairly stiff card stock or Rite in the Rain
paper so that they can withstand some abuse, but remember that these are primary data so take care
not to get them wet, muddy, etc.

General nest info

Fill in the top section with the appropriate information about the nest and study plot when you first find
the nest. Use the nest numbering system described above. Record the geographic coordinates of each

nest using a geographic positioning system device. Record the band number of the associated female if
she is trapped off of the nest. As noted previously, sketch a map of the nest location on the back of the

nest card to assist finding the nest on subsequent nest checks.

Individual visit info

For each nest visit, the nest card has places where you should note:

e date and time of nest visit, observer initials

e the number of eggs and chicks in the nest,

o whether the nest bowl is wet (i.e. from flooding),

e whether eggs were warm or not (lightly touch them in the nest to check),

e the age of any chicks (estimated from the Nestling Aging SOP, available on SHARP

website: www.tidalmarshbirds.org),

e whether any dead eggs or chicks were collected,

e whether a female was seen to flush as you approached the nest,

e how far you were from the nest when the female flushed,

e whether the female called (also known as ‘chipping’) at you as you approached the nest,

e how far you were from the nest (NOT the female) when mobbing began.
There is also a column for nest status on each visit (e.g., partially failed due to flooding, completely
failed due to depredation). Codes for use in this column are in the margin on the right of the card.
Assigning codes is not always straightforward and a full assessment may not be possible until after the
nest has completed. During the nest visits, however, simply assign the code that you think most
accurately reflects the nests’ status for the period since the previous visit. Criteria for each status are
described below.

In the “Notes” space below each visit’s row of boxes you can describe any changes in the nest’s
integrity (e.g., pulled apart by a predator), whether the nest appears damp (e.g., due to flooding),
whether and how many dead eggs/chicks were found, and any other information that may help assign a
fate to the nest.

NEST FATE ASSIGNMENT
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To minimize variation in how fates are assigned, nest fates should be completed by the graduate
student responsible for each study plot (in consultation with others, as necessary). Described below are
nest fate assignment rules, which should be followed closely to ensure consistency across individuals.

Ultimate nest fates relate to the factor that determined the “completion” of the nest, and is
measured according to mutually exclusive categories. In other words it is the fate that relates to the last
individual(s) in a nest.

e [f any individual fledges, then the nest would be assigned an ultimate fate of “Fledged”
(="successful”).
e [f noindividual fledges, then the nest would be assigned an ultimate fate of “flooded”,
“depredated”, or “failed, unknown cause” (all of which = “unsuccessful”).
e In cases of conflicting evidence, specifically both nest flooding and nest depredation
evidence, nest fate is considered “completely failed, unknown cause”.
e Ifitis not certain whether any individuals fledge, then the nest would be assigned an
ultimate fate of “unknown fate”.
Nest fate assignment requires tracking the nestling period of each nest that hatches to determine if
missing chicks were old enough to fledge. Although eggs are laid a day apart, most species (including
sparrows, shorebirds, ducks) will not start incubating until the clutch is complete. This means that the
eggs will usually hatch on the same day. Our conventions are that the first day of the complete clutch is
considered the first day (day 1) of incubation, and that the day on which eggs hatch is considered day 0
of the nestling phase (i.e., nestlings are considered 1 day old on the day after hatching occurs).
Incubation lasts approximately 12 days for Saltmarsh Sparrows, and the last day of incubation is also
hatch day when the chicks are aged 0 days. Nestlings usually fledge after 10 days, when they are aged 9
days with our hatch day = 0 days old convention (Greenlaw & Rising, 1994). In summary, the entire
brooding cycle proceeds as follows. Egg-laying: 1-5 days; incubation: approximately 12 days (last day is
hatch day when chicks are 0 days old); nestling phase: typically 10 days, between 9 and 13 days.
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NEST FATE ASSIGNMENT KEY

Below is a dichotomous key for nest fate classification. Apply these rules to the ultimate fate of the
nest, as defined as the fate of the last egg or chick surviving within the nest. For example, though a nest
may lose an egg to flooding during incubation but the remaining eggs hatch and the chicks fledge, the
ultimate nest fate is

1 - At previous visit, chicks were 9+ days old (5)

1 - At previous visit, chicks were <9 days old (2)

2 - At current visit, chicks would be 9+ days old (8)*
2' - At current visit, chicks would be < 8 days old (13)*

2" - At current visit, chicks would be 8 days old (17)*

5 - Spring tide or heavy rainfall occurred since previous visit (6)

5'- No spring tide or heavy rainfall occurred since previous visit (7)

6 - Evidence of flooding (flooded)

- the nest is observed underwater during a high tide and a subsequent nest check confirms that the
nest is missing contents

- the nest is found with intact eggs outside the nest

- the nest is found with intact cold or dirty eggs in the nest, and eggs do not subsequently hatch
- the nest is found with intact dead chicks in, or close to, the nest

- the nest is found with barely-alive nestlings

- the nest is found to be empty and soaking wet immediately (next day) after a high tide, was known
to have been active immediately prior to the high tide, and there are no signs of depredation (see
7 for criteria required to assign depredation)

6' - No evidence of flooding (7)

6"’ — Evidence of flooding and depredation (failed, unknown cause)

7 - Evidence of depredation (depredated)
- the nest is found with its structure pulled apart

- the nest is found with obvious depredation remains
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- dead chicks or eggs are found with injuries that likely resulted in death

- the nest is found empty, or with partial loss, on a day when the tides could not have accounted for
the losses

7' - No evidence of depredation (fledged)

8 - No eggs/chicks missing, cold, or past hatch date (active)

8' - At least one egg/chick missing, cold, or past hatch date (9)

9 - Spring tide or heavy rainfall occurred since previous visit (10)

9' - No spring tide or heavy rainfall occurred since previous visit (11)

10 - Evidence of flooding (flooded)

- the nest is observed underwater during a high tide and a subsequent nest check confirms that the
nest is missing contents

- the nest is found with intact eggs outside the nest

- the nest is found with intact cold or dirty eggs in the nest, and eggs do not subsequently hatch
- the nest is found with intact dead chicks in, or close to, the nest

- the nest is found with barely-alive nestlings

- the nest is found to be empty and soaking wet immediately (next day) after a high tide, was known
to have been active immediately prior to the high tide, and there are no signs of depredation (see
7 for criteria required to assign depredation)

10' - No evidence of flooding (11)

10" — Evidence of flooding and depredation (failed, unknown cause)

11 - Evidence of depredation (depredated)
- the nest is found with its structure pulled apart
- the nest is found with obvious depredation remains
- dead chicks or eggs are found with injuries that likely resulted in death

- the nest is found empty, or with partial loss, on a day when the tides could not have accounted for
the losses
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11' - No evidence of depredation (12)

12 - Nest intact, well worn, may have droppings in the nest or immediately adjacent (fledged)

12' - Conflicting evidence (unknown if successful or failed)

13 - No eggs/chicks missing, cold, or past hatch date (active)

13' - At least one egg/chick missing, cold, or past hatch date (14)

14 - Spring tide or heavy rainfall occurred since previous visit (15)

14' - No spring tide or heavy rainfall occurred since previous visit (16)

15 - Evidence of flooding (flooded)

- the nest is observed underwater during a high tide and a subsequent nest check confirms that the
nest is missing contents

- the nest is found with intact eggs outside the nest

- the nest is found with intact cold or dirty eggs in the nest, and eggs do not subsequently hatch
- the nest is found with intact dead chicks in, or close to, the nest

- the nest is found with barely-alive nestlings

- the nest is found to be empty and soaking wet immediately (next day) after a high tide, was known
to have been active immediately prior to the high tide, and there are no signs of depredation (see
7 for criteria required to assign depredation)

15' - No evidence of flooding (16)

15" — Evidence of flooding and depredation (failed, unknown cause)

16 - Evidence of depredation (depredated)
- the nest is found with its structure pulled apart
- the nest is found with obvious depredation remains
- dead chicks or eggs are found with injuries that likely resulted in death

- the nest is found empty, or with partial loss, on a day when the tides could not have accounted for
the losses
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16' - No evidence of depredation (failure, unknown cause)

