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Abstract:  
1. Wildlife aggregation patterns can influence disease transmission. However, limited 

research evaluates the influence of anthropogenic and natural factors on aggregation. 

Many managers would like to reduce wildlife contact rates, driven by aggregation, to 

limit disease transmission. We develop a novel analytical framework to quantify how 

management activities such as supplemental feeding and hunting versus weather drive 

contact rates while accounting for correlated contacts. We apply the framework to the 

National Elk Refuge (NER), Wyoming, USA, where the probable arrival of chronic 

wasting disease (CWD) has magnified concerns.  
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2. We used a daily proximity index to measure contact rates among 68 global positioning 

system collared elk from 2016 to 2019. We modelled contact rates as a function of abiotic 

weather-related effects, anthropogenic effects and aggregation from the prior day. The 

winter of 2017–2018 had greater natural forage availability and little snow, which led to a 

rare non-feeding year on the NER and provided a unique opportunity to evaluate the 

effect of feeding on contact rates relative to other conditions.  

3. Supplemental feeding was the strongest predictor of aggregation, and contact rates 

were 2.6 times larger while feeding occurred compared to the baseline rate (0.34 and 

0.13, respectively). Snow-covered area was the second strongest predictor of contact rates 

highlighting the importance of abiotic factors to elk aggregation, but this effect had half 

the strength of feeding. These results are the first to show, even in animals that 

congregate naturally, how greatly supplemental feeding amplifies aggregation. Contact 

rates were also 23% lower during times when elk hunting was active (0.10) compared to 

the baseline. 

 4. Synthesis and applications. Supplemental feeding increased contacts between elk well 

above the natural effects of weather, even after accounting for correlated movement 

expected in wintering ungulates. Similarly, differences in hunting season timing with 

adjacent areas led to an increase in contacts, suggesting an additional management option 

for reducing aggregation. The analytical framework presented supports the evaluation of 

temporally varying management actions that influence aggregation broadly and can be 

easily implemented whether the interest in changing aggregation is related to reduction of 

disease transmission, human–wildlife conflict or inter-species competition. 
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Main text 

Across taxonomic groups and around the world, large aggregations of wildlife often coincide 

with increased disease prevalence (Descamps et al., 2012; Rodríguez-Pastor et al., 2017; 

Venesky et al., 2011). Many different factors including predator presence and resource 

availability determine how wildlife use the landscape, creating aggregation patterns that 

influence both contact rates and local densities simultaneously and thus the likelihood of disease 

transmission (Figure 1). For directly transmitted pathogens, the contact rates between individuals 

determine disease spread and are often inextricably tied to the density of a population (i.e. 

density-dependent transmission; Begon et al., 2002). Density and the way aggregations occur 

also affect the extent and severity of environmental contamination and subsequently the indirect 

transmission of pathogens that can survive outside of a living host (Breban et al., 2009).  

Research suggests that both natural and anthropogenic processes drive ungulate 

aggregation. In elk, Cervus canadensis, this behaviour is most notable during migration and in 

the winter months (Proffitt et al., 2012). Elk herds typically reach greatest densities during 

winter, in part because the challenges of foraging through snow and other conditions can lead to 

reduced areas conducive to foraging and reduced movement for conservation of energy. Many 

ungulates also naturally aggregate into herds for predator defence (Jarman, 1974). In terms of 

anthropogenic effects on aggregation, supplemental feeding has become ubiquitous from 
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backyard feeders and rubbish bins to the baiting of game species and feeding to meet population 

management goals (Murray et al., 2016). Previous studies often identify feeding as a factor 

driving increased aggregations, leading to increased contact rates between individuals and 

subsequent disease transmission (e.g. Cross et al., 2007); however, few explicitly measure the 

effect of feeding on contact rates or aggregation (see Cross et al., 2013) and we know of no 

studies comparing feeding to other environmental factors.  

