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tissues from 36 adult male polar bears from the Southern Beaufort Sea and the Chukchi/Bering
Seas in Alaska. Concentrations of Hg, Se, Cd, Pb, Se, and V generally decreased in the order of

kidney>liver>muscle. Mercury, Se, and Cd concentrations were significantly higher in liver

tissues in polar bears from the Southern Beaufort Sea (Hg; =30.91 pg/g dw, Se* = 14.39 pg/g
dw, Cd@= 1.42 pg/g dw ) than the Chukchi/Bering Seas (Hg@ =10.07 pg/g dw, Se—- =6.60

pg/g dw, Cd* =1.21 pg/g dw). Mercury, Se, and Cd concentrations were significantly higher in

kidney tissues in polar bears from the Southern Beaufort Sea (Hg* = 63.95 pg/g dw, Se_ =29.1

54 pg/g dw) than the Chukchi/Bering Seas (Hg¥ = 23.68 pg/g dw, SeX = 15.92 pg/g dw).

Based on regression analysis Hg to Se ratios in polar bear liver tissues were close to 1:1 for both
Alaskan populations, which suggest that Se has a role in protecting polar bears from Hg toxicity.
Mercury concentrations in liver tissues of polar bears in the Southern Beaufort Sea were about

half of those found in the Amundsen Gulf, Canada in the eastern Beaufort Sea. Hepatic levels of
copper, although very high(* =103.05 pg/g dw), were within ranges reported from other Arctic
polar bear populations. Although low, vanadium concentrations in polar bear kidneys were

significantly higher in the Chukchi/Bering Seas (—- =(0.871 pg/g dw) than in the Southern



B¥tifort Sea Q = (.245 pg/g dw).
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MANAGEMENT RECOMMENDATIONS

This study presents additional information on selected essential and non-essential elements in
adult polar bears from Alaska. Some of the highest Hg levels in the Arctic are from western
Canada and the eastern Beaufort Sea, as indicated by the high Hg concentrations relative to Se
concentrations, in polar bears, ringed seals, and bearded seals. Based on the polar bear data
from this study mercury concentrations generally decreased in the order Western Canada >
eastern Beaufort Sea (Canada, Alaska) > Southern Beaufort Sea (Alaska) > Chukchi/Bering Seas
(Alaska/Russia). As mercury concentrations continue to increase in the Arctic (Asmund and
Nielsen 2000), continued effort should be taken to monitor marine mammals species, including
polar bears and the ice (Phoca sp.) seals, to see if they can continue to be able to detoxify the
increased mercury burdens. Apparently enough Se is currently available in environment for polar
bears to detoxify the more toxic methylmercury, thus preventing Hg poisoning. Thus Se
concentrations and the other elements discussed in this study, which may have synergistic effects,
should also continue to be monitored. The sample sizes for this study were relatively small and
focused on only adult males. To look at temporal trends and variation in the sex, age,

reproductive status, habitat, location, diet, and nutritional status of polar bears we need to



increase our sample size and include all the sex and age cohorts of both polar bears and their
prey. For example very little information is known about bearded seals in northern and western
Alaska and more extensive contaminant information is required for ringed seals, the two primary
prey species of polar bears. Aside from documenting concentrations of toxic elements more
research needs to be conducted to look at the effects and relationship of these toxic elements to
polar bear physiology, disease, and population dynamics. Additional individual information that
should be collected along with the polar bear contaminant data should be basic biological
information such as accurate location information, weight, length, age, general health assessment
and with more time and money additional data could be collected to examine hormone levels,
P450 enzymes, blood chemistry, genetics, as well as histology samples. In trying to elucidate
why there were differences in contaminant loading between the two Alaskan polar bear
populations, it became apparent that more information was needed on the relative importance of
various prey items in the polar bear diet. One approach would be to collect information on fatty
acids, contaminants, and combine this with an isotopic analysis to look at marine mammal
trophic ecology (Kelly 2000). (e.g. what proportion of the polar bear diet comes from feeding on
marine mammals below ringed seals in the food web?). In addition detailed information on
polar bear habitat use, contaminant sources, and habitat quality would assist in evaluating the
impacts and potential solutions to environmental contamination problems. Contaminant studies
are generally very expensive to conduct so maximum use should be made of long-term cryogenic

archival storage facilities for banking specimens for future use.
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ABSTRACT