17 - No eggs/chicks missing, cold, or past hatch date (active)

17' - At least one egg/chick missing, cold, or past hatch date (18)

18 - Spring tide or heavy rainfall occurred since previous visit (19)

18' - No spring tide or heavy rainfall occurred since previous visit (20)

19 - Evidence of flooding (flooded)

- the nest is observed underwater during a high tide and a subsequent nest check confirms that the

nest is missing contents
- the nest is found with intact eggs outside the nest
- the nest is found with intact cold or dirty eggs in the nest, and eggs do not subsequently hatch
- the nest is found with intact dead chicks in, or close to, the nest
- the nest is found with barely-alive nestlings

- the nest is found to be empty and soaking wet immediately (next day) after a high tide, was known
to have been active immediately prior to the high tide, and there are no signs of depredation (see
7 for criteria required to assign depredation)

20' - No evidence of flooding (19)

20" — Evidence of flooding and depredation (failed, unknown cause)

20 - Evidence of depredation (depredated)
- the nest is found with its structure pulled apart
- the nest is found with obvious depredation remains
- dead chicks or eggs are found with injuries that likely resulted in death

- the nest is found empty, or with partial loss, on a day when the tides could not have accounted for

the losses

20' - No evidence of depredation (unknown if successful or failed)

NEST AND VISIT CENSORING
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For nest survival analysis (e.g. logistic exposure), nest monitoring data must be censored to eliminate
known biases. For example, if nestlings could have fledged on a given visit date (chicks were 9+ days
old, in the case of Saltmarsh Sparrows) and their nest is found empty, the visit must be removed. In this
case, the nest is assumed to be fledged while it may have failed after the previous visit with no evidence
of failure left. By removing the final visit when the nestlings could have fledged, the potential positive
bias is eliminated and all previous visits contribute to survival estimates. See Shaffer (2004) for
discussion of this issue and an illustrative example.

Data that must be censored from nest monitoring before deriving survival estimates and the known
problems they introduce:

Nests that were found after failure — Even when evidence of cause of failure is available at the
nest site, the timing of failure is not known and therefore the nest cannot be included.

Nest visits when nestlings could have fledged, specifically nests with chicks that would be 9+
days old — See above. We also exclude nest visits when nestlings were 8 days old because
previous research suggests that at 8 days (with hatch day = day 0), nestlings may fledge though
it is rare (Greenlaw & Rising, 1994). To correct nest visits when chicks were 8 days old, remove
the final nest visit and change the ultimate nest fate from “unknown if fledged or failed” to
“fledged”, which allows the nest to contribute to daily survival probabilities without introducing
bias.

Nest visits when the nest was already inactive on the previous visit — Note that, in the field it is
best to be conservative (continue to visit a nest until you are sure it has failed); however, this
practice results in nests that were visited more than once after failure. Left unchanged, these
additional visits can result in erroneous assigned times of failure and exposure intervals.

Nest visits that are 6 or more days after the previous visit - We restrict our analyses to nests
visited more frequently to limit uncertainty in nest fate assighment and the timing of nest
completion.
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ABSTRACT: Northeastern USA tidal marshes provide critical ecological services, including carbon sequestration, water
filtration, storm protection, erosion control, and wildlife habitat. Regardless of the services provided, salt marshes have
been filled, drained, and degraded since European settlement, and the unique wildlife dependent on these ecosystems
requires immediate conservation action. Furthermore, global sea level rise has become the foremost cause of
contemporary and future marsh loss. Sea levels have risen approximately 2 mm/year over the last century and predicted
marsh losses due to sea level rise are estimated to be 0.5-1.5% annually. Increases in marsh flooding from sea level rise
creates a real and immediate challenge to tidal marsh bird persistence, and uncertainties surrounding sea level rise must
be integrated into conservation decisions to achieve smart and proactive conservation planning. Decisions about how
to allocate limited conservation funding are often subjective and lack quantitative and repeatable methodologies. To
assist with prioritizing salt marsh habitat protection, we tested two quantitative methods (benefit targeting and binary
linear programming optimization) to determine the best combination of unprotected tidal marsh parcels that would yield
the greatest conservation benefit. We used three budget level scenarios ($10M, $15M, and $20M) to develop budget
specific parcel portfolios based on benefit targeting and optimization, and used tidal marsh obligate breeding bird density
as our conservation target. We used three sea level rise scenarios (0.5 m, 1.0 m, and 1.5 m) to estimate the land cover
types that would remain within each selected parcel following a rise in sea level. The optimization method selected more
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abstract continued

parcels, protected more marsh area, and conserved more tidal marsh obligate birds than the more traditional benefit
targeting method. Total marsh area ranged from 7.2-9.6% greater and bird density ranged from 7.3-12.8% greater given
the optimization method. When benefit targeting and optimization protected the same number of birds, optimization
provided a cost savings of $1.75M-52.9M. All sea level rise scenarios inundated greater than 95% of the wetland area
on selected parcels. Agricultural land had the greatest amount of area remaining of any land cover type in all scenarios,
ranging from 79.9 ha, 82.0% of total portfolio area (510M-1.5 m scenario), to 648.7 ha, 70.8% of total portfolio area
(S20M—-0.5 m scenario). Optimization models can be used to develop comprehensive strategies that protect marshes with
current core tidal marsh bird populations. However, increasing rates of inundation from sea level rise will likely lead to
losses of existing wetland areas. The potential future benefits of adjacent agricultural lands to tidal marsh birds through
marsh migration should be incorporated into optimization models for more effective conservation planning and spending
of limited financial resources.

Keywords: benefit targeting, binary linear programming, bird density, conservation planning, marsh birds, conservation
optimization, sea level rise, tidal marsh

INTRODUCTION [A. maritimus]), therefore their reproduction is directly tied

to flooding events (Gjerdrum et al. 2005, 2008, Shriver et al.
Tidal marsh ecosystems provide essential ecological 2007). Increases in flooding from sea level rise pose real
services including; protecting shorelines from erosion immediate challenges to the persistence of tidal marsh bird
and strong wave dynamics, serving as areas for flood populations as 0.5-1.5% of global marshes are predicted
storage, acting as nursery habitat for marine organisms, to be lost annually due to inundation (Shriver and Gibbs

and improving water quality (Greenburg 2006). Despite 2004, Greenburg 2006, Dahl and Stedman 2013).
these critical functions, few marshes remain in pristine

condition and the majority of marshes have historically Conservation of salt marsh habitat is a high conservation
experienced severe alterations. Development (Takekawa priority, particularly in light of accelerated sea level
et al. 2006), agriculture (Dreyer and Niering 1995), ditching rise (Douglas 1991, IPCC 2007, Rahmstorf 2007).
and channelization (Daiber 1986), marsh burning (Nyman Furthermore, the U.S. has a greater opportunity for tidal
and Chabreck 1995), invasive species (Benoit and Askins marsh conservation than other nations, given one-third of
1999), pollutants (Bertness 1999), and global climate the global extent (4,500,000 ha) of tidal marshes are located
change (Arp et al. 1993), have contributed to extensive along the country’s Atlantic and Gulf coasts (Greenburg
marsh loss and degradation of remaining areas (Tiner 2006). To prepare for the challenges tidal marshes face
1984, Dahl 1990). from global climate change, conservation decisions must
be made using objective, quantitative and repeatable
Of the 25 vertebrate species restricted to salt marsh methods that incorporate sea level rise uncertainties.
habitats, 21 species or recognized subspecies are Such decision-making should effectively prioritize land
considered endangered, threatened, or of other heightened acquisitions and efficiently allocate limited conservation
conservationconcerninthe United States (Greenburg 2006). funds while proactively addressing potential future habitat
Tidal marsh birds are of particular concern, as population changes.
estimates or trends are unknown and much of the habitat
may be inundated in the near future. Several avian species Two selection methods used by conservation planners to
spend their entire annual life cycle in tidal marshes and identify priority projects for land acquisition or easement
nest near or directly on the marsh surface (e.g., Clapper rail opportunity vary in their capacity to select cost-effective
[Rallus longirostris], Willet [ Tringa semipalmata], Saltmarsh projects given the fiscal constraints of limited budgets.
sparrow [Ammodramus caudacutus], and Seaside sparrow Benefit targeting is a rank-based method that uses a
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“greedy agent” algorithm to acquire parcels with the highest
conservation value, independent of project costs, until a
specified budget is exhausted. These “greedy heuristic
algorithms” are routinely used in conservation planning for
reserve site selection (Margules et al. 1988, Pressey and
Nicholls 1989, Bedward et al. 1992, Freitag et al. 1997,
Cabeza and Moilanen 2003) and, given the availability of
avian data, these taxa are well represented as a measure
of the conservation benefit in reserve selection projects
(Seetersdal et al. 1993, Fairbanks et al. 2001). Although
benefit targeting continues to be the most used method for
developing conservation planning strategies, the method’s
outcomes can lead to inefficient monetary spending and
suboptimal conservation gains (Underhill 1994, Rodrigues
and Gaston 2002, Messer 2006, Messer and Allen 2010,
Duke et al. 2013). Alternative methods to benefit targeting
include linear, binary, and mixed integer programming.
These optimization algorithms find solutions that minimize
the expenditure of financial resources while simultaneously
maximizing a desired conservation target (Allen et al.
2011, Kaiser and Messer 2011). Optimization algorithms
are being used more frequently to answer a variety of
conservation questions (Williams and ReVelle 1998,
Haight et al. 2004, Crossman and Bryan 2006, Martin et al.
2007, Downs et al. 2008, Stralberg et al. 2009, Fooks and
Messer 2012, Fooks and Messer 2013).