Over a century ago, encroachment on critical elk wintering habitat by the town of 

Jackson, WY, reduced elk survival and prompted the creation of a winter feeding programme 

and the National Elk Refuge (NER, Smith, 2001). Supplemental feeding of elk now occurs 

during winter months at 22 sites across the state of Wyoming (Cotterill et al., 2018; Cross et al., 

2013). However, current densities of elk on the refuge are at greater levels resulting in increased 

risk for disease outbreaks, including chronic wasting disease (CWD, Galloway et al., 2017; U.S. 

Fish and Wildlife Service, 2019). CWD, a prion disease that causes extreme weight loss and 

neurological issues resulting in death (Williams et al., 2002), has spread rapidly across North 

America over the last two decades (Sutherland et al., 2018; U.S. Geological Survey, 2020). The 

transmission dynamics of CWD are multifaceted and still under investigation. Neither frequency 

nor density-dependent models alone capture the complexities of CWD transmission (Storm et al., 

2013) and environmental transmission may play an important role in the spread of CWD 

(Almberg et al., 2011; Potapov et al., 2016).  

This study focuses on the direct transmission pathway of CWD (Figure 1) to provide 

more information about the relationship between the rate of potentially infectious contacts and 

the mechanisms driving elk aggregation patterns. Elk wintering on the NER can reach densities 

of ~1,100 elk per km2, which is over 70 times larger than densities in Colorado where CWD 
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prevalence is 13% (Monello et al., 2014). Modelling based on elk densities from the Jackson elk 

herd, which maintains a population of ~11,000 elk overall, suggests a greater likelihood of 

population decline at CWD prevalence as low as 7% (Galloway et al., 2017) 

Concern about impending CWD transmission led managers of the NER in collaboration 

with Grand Teton National Park and Wyoming Game and Fish Department to develop a ‘Step 

Down Plan’ to reduce winter elk aggregations and thus contact rates between elk on the NER 

(U.S. Fish and Wildlife Service, 2019). The plan seeks to gradually reduce the elk conditioned 

behaviour and reliance on supplemental winter feeding. To guide implementation and measure 

the success of the ‘Step Down Plan’ managers need information not only about how feeding 

influences contact rates but also about other external factors (such as weather or hunting) which 

could amplify or negate the effects of feeding. Our overall objective was to test a general 

framework for quantifying the effect of influential factors on contact rates in wildlife. First, we 

measured the effect of supplemental feeding on elk contact rates on the NER over three winters. 

Feeding typically occurs on the NER each winter. However, the 2017–2018 winter was milder, 

and no feeding took place. This lapse in feeding created a unique scenario in this system to 

compare elk aggregation and contacts in fed and non-fed years. We then compared the relative 

effects of feeding to other anthropogenic and abiotic factors that contribute to winter elk contacts 

to inform managers about potential management options and to improve understanding about the 

context likely to influence their success in reducing disease risk. 

Materials and Methods 

Elk Collar Data 

We examined elk location data from 2016 to 2019 for 73 adult female elk fitted with 

global positioning system (GPS) iridium collars (Telonics, Mesa, Arizona). The study periods 
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consisted of three distinct winter seasons each typically spanning from November to May of the 

following year. To provide a representative sample, elk capture operations were conducted by 

U.S. Fish and Wildlife Service and Wyoming Game and Fish Department staff across three 

feedgrounds within the National Elk Refuge (NER) in Wyoming, USA (43.4926 N, −110.7487 

W). Collars recorded GPS locations at 1.5- hr intervals resulting in a maximum of 16 daily fixes 

per individual collared elk. We excluded 5 elk a priori from the study and subsequent analyses 

due to poor fix rate (i.e. mean daily fix success rate  

Modeling Elk Interactions 

To model contact rates, we used a proximity index, a measure of static interaction, 

referred to as Prox, to assess simultaneous joint space use between elk pairs (Long et al., 2014). 

Using the number of simultaneous fixes within a defined distance threshold, Prox represents the 

proportion of time two individuals are proximal in space during a period of interest (Long et al., 

2014). For a given pair (individuals i and j): 

𝑃𝑟𝑜𝑥𝑖𝑗 =  
[𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑥𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑜𝑚𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑡]𝑖𝑗 

[𝑇𝑜𝑡𝑎𝑙 𝑓𝑖𝑥𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑡]𝑖𝑗
             (1) 

where Proxij = 1 indicates complete attraction and Proxij = 0 indicates avoidance. We used a 

distance threshold of 500 meters and calculated pairwise daily Prox estimates for all elk. Other 

thresholds had the same pattern of change over time, but at 500m the variation was greatest 

while still relevant for a large herd of elk, thus maximizing our power to differentiate influences 

on contact rates. We derived a daily average Prox for the collared elk population, hereafter 

referred to as the contact rate.  

We restricted our contact rate calculations to days when at least 9 collared elk were 

present on the NER wintering area, which equates to a minimum of 36 unique pairs of elk with 
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possible contacts per day. When few elk pairs are present, contact rate values can be skewed 

towards zero or one. We calculated contact rates using the package wildlifeDI in the statistical 

computing environment R, which we used for all analyses (Long et al., 2014; R Core Team, 

2019). To explore potential drivers of elk aggregation, we modelled the contact rate as a function 

of several explanatory variables using beta regression, which is suitable for response variables 

constrained between 0 and 1 (Cribari-Neto & Zeileis, 2010). We fit models to test our 

hypotheses in several stages. First, we screened variables using univariate models to remove 

those with no predictive power (based on effect size and variance) and ensure the spatial data 

layers represented the hypothesized biological relationships. We then separated screened 

variables into two subgroups. One group consisted of abiotic weather-related effects and the 

second included anthropogenic effects such as supplemental feeding and hunting pressure. We 

used likelihood ratio tests, comparing univariate and null models, to discern between and reduce 

duplication of variables representing the same biological process (Appendix 1, Bolker et al., 

2009). We also included the daily sample size of collared elk (N) as a covariate on the precision 

portion of all beta regression models.  

We tested for multicollinearity within each subgroup by comparing the variance inflation 

factor (VIF) of each explanatory variable (Appendix 1; Lüdecke et al., 2019; Marquardt, 1970). 

After checking for multicollinearity, we modelled all combinations of variables within subgroups 

and selected the best fitting combinations using Akaike's information criterion (AIC). We then 

compared top models for each subgroup against each other and a global model (all variables 

from both top models), again using AIC as our selection tool. Finally, we incorporated an 

additional covariate to account for the temporal autocorrelation present in the dataset. We used 

the previous day's contact rate (t − 1) as a predictor on contact rate (t). We added the 
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autocorrelation variable last to avoid masking the biological effects of interest during model 

selection. We also conducted a dominance analysis to determine the proportion of variance 

explained by each explanatory variable retained in the final model competition (Azen & 

Budescu, 2003, Navarrete & Soares, 2020). 

Explanatory Variables 

We formulated all explanatory variables daily to match the temporal resolution of elk 

relocations and contact rate calculations. To allow for direct comparison of effect sizes, we 

centred and scaled variables with mean zero and standard deviation of one. Abiotic variables 

comprised minimum temperature (°C) and seven snow related measures. We used the moving 

average of minimum temperature from the previous 5 days from the PRISM Climate Group 

(Hart & Bell, 2015). We examined three thresholds for daily snow events as binary variables: 

any snowfall, snowfall ≥3 inches and snowfall ≥10% of current snow depth. We included 

fractional snow-covered area (fSCA), snow depth (linear and quadratic terms) to assess the 

effects of current snow condition on elk aggregation. To investigate the potential lag effects of 

snowfall events, we also incorporated net snow accumulation from the prior 2 days and the 

number of consecutive days with snow events which reset after each day without snowfall. The 

fSCA dataset is a 30-m resolution raster derived from MODIS and Landsat imagery 

(SNOWARP, Berman et al., 2018). We derived all other snow variables from the Snow Data 

Assimilation System (SNODAS), a 1-km resolution dataset (National Operational Hydrologic 

Remote Sensing Center, 2004). 