Herein, we present a case study that compares the site
prioritization between benefit targeting and optimization
and then determines the future persistence of the
selected parcels given three sea level rise scenarios and
the implications for the tidal marsh bird community. Our
specific objectives were to: 1) determine the tidal marsh
areas in Delaware that support the greatest density of
breeding tidal marsh obligate birds, 2) identify the extent of
protected and unprotected salt marsh habitat in the state,
3) identify and compare benefit targeting- and optimization-
selected parcel portfolios that maximize bird density on
unprotected marsh habitat in three budget scenarios, and
4) determine the effect of three sea level rise scenarios
on the proportion of land cover types within the optimized
parcels.
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METHODS

Parcels with Unprotected Marsh

To determine the extent of unprotected marsh in
Delaware’s Kent and Sussex counties, we assessed
publicly available geographic information systems (GIS)
data from the Protected Areas Database (PAD) and the
National Conservation Easement Database (NCED) (Data
Basin - Conservation Biology Institute 2012). The PAD-US
1.1 - Conservation Biology Institute Edition (CBI Edition)
is currently the most comprehensive geospatial dataset of
U.S. protected areas. The NCED compiles conservation
easement information from land trusts and public agencies
and is the first such national database.

We used ArcMap10 (ESRI 2011) to overlay PAD-US 1.1
(CBI Edition) and NCED (Version 1, 2011) data on U.S.
Fish & Wildlife Service (USFWS) National Wetlands
Inventory (NWI) estuarine emergent marsh spatial data
(USFWS 2012). We evaluated the extent of marsh habitat
currently protected through ownership or conservation
easements and used a series of geoprocessing tools to
identify and extract marsh areas currently unprotected. We
obtained geospatial land parcel data for Kent and Sussex
counties from the Delaware DataMIL (Delaware Geological
Survey 2012) and overlaid the data on the unprotected
marsh spatial information. We identified the parcels that
contained unprotected marsh and calculated marsh area
for each parcel.

Parcel Conservation Easement Costs

We calculated easement costs of parcels with unprotected
marsh using values from an existing hedonic analysis,
originally developed to estimate agricultural easement
values (Allen et al. 2006). Allen et al. (2006) calculated
regression coefficients from 501 parcels previously acquired
by the state of Delaware for agricultural lands conservation
to estimate easement costs of 1,095 unprotected parcels
not formally appraised in Kent County (2006). We included
the following variables relevant to calculating marsh
conservation easement costs in our linear cost equation:
county, tillable ha, tillable ha?, forest ha, forest ha?, wetland
ha, wetland ha?, year 2001, distance to shore (km), and
distance to urban area (km) (Table 1). The county variable
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accounted for each easement’s initial base price and an
additional $100,661 was added to easement costs to
control for market inflation relative to 1995, the baseline
year analyzed in the hedonic analysis (Allen et al. 2006).

We estimated land cover for each parcel in ArcMap 10
(ESRI 2011) using 2007 Delaware land use/land cover
(LU/LC) geospatial data (Delaware Geological Survey
2012). We defined our land cover classes as tillable areas,
forested areas (including deciduous, evergreen, and mixed
forest), and wetland areas (including all non-tidal and tidal
wetland classes). We used the Delaware state boundary
line to calculate distance to shore and the boundaries of
incorporated municipalities to calculate distance to urban
area (Delaware Geological Survey 2012). We multiplied
parcel variable values by their associated monetary
value listed (Table 1), and summed or subtracted where
appropriate to obtain an estimated parcel easement cost.

Bird Surveys

We conducted this study in tidal salt marsh habitat in
Kent and Sussex counties, Delaware. These marshes
are classified as Northern Atlantic Coastal Plain Tidal Salt
Marsh and range from the southern coast of Maine to the
Chesapeake Bay, Virginia (Comer et al. 2003). This system
of salt marshes occurs on the bayside of barrier beaches
and along the outer mouth of tidal rivers where salinity has
not been strongly impacted by freshwater.

We used a two-stage cluster sampling design to randomly
distribute survey points within the Saltmarsh Habitat &
Avian Research Program (SHARP, www.tidalmarshbirds.
org) study area (Johnson et al. 2009), which extends
through Bird Conservation Region (BCR) 30 and north to
Lubec, Maine. BCR 30, also known as the New England/
Mid-Atlantic Coast BCR, is a bird conservation planning

Table 1: Hedonic analysis variables and associated values and interpretation used to calculate marsh
conservation easement costs. Modified from Allen et al. 2006.
Variable Value Interpretation
County + $157,629.09 (Kent) County location constant
+ $193,107.05 (Sussex)

Tillable ha +$ 7,289.02 Increase per tillable hectare

Tillable ha2 -$ 13.37 Value increases at a decreasing rate
when the number of tillable hectares
increases

Forest ha +$ 911142 Increase per forest hectare

Forest haz -3 59.90 Value increases at a decreasing rate
when the number of forest hectares
increases

Wetland ha +$ 3,644.46 Increase per wetland hectare

Wetland ha2 -3 17.77 Value increases at a decreasing rate
when the number of wetland
hectares increases

2001 + $100,660.62 Inflation (relative to 1995)

Distance to shore (km) - $ 4.77 Decrease for each kilometer away
from the shore

Distance to urban -$ 15.71 Decrease for each kilometer away

area (km) from the nearest urban area
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region administered by the Atlantic Coast Joint Venture
that extends from coastal Virginia through southern
coastal Maine (Steinkamp 2008). The primary sampling
units (PSUs) selected during the first-stage were 40km?
hexagons used by the National Marsh Bird Monitoring
Program (Seamans 2011), (Figure 1). During the second-
stage of site selection, we used NWI estuarine emergent
marsh geospatial data to randomly distribute the survey
points (secondary sampling units [SSUs]) across marsh
habitat within selected PSUs (USFWS 2012).

We used a generalized random tessellation stratified
(GRTS) survey design in Program R using the spsurvey
package to generate survey points (Kincaid and Olsen
2012, R Core Team 2010). Samples from GRTS survey
designs emphasize spatial-balance, exhibiting spatial
density patterns that closely mimic the spatial density
patterns of the resource. We randomly located up to 10
survey points in each hexagon within estuarine emergent
marsh. Points were at least 400 m apart to ensure

independence (Conway 2011).

Figure 1: Bird sampling
locations for this study
in Kent and Sussex
counties, Delaware,
USA. Hexagons are the
primary sampling units,
n =15, and bird survey
points are the
secondary sampling
units, n =102.