 Anthropogenic factors included hunter presence and supplemental feeding. We defined 

the effects of hunting in three ways: active elk hunting on the NER, elk hunting on districts 

surrounding the NER and active bison hunting on the NER. The presence of elk and bison 
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hunting on refuge was represented as binary variables. Off-refuge hunting was a continuous 

variable ranging from 0 to 3 depending on the number of hunting districts surrounding the NER 

with active elk hunting. Supplemental feeding was measured in 2 ways: the daily metric tonnes 

of feed placed on feed grounds (tons fed) and a binary version of feeding.  

Wolf presence was the only natural biotic variable. We hypothesized that wolves might 

also affect elk aggregation, but because available data on GPS-tracked wolves did not fully 

match the temporal coverage of all other explanatory variables, we tested for a wolf effect with 

the smaller matching subset of the data (~90% of the original data). We used the best model from 

the initial model selection plus a covariate for wolf-elk distances (Appendix 2). 

Results 

Variable and Model Selection 

After univariate variable screening (Appendix 1), abiotic and anthropogenic variable 

subgroups were reduced to four and two variables, respectively. Abiotic models included 

variables for snow depth (linear and quadratic terms), minimum temperature and fSCA. 

Anthropogenic models included variables for on-refuge elk hunting and supplemental feeding. 

We found no evidence of multicollinearity (all VIF < 2) within either the abiotic or 

anthropogenic set of explanatory variables (Zuur et al., 2010; Appendix 1; Table S4). Top 

models within each variable subgroup retained all variables from each subgroup based on AIC 

values (Table 2). Final model competition identified models including both anthropogenic and 

abiotic variables as the most parsimonious (Table 2). 

Drivers of elk aggregation 
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Our analyses included 501 daily contact rate estimates. The mean daily contact rate 

across the collared elk population was 0.19 (SD = 0.1) and ranged from 0.004 to 0.63 during the 

three winter seasons (Figure 2). The effect of supplemental feeding was nearly twice that of the 

next strongest predictor of aggregation, fSCA (Table 3). During feeding, the mean daily contact 

rate was 0.34 (SD = 0.07), which is 2.6 times larger compared to the baseline rate when feeding 

and hunting was not taking place (0.13, SD = 0.04). Contact rates were 23% lower while hunting 

was active on the refuge (0.10, SD = 0.03) compared to the baseline contact rate. The effects of 

snow depth and minimum temperature on aggregation were minimal (Table 3). We also found a 

strong positive effect of temporal autocorrelation in the mean daily contact rate of the collared 

elk population (Table 3). The inclusion of the first-order autoregressive variable in the model 

(based on lag of 1 day) removed significant temporal autocorrelation (Appendix 3). Feeding and 

hunting account for 34% and 9% of the variation in contact rate after accounting for temporal 

autocorrelation. Snow-covered area, snow depth and temperature accounted for 28%, 23% and 

6%, respectively, of the remaining variation. In the subset analysis which included an effect of 

wolves on elk aggregation we found no support for wolf-elk distances influencing elk contact 

rates (Appendix 2).  

Overall, our model captures the major changes and trends in aggregation over the course 

of the winter season (see raw vs. modelled contact rates with and without accounting for 

temporal autocorrelation in Figure 2). However, we found considerable fine-scale variation in 

daily aggregation rates. The temporal autocorrelation variable we included helps account for 

some of these daily changes in aggregation though it is likely other unmeasured environmental 

variables contribute to this variation as well. 

Discussion 
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We have demonstrated a framework for quantifying the relative effects of factors driving elk 

aggregation. Our findings echo previous research indicating elk aggregation is strongly regulated 

by winter severity (Proffitt et al., 2012) but notably our study is the first to examine the effect of 

supplemental feeding on aggregation relative to other environmental factors. Supplemental 

feeding has the largest positive effect on elk aggregation and is 1.8 times larger than the next 

strongest predictor of aggregation, fSCA (Table 3; Figure 2a,c). Feeding has an additive effect 

(Figure 3), above and beyond the abiotic conditions expected to influence degrees of 

congregation on winter range, and the response by elk to feeding occurs very quickly (Figure 

2a,c). Importantly, we also found elk aggregate in response to increasing amounts of snow cover 

on the landscape. In the spring, current feeding continues after snow cover decreases (e.g. April 

2019 in Figure 2c) suggesting feeding maintains greater elk aggregation when it would otherwise 

be declining. Ending feeding outright would have the largest effect in reducing elk aggregations. 