Legend

*  Bird survey point

[] sampling hexagon

- Estuarine emergent marsh
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Trained field technicians collected bird survey data during
the 2011 avian breeding season (May—July) at 102 survey
points in Delaware for SHARP. At each survey point,
field technicians conducted point-count surveys following
the Standardized North American Marsh Bird Monitoring
Protocol (Conway 2011). We conducted bird surveys
from 30 minutes prior to sunrise and completed surveys
before 11:00 a.m. We visited each survey location three
times during the breeding season and we did not survey
for breeding birds when wind speed was greater than 12
mph or during sustained rain or heavy fog. Each survey
consisted of a five-minute passive listening period during
which we recorded all individual birds seen or heard utilizing
the marsh in one of three distance categories: 0-50 m, 50—
100 m, 100+ m. We did not record species flying over the
survey area or not actively foraging within the marsh.

Conservation Benefits

We used SHARP’s Delaware bird survey data to calculate
Clapper rail, Willet, Saltmarsh and Seaside sparrow
densities based on point-count detections from the 0-50
m and 50-100 m distance categories. We estimated
bird density (birds/ha) as the total nhumber of individuals
detected for the four species combined. We used the survey
data to determine the maximum number of individuals
detected across the three surveys at each survey point.
We summed the maximum count values within a hexagon
and divided by total survey area to calculate bird density
(birds/ha) within each hexagon. Total survey area was
calculated by multiplying the area of the point-count circle
(radius = 100m) by the number of points surveyed within
the hexagon. We used the mean bird density for surveyed
hexagons to estimate bird density in unsurveyed hexagons.
To calculate the parcel-specific bird density for estuarine
emergent marsh, our “conservation benefit,” we multiplied
the bird density estimate by the area of unprotected marsh
within the parcel.

Parcel Selection

We used benefit targeting and binary linear programming
optimization and compared the selected parcels between
the two methods to determine which method provided the
greatest conservation benefit. The benefit targeting method
typically selects parcels to acquire based on benefit values
and does not take into account easement or transaction
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costs explicitly in the selection process. Parcels are listed
in descending order of benefit value; the parcel with the
highest benefit score is acquired first, and the process
continues until the budget is exhausted. Binary linear
programming optimization evaluates the conservation
benefits of the entire parcel pool, as well as estimated
costs and budget constraints, to select a combination of
parcels that provides the greatest aggregate conservation
benefit within the constraints (Messer 2006). Optimization
selects parcels that contribute to achieving the maximum
total benefit possible within the apportioned budget. Model
output is restricted to the integers 0 and 1, where a value
of 0 indicated parcel rejection for land acquisition and a
value of 1 indicated parcel selection. The resulting binary
portfolio represents the best use of conservation dollars to
conserve important core areas of four of Delaware’s tidal
marsh obligate bird species. The optimization model was
expressed as, s
max(X) = EXlAi

i=1

The model was represented by i = 1,...,1,447, which
indicated an index representing the 1,447 land parcels
available for purchase. Conservation benefit (parcel bird
density) was represented as A, and X represented the
binary (0, 1) variable for the ith parcel. The model was
subject to a budget constraint, where C, was the cost of the
ith parcel, and B was the total available budget,

1

EC,.X .<B

i=1
We used Analytic Solver Platform and Microsoft Excel
to perform benefit targeting and optimization analyses
(Frontline Systems 2013).

We used three budget scenarios ($10M, $15M, and $20M)
for each selection procedure and allocated the entire
budget within each scenario to tidal marsh conservation.
The base budget level ($10M) represented the State of
Delaware’s 2013 Open Space Preservation budget (State
of Delaware - Office of the Governor 2012). The $15M
and $20M scenarios were analyzed in addition to the
base level to evaluate the relationship between selection
methods with an increased budget. The greater budgets
could also be used for multi-year portfolios. We included a
transaction fee of $15,000 per parcel, as well as removed
parcels less than 0.40 ha (1 acre) in total area to facilitate
model computability.
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Sea Level Rise Scenarios

To estimate the impact of different sea level rise scenarios
on the land cover of the optimization-selected parcels,
we grouped 2007 Delaware LU/LC classes into general
categories and used ArcMap 10 to calculate changes in
land cover area due to permanent inundation (Table 2; ESRI
2011, Delaware Geological Survey 2012). We calculated

land cover area within each optimal parcel under four sea
level scenarios; current mean higher high water (MHHW),
0.5 m, 1.0 m, and 1.5 m above MHHW between current
(2011) and 2100 (Delaware DNREC 2012). We used
spatial polygons delineated from overlays by the Delaware
Department of Natural Resources and Environmental
Control to depict each sea level rise scenario (Delaware
DNREC 2012).

Table 2: General land cover categories used to evaluate the impacts of sea level rise on optimization-selected parcels.
Categories were comprised of 2007 Delaware Land Use/Land Cover (LU/LC) classes (Delaware Geological Survey 2012).

General land cover

2007 Delaware LU/LC class

Wetland

non-tidal emergent wetland
non-tidal scrub/shrub wetland
tidal emergent wetland

tidal scrub/shrub wetland

Forested wetland

non-tidal forested wetland

Agricultural land

cropland

mixed rangeland
pasture

shrub/brush rangeland

Forested upland

deciduous forest
evergreen forest
mixed forest

Developed/barren land

beaches and river banks

farmsteads and farm related buildings
mobile home parks/courts

multi family dwellings

other urban or built-up land

recreational

retail sales/wholesale/professional services
single family dwellings

tidal shoreline

transitional (incl. cleared, filled, and gravel)
utilities

Water feature*

bays and coves

man-made reservoirs and impoundments
natural lakes and ponds

non-tidal open water

tidal open water
waterways/streams/canals

*Water features were present on optimal parcels, however, this general land cover was excluded from
the sea level rise impact analysis since water features are already comprised of water.
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RESULTS

Parcels with Unprotected Marsh

We estimated the presence of 31,543 ha of salt marsh
in Delaware with 22,148 ha protected and 9,395 ha
unprotected. Unprotected marsh in Kent and Sussex
counties totaled 6,129 ha of which there were 2,587
ha located on 947 parcels in Kent County and 3,542 ha
located on 2,318 parcels in Sussex County (parcel total n
= 3,265). We removed 1,818 parcels, each less than 0.40
ha in total area, from the parcel selection pool. Removed
parcels contained 98 ha of total marsh (1.59% of the state’s
unprotected marsh habitat). In total, 1,447 parcels, 384
and 1,063 from Kent and Sussex counties respectively,
were analyzed for parcel portfolio selection. The parcels
contained 6,030 ha of unprotected marsh, ranging from 0
— 208.60 ha per parcel. Mean marsh area was 4.17 ha/
parcel and median marsh area was 0.70 ha/parcel.

Parcel Conservation Easement Costs

Easements in Sussex County were $35,478 greater than
those in Kent County before landscape variable costs were

considered. The greatest increases in parcel easement
cost due to the land cover variables were $885,311 for
tillable area (182.69 ha), $264,498 for forest area (113.05
ha), and $24,831 for wetland area (198.05 ha). Price
increases reflect the difference between the whole area
variable rate (e.g., tillable ha) and the area? variable rate
(e.g., tillable ha?). Maximum cost values deducted for the
distance variables were $59 (12.38 km from shore) and
$153 (9.73 km from an urban area). Total easement cost
for parcels in the selection pool ranged from $258,193—
$1,387,190, with a mean cost of $344,324 and a median
cost of $298,381.

Conservation Benefit

Tidal marsh obligate bird totals within the surveyed
hexagons ranged from 0-126 individuals (Table 3). Bird
density on surveyed hexagons ranged from 0.0-3.71 birds/
ha (mean = 1.79 birds/ha, SE = 0.31). Bird density within
parcels with unprotected marsh ranged from 0.0-643.53
birds/parcel (mean = 8.83 birds/parcel, SE = 0.81).