However, doing so could potentially reduce survival of elk by removing a conditioned winter 

food source without permitting time for elk to adjust to this resource loss. Our results suggest 

that ending feeding earlier during late winter would coincide more precisely with the abiotic cues 

elk respond to and allow for a structured reduction in aggregation during this time period.  

 Our analytical framework and findings set up a roadmap to evaluate aggregation of elk at 

the other 21 feedgrounds in the state of Wyoming. Furthermore, the novel methods we present 

can also be applied broadly to other systems where supplemental feeding and disease 

transmission are of concern. For example, supplemental feeding has been a regular tool in 

Europe to increase winter survival and reduce negative economic impacts due to bark-stripping 

in forest stands by red deer Cervus elaphus (Arnold et al., 2018; Putman & Staines, 2004). Red 

deer are also the main source of transmission of bovine tuberculosis (bTB) to domestic livestock 
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in areas such as Austria where management strategies include supplemental feeding, thereby 

promoting red deer aggregation (Fink et al., 2015). Research suggests prevalence of bTB in red 

deer is lower where feeding is not permitted or less common, such as in Italy and Switzerland 

(Chiari et al., 2014; Schöning et al., 2013). The variety of management approaches applied to red 

deer populations across Europe sets up a natural experiment that could benefit from the methods 

we present here and broaden understanding of the influence supplemental feeding has on red 

deer aggregations and bTB transmission. One key consideration when applying our approach 

across a broader spatial area is that the sampling distribution of collars across this wider area can 

have a large influence on the contact rate if not accounted for (e.g. determining the probability 

for contact between individuals using spatially distinct areas; Cross et al., 2012).  

 Hunting pressures on the NER disaggregate elk; but, hunting currently only occurs at the 

very beginning of the winter season (Figure 2). Following the end of the hunting season, elk 

aggregation generally increases (Figure 2a,b, less in 2c). However, offrefuge hunting continues 

after on-refuge hunting has ceased. Past research has shown that elk congregate on lands free of 

but adjacent to hunting (Mikle et al., 2019; Proffitt et al., 2010) and hunting pressure can 

strongly influence group size in elk (Gude et al., 2006; Proffitt et al., 2009). Elk may be driven 

onto the NER by off-refuge hunting once hunting on-refuge has ceased. Extending the hunting 

season on the NER may delay the movement of elk onto the refuge and decrease aggregation in 

early winter. However, increased hunting can directly increase mortality via harvest especially if 

CWD becomes established (Galloway et al., 2017) or indirectly reduce over-winter survival by 

interrupting seasonal acclimatization via increasing stress and forced movement during more 

severe winters (Arnold, 2020).  
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 Snow can restrict elk movement and reduce forage availability, often in spatially variable 

ways. Both processes may alter the aggregation of elk in the winter. Sweeney and Sweeney 

(1984) found elk begin avoiding areas when snow depth reaches 40 cm and movement becomes 

increasingly limited with a critical maximum of 70 cm at which movement almost entirely stops. 

Although we considered multiple ways of describing snow conditions, including the commonly 

considered snow water equivalent (e.g. Proffitt et al., 2012), only depth and fractional snow-

covered area were included in the most parsimonious model. Fractional snow-covered area was 

the second strongest predictor of elk aggregation with an effect size nearly four times larger than 

snow depth. Fractional snow-covered area indexes the pattern of increases in snow cover leading 

to less forage available and, in our study area, leads to increased aggregations in localized areas 

with less snow. This novel remotely sensed snow-cover data layer (Berman et al., 2018) 

provided fine resolution (30 m) snow information at daily time-scales across our entire study 

region. We expect this new index to be useful for many other winter wildlife questions.  