Table 3: Summary bird survey data by hexagon collected at 102 survey points in Kent and Sussex counties,
Delaware, from May—July 2011.
Survey  Survey Total Mean  Bird density
HexagonID  oints area(ha)  birds _ birds/pt _(birds/ha)
68731 13 40.84 126 9.69 3.09
69123 7 21.99 0 0.00 0.00
69124 3 9.43 31 10.33 3.29
69517 5 15.71 13 2.60 0.83
69911 8 2513 31 3.88 1.23
71485 9 28.28 105 11.67 3.71
71879 1 3.14 5 5.00 1.59
237327 8 2513 24 3.00 0.95
237721 5 15.71 52 10.40 3.31
238507 7 21.99 9 1.29 0.41
239294 4 12.57 21 5.25 1.67
239687 6 18.85 58 9.67 3.08
240081 13 40.84 76 5.85 1.86
240475 4 12.57 9 2.25 0.72
240868 9 28.28 33 3.67 1.17
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Parcel Selection

At the $10M budget level, benefit targeting selected 13
parcels to maximize bird density for a total portfolio cost of
$9,912,597. Parcels contained 1,068 total ha of marsh and
3,150 birds. Binary optimization selected 18 parcels for a
total cost of $9,972,390, a 0.6% change from the benefit
targeting portfolio cost. The optimization portfolio contained
77 more marsh ha and 319 more tidal marsh obligate birds
than the benefit targeting portfolio, representing increases
of 7.2% and 10.1% in conserved habitat and bird density,
respectively (Figure 2).

With the $10M budget level, the five parcels with the greatest
bird densities were selected by both methods (Figure 3;
Table 4). Benefit targeting selected three unique parcels
including the most expensive parcel ($1,387,190) and
binary optimization selected eight unique parcels (Table 4).
For benefit targeting to reach the 3,469 bird-conservation
benefit secured by the optimization portfolio, an additional
$2,888,894 was required to purchase 3 more top-ranked
bird density parcels. For a final cost of $12.9M, purchasing
the top-ranked 16 parcels would conserve 3,513 birds on
1,208 marsh ha, exceeding the $10M optimized portfolio
by 44 birds and 63 marsh ha.

When we increased the budget to $15M, the optimization
portfolio conserved 4,343 birds on 1,501 marsh ha, an

increase of 12.8% and 9.6% in birds and marsh area,
respectively, from the benefit targeting portfolio (Figure 2).
Twenty-nine parcels secured the larger total conservation
benefit in the optimization portfolio at an additional cost of
$118,279; 0.8% over the total cost of the 19 parcels in the
benefit targeting portfolio ($14,866,046). Of the six parcels
selected by benefit targeting but not by optimization,
three had easement costs over $1M and all six cost over
$750,000 (Table 4). An additional $2.7M would be needed
for benefit targeting to match the 4,343 birds conserved by
optimization.

At the $20M budget level, optimization selected 7 more
parcels and the portfolio cost an additional $28,107
($19,973,643 total) compared to the 28 parcels chosen
with benefit targeting (0.1% change). The additional
conservation benefit garnered by the optimal parcel
combination equated to 344 birds and 163 marsh ha,
increases of 7.3% and 9.6%, respectively, over benefit
targeting benefits. The five parcels unique to the benefit
targeting portfolio supported bird densities ranging from
90.54-119.84 birds/parcel, while the 12 parcels unique
to the optimization portfolio supported bird densities from
53.73-89.69 birds/parcel (Table 4). At an additional cost
of $1.75M, benefit targeting would match the ~5,100 birds
conserved by the optimized portfolio.

the optimization method, by budget scenario.
Percent
Change (%)
149 Osiom
12 | M@ $15M
N $20M
10 4 9.6
8 1 7.2
6 4
4 4
2
O 4
Marsh Area
(ha)

Figure 2: Percent change (increase) for three portfolio variables from the benefit targeting method to

10.1

Conservation
Benefit
(birds/ha)

33



Wiest, Shriver, Messer / Journal of Conservation Planning Vol 10 (2014) 25 - 42

Figure 3: Conservation benefit (bird density) by parcel easement value for parcels selected in the $10M
budget scenario. Bubbles are shade-coded by selection method (benefit targeting [BT], optimization
[OPT]) and bubble size represents parcel unprotected marsh area.
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Table 4: Parcel portfolios selected by two parcel selection methods, benefit targeting (BT) and binary linear
programming optimization (OPT), for three budget scenarios ($10M, $15M, $20M). A table of parcel landscape variables,
conservation benefits, and easement costs is presented. Marsh area refers to unprotected marsh.

Countylparcel ID Total  Marsh Bird Tillable Forest Wetland Eig,t Blrsl;tatr? Easement '!'otal cost
BT OPT area  area ! area area area (incl. trans
(K [Kent]/ S [Sussex]) (ha)  (ha) density (ha) (ha) (ha) shore area  cost($) fee: §)
(km)  (km) '

X X K/1-00-01300-01-0300-00001_3304  321.31 20860 643.53 73.36 3817 198.05  0.00 7.19 1,006,293 1,021,293
X X K/1-00-01300-01-0200-00001_3305  179.64 171.94  447.08 0.00 0.00 167.58 1.71 4.84 369,961 384,961
X X S/33500700000100_1146 251.88  110.20 409.24 9222 22.72 130.57 148 0.00 1,201,231 1,216,231
X X S/33000400001700_93265 160.94 7749 238.44 68.70  10.53 81.49 1.53 1.14 999,691 1,014,691
X X $/23501000000300_190798 5739  56.49  209.79 0.00 0.00 56.66 1.19 1.19 443,195 458,195
X X (20) K/8-00-11400-01-0100-00001_75785 329.78 11020 197.66  182.69 7.75 126.60  0.02 0.21 1,387,190 1,402,190
X X K/4-00-04900-01-0300-00001_37404  62.78  54.05 177.78 7.54 0.00 5327 349 3.62 456,159 471,159
X X S/33000400000600_93358 12799  56.43 173.64 28.83 437 63.86  3.30 2.82 691,686 706,686
X X $/23502300000300_190792 5473  37.09 137.71 7.01 448 43.08 212 1.13 507,787 522,787
X X (20) S$/33000300000500_93260 17870 7649 137.21 3380 20.56 8459  5.07 2.51 867,943 882,943
X X (15/20)  S/23502300000202_189974 124.11 3544  131.61 53.76 3.88 61.82 1.98 1.54 838,828 853,828
X X S$/33001200001403 93322 7486 4086 125.73 16.83 2.46 39.06  3.09 0.61 549,912 564,912
X X S/23501700001500_189973 3403 3261 121.09 0.00 0.30 33.14 1.59 1.37 397,723 412,723
X (15/20 X K/7-00-10500-01-0200-00001_63336 8544 6595 118.29 0.00 0.46 65.98 521 1.29 425,551 440,551
X (20) X K/1-00-04000-01-0100-00001_3613 3164 3164 104.08 0.00 0.00 30.72 560 2.35 353,428 368,428
X (20) X $/33000500000100_93264 3327 3265 10048 0.00 0.00 32.04 087 0.74 392,284 407,284
X (20) X K/5-00-16500-01-0200-00001_40362  32.72 3261 100.34 0.00 0.00 32.51 2.53 2.16 357,958 372,958
X (20) X S/33000400001600_91672 3155 3137 96.52 0.00 0.00 31.11 2.53 2.12 389,899 404,899
X (20) X S$/33000900000100_93317 3518  29.87 91.91 5.05 0.00 2996 1.26 0.74 423,480 438,480
X K/1-00-04100-01-0100-00001_ 27132 2647 87.06 0.00 0.00 26.57 235 5.89 342,483 357,483

X K/5-00-12400-01-0401-00001_44363  49.08  48.38 86.79 0.03 0.06 4830  0.29 2.12 393,671 408,671

X X K/5-00-12400-01-0301-00001_44355 109.66  68.42 122.74 28.08 3.74 73.19  0.00 0.90 657,222 672,222
X $/33001200001400_93321 14840 3895 119.84 69.84  16.91 60.81 4.41 0.02 1,030,453 1,045,453
X S/33400100000900_4688 161.63 3226 119.78 70.08  47.97 4034  3.09 0.61 1,156,219 1,171,219
X X (20) S/33000400001600_93266 8883 36.32 111.75 41.54 7.29 39.26 253 2.12 752,413 767,413
X S$/23501600003600_189969 13762 5910  106.00 47.92 7.30 6826 217 2.59 841,591 856,591
X K/4-00-03900-01-2600-00001_37211  26.18  26.18 86.13 0.00 0.00 2552 6.16 1.77 339,681 354,681