 We found little effect of distance between elk and wolf activity centres in driving elk 

aggregation. However, our analysis of the effect of wolves had several limitations: only a portion 

of wolves on the NER were collared, our inference is limited to when those wolves and elk are 

on the NER, and wolf-elk distances were summarized by day due to offsets in wolf versus elk fix 

timing. Previous research has shown elk group size decreases while wolves are present (Winnie 

Jr. & Creel, 2005), though it appears in our study that supplemental feeding may outweigh any 

predation effects at this scale. Furthermore, we examined interactions between wolves and 

prime-aged female elk, but research suggests wolves in our study region tend to feed 

predominantly on bulls, calves or older females (Woodruff & Jimenez, 2019; Wright et al., 

2006). To better evaluate whether wolves affect contact rates in this region, a finer spatial and 
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temporal scale of analysis that includes other classes of elk would be needed (Brennan et al., 

2015).  

 We also found that contact rates from 1 day were correlated with the contact rates on the 

next day (Table 3; Appendix 3). Accounting for this temporal autocorrelation reduced the effect 

sizes of the other explanatory variables in the model and described some substantial daily 

variation in contact rates that may be due to other environmental variables that we did not model. 

Pairs of elk rarely spent the entire day within 500 m of each other; these instances make up 4% 

of total observations (N = 8533/218351 elk-pair-days). Most contacts occurred in short bursts of 

interaction over a few hours to a few days. However, a few pairs of elk had consecutive days of 

contacts over longer time periods (up to 2 weeks) with the longest sustained contacts occurring 

in years when feeding took place (Figure 4; Appendix 3: Figures S2 and S3).  

 Future work on the drivers of winter elk aggregation would benefit from additional 

collared animals. For example, including bulls in the collared sample may be needed to better 

evaluate the role of wolves in elk aggregation and the role of male elk in CWD transmission. As 

the ‘Step Down Plan’ is implemented, to measure changes in aggregation, elk using areas 

adjacent to the NER will also need to be collared. This would also allow for a more 

comprehensive assessment of whether the responses we observed by elk on the NER are 

representative of elk more broadly across the region. Research across additional populations will 

also provide information about how or whether environmental factors differentially affect 

aggregation across the landscape. Changes in snowpack as the climate warms and as 

precipitation becomes more variable and changes seasonally may also influence the timing and 

location of elk aggregation and warrants consideration in subsequent studies. Our study focused 

on the direct transmission pathway for CWD by modelling drivers of contact rates among elk; 
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however, indirect transmission via environmental contamination is likely also important 

(Almberg et al., 2011; Potapov et al., 2016). Reducing aggregations of elk may also lessen the 

severity of contamination in heavily used areas but more research is needed on this subject. 

Subsequent studies on the role of aggregation in both direct and indirect transmission will be 

vital to provide decision-makers with the most thorough assessment of management tools for 

combating the spread of CWD.  

 In summary, our approach compared the relative influence of several factors driving elk 

aggregation and results suggest changing feeding and hunting practices can be tools to reduce 

aggregation. This provides a framework to test the efficacy of the NER ‘Step Down Plan’ in the 

future. Two key components of the framework are location-based information of individuals 

which can be achieved via direct observation or remote sensing, and information on management 

activities and environmental factors at a temporal resolution relevant to disease transmission. 

This approach can also be more broadly applied to assess other systems where aggregation of 

ungulates or other wildlife is of concern and is not necessarily tied to scenarios where 

supplemental feeding is occurring. Other factors not examined here that may also influence the 

timing and magnitude of aggregation in wildlife include the phenology and productivity of 

forage, the spatial arrangement of resources which can be manipulated by habitat treatments, 

disturbance that moves animals around and overall population size (M'soka et al., 2017; Tosa et 

al., 2017). 
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Figures & Tables 

 

Table 1. Samples sizes for elk and recorded locations (1.5 hour fix interval) across three winter 

seasons on the National Elk Refuge, Wyoming, USA, 2016-2019. Changes in sample size 

occurred mid-winter when additional elk were collared (Collared During Season), collars 

dropped off as planned (Planned Collar Drops) or collars failed (Collar Failures). 