X $/23402500002700_110688 7069  43.84 78.63 0.00 0.00 3595  0.00 5.87 401,723 416,723

X K/8-00-11300-02-1600-00001_75718  43.15  41.86 75.08 0.00 0.59 4240 212 2.20 386,226 401,226

X $/33402500000200_1013 49.21 41.23 73.97 0.00 0.00 40.78  0.00 4.47 412,765 427,765

X S/33000500000101_92853 2325 2296 70.65 0.00 0.00 2317 087 0.74 368,656 383,656

X $/23000300000900_93325 2144 2125 65.40 0.00 0.00 2095 0.16 0.00 362,316 377,316

X S$/33000500000600_93145 2129  20.05 61.69 0.00 0.00 2129 071 0.27 363,285 378,285

X S/33000500000401_93147 2159 1755 54.00 0.01 0.06 21.50  0.50 0.00 364,534 379,534

X $/23000100000100_93308 1748 1746 53.73 0.00 0.00 17.37 1.13 043 351,700 366,700

X S/23000300000900_93328 104.65 3359 103.36 48.69 7.96 4757  0.82 0.00 818,872 833,872
X X $/13400800004200_55132 163.27  55.35 99.28 0.00 37.24 68.61 0.00 117 716,419 731,419
X K/1-00-00300-01-1400-00001_2261 14465  50.48 90.54 86.96 0.00 5230 4.88 2.67 932,947 947,947
X $/33000400000700_93259 127.97  50.00 89.69 23.24 1.02 5765  3.30 2.82 616,151 631,151

X X S$/33000500002400_93271 55.55  28.93 89.02 25.14 0.09 2865 0.74 0.18 559,202 574,202

35




Wiest, Shriver, Messer / Journal of Conservation Planning Vol 10 (2014) 25 - 42

Sea Level Rise Scenarios

Wetlands occupied approximately 50% of the portfolio
area at current MHHW for the $10M and $15M portfolios,
397.47 ha and 495.93 ha, respectively, and 37% for the
$20M portfolio (627.67 ha; Figure 4). For all budget levels,
over 95% of the initial wetland area was inundated with a
0.5 mrise in sea level and 100% was inundated with a 1.0
and 1.5 m rise (Table 5). The largest amount of wetland
area remaining following inundation was 30.68 ha in the
$20M-0.5 m scenario, equal to 3.4% of the portfolio’s total
area (Figure 4).

Agricultural land accounted for 37-45% (395.23-772.84
ha) of the initial portfolio area(s) at current MHHW (Figure
4). The proportion of agricultural lands increased with
increasing magnitude of sea level rise and occupied the
largest area relative to the other land cover types at all
levels of inundation. Agricultural lands occupied the largest
portfolio area proportion, 84.4% (123.99 ha), in the 1.5 m

scenario at the $15M budget level. Agricultural area losses
due to inundation ranged from 74.98 ha (0.5 m scenario),
or 23.9% of the original 313.36 ha of agricultural lands in
the $10M portfolio, to 398.76 ha (1.5 m scenario), 51.6%
of the original 772.84 ha in the $20M portfolio (Figure 4).

In general, forested upland and developed/barren land
together comprised 20% or less of the area of the optimized
portfolios. The largest amount of forested upland plus
developed/barren land area was 244.76 ha at current
MHHW ($20M), and the smallest area was 17.24 ha at 1.5
m ($10M). Forested upland area was inundated at similar
area increments in the $10M and $15M budget scenarios
with approximately 50, 21, and 6 ha remaining after the
0.5, 1.0, and 1.5 m sea level rise scenarios, respectively
(Figure 4). The proportion of developed/barren land
inundated ranged from 13.7% (13.64 ha, $20M-0.5 m) to
69.6% (37.72 ha, $15M-1.5 m and 69.50 ha, $20M-1.5 m;
Table 5).

Figure 4: Area (ha) of land cover types present on optimized parcels under current mean higher high water (MHHW)
and three future sea level rise scenarios (0.5 m, 1.0 m, and 1.5 m), grouped by budget scenario.

Area (ha)
1800+ Developed/barren land
1600 Forested upland

W Forested wetland
1400 - Wetland

M Agricultural land
1200

1000
800 -
600 -

400 -
~
0 [ —
Current 0.5m 1.0m 1.5m

MHHW MHHW

$10M

Current 0.5m 1.0m

$15M

Current 0.5m 1.0m 1.5
MHHW

1.5m

$20M




Wiest, Shriver, Messer / Journal of Conservation Planning Vol 10 (2014) 25 - 42

Table 5: Percent of area (ha) inundated relative to current MHHW by land cover type on optimized parcels for
three sea level rise scenarios (0.5 m, 1.0 m, and 1.5 m).
Percent (%) of Total Area Inundated
Sea level Developed
Budget rise i
scenario Wetland T;ﬁ::]eg Agrllgl:‘l;ural FS;f:r:zd lbI::lrgn
0.5m 96.3 36.8 23.9 30.9 14.5
$10M 1.0m 99.9 90.2 56.2 70.0 25.0
1.5m 100.0 99.3 74.5 92.2 375
0.5m 95.7 484 21.7 32.8 16.8
$15M 1.0m 99.9 914 51.1 71.8 60.0
1.5m 100.0 98.1 68.6 92.5 69.6
0.5m 95.1 39.9 16.1 24.0 13.7
$20M 1.0m 99.7 75.6 37.6 54 1 45.6
1.5m 99.9 85.6 51.6 77.2 69.6

Forested wetlands occupied less than 5% of the portfolio
area in all budget and sea level rise scenarios. Forested
wetland area ranged from 25.89 ha ($10M) to 67.29 ha
($20M) during current MHHW, and from 2.54 ha ($10M)
to 16.40 ha ($20M) during the intermediate 1.0 m rise
scenario (Figure 4). The average proportion of forested
wetland area inundated across budget scenarios, was
41.7% with a 0.5 m rise in sea level, 85.7% with a 1.0 m
rise, and 94.3% with a 1.5 m rise (Table 5).

DISCUSSION

Binary linear programming optimization outperformed
benefit targeting by acquiring a greater conservation
benefit across all budget scenarios. Optimization
identified the best combination of unprotected tidal marsh
parcels that maximized tidal marsh obligate breeding bird
density for each budget constraint. At the $10M level,
the optimization model selected a portfolio of 18 parcels
with unprotected salt marsh habitat for the protection of
existing core tidal marsh bird populations for four species.
The model conserved more marsh area (77 ha) and birds
(319 tidal marsh obligate birds) than the benefit targeting
model by selecting a more efficient combination of parcels
and spending approximately $60,000 more. Furthermore,
for benefit targeting to achieve the conservation benefit
secured by the optimization model, nearly $2.9M in
supplementary land acquisition funds would be required.
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We found similar patterns in the magnitude and direction
of the results for the portfolios from the $15M and $20M
budget level analyses. When the two quantitative methods
employed the same budget, optimization secured more
birds and marsh area on more parcels than benefit
targeting. Similar to the $10M scenario, an additional
$2.7M and $1.75M in supplemental funding is needed
for benefit targeting to achieve what optimization did with
$15M and $20M, respectively.

Based on these results and the results of other studies
in the literature (Allen et al. 2011, Messer 2006, Messer
and Allen 2010), we recommend that federal and state
wildlife agencies and non-governmental conservation
organizations employ optimization modeling to help
evaluate land acquisition projects for wildlife conservation.
Our study showed that optimization identified and
prioritized a cost-effective set of projects, or parcels, that
maximized overall conservation benefits in a quantitative
and repeatable manner, while simultaneously allowing
conservation planners to objectively make decisions about
how to allocate limited funds. While this study evaluated
one objective (maximizing bird density), mathematical
programming can be used to identify cost-effective projects
that meet multiple priority objectives, including competing
objectives.  Mathematical programming also provides
conservation planners with the ability to incorporate
important social objectives and constraints into the model,
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such as landowners’ “willingness to sell” and public
support, information which can be obtained from surveys
and public voting records. Even though consideration
of the human component and its influence on achieving
or failing to achieve conservation goals is paramount,
most prioritization schemes fail to evaluate social data
in the project selection process. Furthermore, sensitivity
analyses can be simultaneously produced to help inform
management and conservation planning decisions,
especially with respect to real or perceived changes in land
conservation and preservation budgets.

The application of optimization outside the realm of reserve
site selection is growing, and recent literature highlights the
innovative use of these algorithms to answer complex avian-
specific management and conservation questions. Martin
et al. (2007) used the optimal search algorithm Dijkstra to
evaluate wintering American redstart (Setophaga ruticilla)
populations and stable-isotope information. Downs et al.
(2008) created a habitat suitability index model to determine
nesting site carrying capacity for greater Sandhill cranes
(Grus canadensis tabida), then modeled carrying capacity
using a spatial optimization model (anti-covering problem)
to determine the maximum number of pairs an area could
support given a home range distance constraint. Stralberg
et al. (2009) used a mixed integer programming approach
to maximize marsh bird and waterbird abundance by
identifying salt ponds for restoration.

In terms of tidal marsh conservation, optimization can be
used to define abiotic features and biological community
characteristics of target salt marshes to identify critical
areas in need of protection that may double as smart
investment choices in the face of marsh loss and
alteration. Because Delaware is located almost entirely
within the Coastal Plain, the state is vulnerable to impacts
from global climate change, including projected coastal
impacts of accelerated sea-level rise and increased storm
frequency, and severity and associated wave velocities.
Tidal marsh vulnerabilities to sea level rise were evident in
our sea level rise evaluation where over 95% of wetlands
on optimization-selected parcels were inundated in all
scenarios.  Similar projections of inundation hold for
saltwater tidal wetlands throughout Delaware; 97% of
the state’s tidal wetland area will be inundated under 0.5
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m of sea level rise and 99% under 1.0 and 1.5 m of sea
level rise (Delaware DNREC 2012). However, inundation
projections do not equate directly to marsh loss. Some
marshes will be able to increase their elevation through
natural accretionary processes and keep pace with rising
sea levels. Recent models of coastal wetland resilience
to sea level rise accounting for ecogeomorphic feedbacks
(i.e., inundation, plant growth, organic matter accretion,
and sediment deposition) project that marshes with
intermediate suspended sediment concentrations will
survive conservative sea level rise scenarios, but marshes
will likely drown under more rapid accelerations (Kirwan et
al. 2010).

Coastal marshes unable to naturally outpace rising
seas through sufficient vertical accretion in their current
locations will depend on opportunities for marsh migration,
transgressing landward and upward over adjoining uplands,
to survive (Cahoon et al. 2009). Forests, agricultural
lands, and other undeveloped land cover types adjacent to
tidal marshes will be necessary to provide opportunities for
these wetlands to expand horizontally and migrate inland,
given a gradual enough slope and no barriers to migration
(e.g., paved surfaces, walls, dikes) (Cahoon et al. 2009).
Therefore, information regarding the location of upland
areas suitable for marsh migration is central to prepare for
and facilitate future tidal marsh conservation.

In our sea level rise assessment of optimization-selected
parcels, agricultural land had the greatest amount of area
remaining of any land cover type after inundation in all sea
level rise scenarios. The initial area of forested upland and
developed/barren land was small compared to total wetland
and agricultural land area. Portions of forested upland and
developed/barren land were inundated in all scenarios,
and the total area remaining in the most conservative sea
level rise scenario (0.5 m) would support less than a fifth of
the original wetland area in the $10M and $15M portfolios,
and less than a third of the original wetland area in the
$20M portfolio, should marsh migration onto these upland
areas be fully realized.

After sea level rise, agricultural lands accounted for at
least 70% of the total land area in optimized parcels. If
all agricultural land remaining in the $10M and $15M
portfolios after inundation converted to tidal marsh then
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in the 0.5 m sea level rise scenario, approximately 60%
of the original wetland area would exist as transgressed
tidal marsh. In the $20M portfolio, converted agricultural
lands would sustain 100% of the original wetland area.
If sea levels rose 1.5 m by 2100 and all non-inundated
agricultural lands converted to marsh, 20% and 25% of the
original wetland area would remain in the $10M and $15M
portfolios, respectively, and 60% of the original wetland
area would remain in the $20M portfolio. Given the results
of our sea level rise evaluation, we conclude that when
vertical accretion to sustain marsh areas in response to
rising seas is not possible, marsh migration onto adjacent
agricultural land provides the greatest opportunity for the
persistence of tidal marshes and the continued support of
core tidal marsh bird populations.

Existing wetland conservation programs on private
lands, such as the Wetlands Reserve Program (WRP)
and Wildlife Habitat Incentives Program (WHIP), provide
landowners with funding for technical and financial support
for conservation projects and could provide opportunities
for tidal marsh conservation in the future. Both programs
are authorized through the U.S. Farm Bill (Food,
Conservation, and Energy Act of 2008) and administered
by the U.S. Department of Agriculture’s Natural Resources
Conservation Service (NRCS). Through the WRP,
landowners protect or enhance wetlands on their property,
including restoring wetlands from former agriculture fields,
and may be reimbursed up to 100% of conservation
easement costs (NRCS 2008). The program is best
“suited for frequently flooded agricultural lands, where
planned restoration will maximize habitat for migratory
birds and other wildlife, and improve water quality” (NRCS
undated a). WHIP assists landowners in creating priority
fish and wildlife habitat through cost-share agreements,
and landowners may be reimbursed up to 90% of the
costs (NRCS 2011). While the WRP and WHIP have been
successful in creating and conserving habitat in and for the
present, more incentives and long-term agreements are
needed to bolster private landowners’ voluntary program
participation to ensure the future existence of habitats and
associated species.

Working Lands for Wildlife, a new partnership between
NRCS and U.S. Fish and Wildlife Service announced in
September 2012, directly addresses conservation for
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declining species on working agricultural lands and may
be able to provide critical additional support for tidal
marsh conservation in the future. The program provides
technical and financial assistance through WHIP to
farmers, ranchers, and forest owners to reverse declining
populations of seven specific wildlife species (i.e., Bog
turtle, Gopher tortoise, New England cottontail, Greater
sage-grouse, Lesser prairie chicken, Southwestern willow
flycatcher, and Golden-winged warbler) (NRCS undated
b). Tidal marsh specialist species, such as Saltmarsh
Sparrow, should be included in the Working Lands for
Wildlife program to encourage conservation efforts in tidal
marshes used as working agricultural lands (e.g., salt hay
farms) and in other agricultural areas facing saltwater
intrusion and encroachment by existing marsh habitat.

Considering predictions for the future of tidal marshes,
current avenues for wetland conservation will need to take
onnew dimensions. Acombination of programs like Working
Lands for Wildlife and property rights tools such as rolling
easements for marsh migration corridors will be needed
to achieve conservation goals in the face of global climate
change. Regardless of how conservation programs are
supported, policies that provide opportunities for wetlands
to migrate inland are likely to be less expensive and will
have a greater probability of success if planning occurs
before these lands are developed (Titus and Neumann
2009).
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Conservation practitioners in Connecticut are beginning to invest resources in decision support tools
(DSTs) that will guide them in making sense of the bewildering array of options for land protection and
restoration, especially along the coastline. One such tool, currently being developed by Fountains
Spatial, is intended to guide the Long Island Sound Stewardship site selection process. Further
development of a wildlife complement to this tool is a high priority for several organizations, including
the State Department of Energy and the Environment (DEEP), Audubon Connecticut, and the
Connecticut Audubon Society. This paper outlines a pilot DST to guide decisions for coastal bird
conservation. At 2010's Connecticut “Avian Summit” — a meeting of representatives of most of the
major organizations involved with bird conservation in the state — saltmarsh and beach-nesting birds
were identified as a high conservation priority and, because data already exist for many species, a
logical systems for which to develop a set of prototype DSTs. The prototype presented here is based on
a systematic planning process (Margules and Pressey 2000). Following this science-based process will
ensure that decisions based on the resulting tools are defensible, transparent, and based on the latest
peer-reviewed evidence on how to make smart conservation decisions.