 
Winter 

Season 

Total 

Elk 

Collared 

During Season Mortalities 

Planned 

Collar Drops 

Collar 

Failures 

Locations 

Recorded 

2016-2017 46 29 3 0 1 62854 

2017-2018 43 0 10 0 2 94287 

2018-2019 54 18 3 14 1 70238 

 

 

Table 2. Model selection results from competition of the abiotic and anthropogenic variable sub-

groups, and results from the final model competition between both sub-group models and a 

combined model of elk contact rates on the National Elk Refuge, Wyoming, USA, 2016-2019. 

 
Model Type logLik AIC ΔAIC weight 

Abiotic Models (4 of 24 models)     

fSCA + Minimum Temperature + Snow Depth + Snow Depth2 639.92 -1267.83 0.00 0.56 

fSCA + Snow Depth + Snow Depth2 645.86 -1267.37 0.46 0.44 

fSCA + Snow Depth 633.24 -1237.31 30.55 0.00 

fSCA + Minimum Temperature + Snow Depth 633.57 -1235.50 32.34 0.00 

Anthropogenic Models (all models shown)     

Feeding + On Refuge Hunting 668.02 -1328.03 0.00 1.00 

Feeding 653.04 -1300.10 27.94 0.00 

On Refuge Hunting 457.12 -908.25 419.79 0.00 

Final Model Competition     

Anthropogenic + Abiotic top models 767.10 -1518.29 0.00 1.00 

Anthropogenic top model only 668.02 -1328.03 190.26 0.00 

Abiotic top model only 639.92 -1267.83 250.46 0.00 

Null (intercept only) 426.51 -849.03 669.26 0.00 
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Table 3. Coefficient table for parameters in final top model which included both abiotic and 

anthropogenic variables as well as a parameter accounting for temporal autocorrelation in elk 

aggregation on the National Elk Refuge, Wyoming, USA, 2016-2019. N is the daily sample size 

of collared elk which was modeled as a covariate on the precision portion of the beta regression 

models. 

 
Explanatory Variables Coefficient (SE) 

Intercept -1.66 (0.02) 

Abiotic 
 

Fractional Snow-covered Area (fSCA) 0.19 (0.02) 

Minimum Temperature (5-day mean) 0.01 (0.02) 

Snow Depth (linear) 0.05 (0.03) 

Snow Depth (quadratic) -0.04 (0.01) 

Anthropogenic 

Elk Hunting On Refuge -0.12 (0.07) 

Feeding (Yes/No) 0.34 (0.06) 

Temporal Autocorrelation 0.43 (0.03) 

Precision 
 

N (# of collared elk on refuge) 0.03 (0.01) 
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Figure 1. Conceptual diagram of disease transmission pathways when host aggregations are 

important in determining transmission mechanisms. 
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Figure 2. Comparison of raw daily contact rates to fitted contact rates, from models with and 

without the autoregressive parameter (AR), for elk on the National Elk Refuge, Wyoming, USA, 

2016-2019.Contact rates are overlaid with timing of elk hunting and supplemental feeding, as 

well as fractional snow-covered area (fSCA). Data are shown for three winter seasons: 2016-

2017 (1a), 2017-2018 (1b), 2018-2019 (1c). 
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Figure 3. Predicted mean contact rate for elk on the National Elk Refuge, Wyoming, USA, 

2016-2019. Contact rate shown with and without supplemental feeding and as a function of 

fractional snow-covered area (fSCA). Shaded regions represent the 95% confidence intervals. 

 

Figure 4. Histogram of the number of consecutive days of any contact between all pairs of elk 

on the National Elk Refuge, Wyoming, USA, 2016-2019. During the non-feeding portion of the 

winter season, few pairs of elk were in contact for longer than 4 days and none beyond 7 days. 

 

 