Saltmarsh and beach systems are complex, dynamic, and surrounded by uncertainty. Salt
marshes in Connecticut are expected to undergo drastic changes in the next 100 years as sea levels
continue to rise (Hoover 2010). One adaptation strategy, already being implemented by several
conservation organizations, is to protect open space adjacent to salt marshes (often by purchasing the
land outright) to create avenues for the potential landward migration of marshes. Because land prices in
Connecticut are high, a successful implementation strategy will hinge on achieving efficiency in
decision-making that will give the greatest conservation benefit per dollar spent. A challenge to
achieving this efficiency is that land prices change with markets over time, and are not predictable with
complete certainty. Therefore, the DST we have developed explicitly accounts for the uncertainty of

how much it will cost to protect land, providing practitioners with the decision-making framework to



make low-risk, high-efficiency decisions.

Setting targets
In-person meetings to discuss quantitative conservation targets were held in early 2010 at the Center
for Environmental Science and Engineering at the University of Connecticut, and in early 2011 at a
breakout session during the Connecticut Conference on Natural Resources. These sessions were
followed by surveys in which practitioners from CT DEEP and Audubon Connecticut ranked salt marsh
and beach-nesting birds and their habitats in order of conservation priority. Using the results of these
surveys, we narrowed the list of conservation targets to 5 species and 2 habitat types (Table 1). For
each of the targets on this priority list, we developed three alternatives for quantitative population or
habitat-area targets, and used a second survey to determine which target was favored by the stakeholder
group.

DSTs were developed with the goal of protecting sufficient land to ensure that these quantitative
targets are met. Given current population sizes, some targets are impossible to meet via protection
alone, and will require active management for population growth (e.g., habitat restoration or creation) if

they are to be achieved.

Table 1: Conservation targets and justification. Targets used for the prototype
saltmarsh DST are highlighted in yellow.

Target Justification
minimum for population
Saltmarsh Sparrow viability without regard to
other states
. DEP current population
Piping Plover 120 target
Seaside Sparrow ~ 1% of global population
~ half of current statewide
Least Tern 50 population
. . current
migratory shorebirds population
high marsh 715 half of current extent

For the prototype DST analysis, we focused on the two tidal marshes species, Saltmarsh Sparrows and

Seaside Sparrows and conducted analyses to address the following questions: (1) Are all of the marsh



complexes for which comprehensive data exist needed to meet the target population sizes? (2) How
much of the land at each of these marsh complexes is currently protected via land ownership or
conservation easements? (3) Can land parcels at individual marshes be prioritized according to the
trade off between conservation benefits versus economic cost of protection? Although beyond the

scope of this contract, work on a DST focused on the beach-nesting priority species was also begun.

Data compilation

Sparrow abundance data were obtained from standardized point counts of tidal marsh birds (see
Gjerdrum et al. 2008, Elphick et al. 2009, Meiman 2009). Land value data were compiled from the
Town of Stonington's tax assessor and trulia.com. Additional data on beach-nesting birds were also
compiled from the Connecticut DEEP's Piping Plover and Least Tern Recovery Project, although these
were not used for the pilot tidal marsh DST.

Estimating priority bird species abundance

We analyzed the raw point count data using Bayesian hierarchical models to estimate marsh-level
abundance of Saltmarsh and Seaside Sparrows for six major marsh complexes: Milford area; East
River, Guilford/Madison; Hammonasset, Madison; Lower CT River; Bluff Point, Groton; and Barn
Island, Stonington. For both species, the target statewide population size was within the estimated
confidence intervals of the total population size for the 6 marsh complexes combined. This result

suggests that these sites all need to be protected in order to meet the targets (Figure 1).

Figure 1. Estimated total population sizes for Saltmarsh and Seaside sparrows at the six marsh
complexes studied. Each figure shows the results of 1000 simulated estimates based on analysis of
point count data. Uncertainty causes each simulation to produce a different estimate, but collectively
they show the range of likely population sizes, with the tallest bars indicating the most likely number.
Dotted black bars indicate the target population size selected by Connecticut stakeholders.
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Current protected status of salt marshes

We determined the proportion of total marsh habitat in the six major marsh complexes that is under
some kind of protected status (i.e., conservation easement or in conservation ownership) using DEEP's
Connecticut Parcels for Protected Open Space Mapping (POSM) database and data from the U.S.
Geological Survey's GAP analysis program (http://gapanalysis.usgs.gov/). For this initial analysis, we
did not include land that is simply protected by the existence of wetland legislation. The protected
status of Connecticut's marshes is variable, with Stonington's Barn Island closest to being fully

protected (Figure 2).

Figure 2: The proportion of marsh habitat under protection Incorporating land costs
at six major marsh complexes. . ..
J P To help guide management decisions

we developed a method for

Milford East River Hammonasset

prioritizing land parcels based on the
— — trade-off between their cost and their
220 Ha conservation benefits. We

implemented this method for the
Lower CT River Bluff Point Stonington

marshes at Barn Island to illustrate the
28 Ha approach and demonstrate its utility.
85 H o
>40 Ha 48 Ha ? For each tax parcel in this marsh

complex, we compiled two pieces of
;f};opt?:tf;ed information: 1) the total area of high

and low marsh, calculated using a

raster developed by Hoover (2010)
and 2) the assessed value of the property from the Town of Stonington's Tax Assessor. Because
information from the assessor's office does not reflect the most up-to-date property values, we also
conducted a regression-based economic analysis of recent land sales in Stonington using information
from trulia.com. From these analyses we estimated that Stonington's overall housing market has likely
declined by ~30% since properties were last assessed, and that 95% of properties were sold within the
range of + 20% of market value. By combining the assessed values with the estimated market change

we were able to estimate both the current market value and uncertainty in that value (i.e., + 20%) for

each parcel.



Prioritization using the “fraction of the spares”

We determined that the “fraction of the spares” (FOS) conservation index (Phillips et al. 2011) was the
most flexible way to identify which tax parcels were the highest priorities for acquisition. The FOS is
conceptually simple and computationally inexpensive, which makes it possible to easily recalculate the
index to keep up-to-date with changing land markets and the most recent conservation actions. We
calculated the FOS for each parcel in the Barn Island complex, and ranked parcels according to their
relative contributions to our targets based on the area of high and low marsh in each parcel. These
values were then prorated by dividing the FOS value by the cost of purchasing the parcel, in effect
turning the index into a cost/benefit ratio. This ratio was calculated for every parcel in Stonington that
contained marsh habitat. The uncertainty of the likely sales price (represented by the + 20% interval
around the market value) was propagated in the calculation of the index, resulting in FOS values with

95% confidence intervals. The mean FOS values are shown in Figure 3.

Figure 3: Preliminary prioritization of parcels in Stonington, CT. Green parcels have already been
protected via purchase or easement, grey-scale parcels are under consideration for purchase, with
darker colors representing higher priority scores using the FOS method described in this report. The
parcel outlined in blue was recently purchased.
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Conclusions and Next Steps

The approach we have developed is purposefully very flexible, easy to calculate and understand, and
based on the latest research in conservation biology and decision theory. We have deliberately applied
the approach to a simple example with a small set of conservation targets and a single conservation
action in order to illustrate the method as a “proof-of-concept”. The approach, however, can easily be
expanded or applied to other systems by including a larger set of targets and considering a wider range
of conservation actions (e.g., restoration), or even explicitly trading-off the costs and benefits of
alternative conservation actions. It also would be possible to combine information from disparate areas
of conservation (e.g., by examining the trade-offs between conservation actions for beach-nesting birds
vs. tidal marsh birds). An additional extension of the current model would be to include incorporate
information on each parcel's vulnerability to development in the calculation of the FOS, which would
shift conservation priority to those parcels that are most vulnerable in the short term.

Now that a working prototype has been developed, we anticipate that the next stages will be to
extend the analysis to a statewide scale and to incorporate predictions of future marsh distributions.
Doing this would make it possible to prioritize purchase of land parcels in order to most efficiently
ensure that marshes are capable of migrating landward (naturally or with assistance) in the long-term.
Most of Connecticut's tidal marshes are protected by strong legislation for wetland protection, but
potential areas for landward migration are not, and for the next several decades these sites will likely be

the main focus of attention for salt marsh conservation in the state.
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