Concentrations of selected essential and non-essential elements, including mercury, cadmium,
lead, arsenic, selenium, copper, zinc, and vanadium were measured in liver, kidney, and muscle
tissues from 36 adult male polar bears from the Southern Beaufort Sea and the Chukchi/Bering
Seas in Alaska. Concentrations of Hg, Se, Cd, Pb, Se, and V generally decreased in the order of

kidney>liver>muscle. Mercury, Se, and Cd concentrations were significantly higher in liver
tissues in polar bears from the Southern Beaufort Sea (HgJ_c =30.91 ug/g dw, Sex =14.39 ug/g
dw, Cdx =1.42 pg/g dw ) than the Chukchi/Bering Seas (Hg; =10.07 pg/g dw, Sex = 6.60
png/g dw, Cdx =121 pg/g dw). Mercury, Se, and Cd concentrations were significantly higher in
kidney tissues in polar bears from the Southern Beaufort Sea (Hg;c =63.95 pg/g dw, Sex =

29.154 pg/g dw) than the Chukchi/Bering Seas (Hgx = 23.68 ug/g dw, Sex = 15.92 ug/g dw).
Based on regression analysis Hg to Se ratios in polar bear liver tissues were close to 1:1 for both
Alaskan populations, which suggest that Se has a role in protecting polar bears from Hg toxicity.
Mercury concentrations in liver tissues of polar bears in the Southern Beaufort Sea were about

half of those found in the Amundsen Gulf, Canada in the eastern Beaufort Sea. Hepatic levels of

copper, although very high (x =103.05 pg/g dw), were within ranges reported from other Arctic

polar bear populations. Although low, vanadium concentrations in polar bear kidneys were
significantly higher in the Chukchi/Bering Seas (; =0.871 pg/g dw) than in the Southern

Beaufort Sea ( x =0.245 pug/g dw).
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INTRODUCTION

Increased development in the Arctic, release from natural deposits, and the long-range transport
of pollutants from areas of high use to the Arctic and sub-Arctic regions have raised concerns
about the potential effects of heavy metals on the Arctic marine ecosystem, including marine
mammals (Lentfer 1976, Stirling and Calvert 1983, Wagemann and Muir 1984, Norstrom et al.
1986, Braune et al. 1991, Norheim et al. 1992, Dietz et al. 1995, Pacyna and Keeler 1995, Pacyna
1996, Lindberg et al. 2002). Polar bears (Ursus maritimus) in the Southern Beaufort Sea and the
Chukchi/Bering Seas populations remain on the Arctic ice covered areas for most of the year and
move with the polar pack ice and depend on the polar pack ice for food, shelter, and survival.
Comiso (2003) reported changes in the minimum sea ice extent in the Arctic between the periods
1979-1989 and 1990-2000 were greatest in the northern Chukchi and southern Beaufort seas.
Consequently it is expected that polar bears in the Southern Beaufort Sea and the Chukchi/Bering
Seas will experience greater changes than polar bears from other Arctic populations, in prey
availability and accessibility, in the abundance, distribution, and movement of the sea ice habitat,
and in the uptake and exposure to heavy metal contamination. Potential outcomes of these
events would be an overall decline in heath and fitness and abundance. The international Arctic

Monitoring and Assessment Programme (Macdonald et al. 2003) recently reviewed how climate
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change may alter contaminant pathways, chemical fate and accumulation of contaminants within

the Arctic ecosystem.

Polar bears are ideally suited for monitoring the level and distribution of metals in the Arctic
ecosystem because of their position at the top of the Arctic marine food chain and their wide
distribution. The Arctic ecosystem is particularly sensitive to environmental contamination due
to the presence of long-lived organisms with low rates of growth and reproduction. The Arctic
food web is simple and fragile. In the spring, eponic algae blooms on the underside of the sea-ice
in the Beaufort, Chukchi, and Bering seas (Hood and Kelley 1974). The eponic algae is eaten by
zooplankton, which are eaten by fish, mostly Arctic cod (Boreogadus saida). Arctic cod are
eaten by seals, which are then eaten by polar bears. Humans consume whales, fish, seals, walrus,
and polar bears. Snyder-Conn et al. (1997) noted substantial increases in Ba, Cd, Pb, Hg, and V
with increasing latitudes from the Brooks Range to the Arctic coast in Alaska. The presence of
metals and trace elements has been investigated in sediments (Varanasi 1992), in snow
associated with sea ice (Garbarino et al. 2002), whales (Becker et al. 1992, Becker et al. 1995,
Becker 2000, Woshner et al. 2001a), seals (Varanasi 1992), walrus (Warburton and Seagars
1993), and birds (Stout et al. 2002, Wilson et al. 2004) in Alaska, but has been studied very little
in polar bears, the principle mammalian predator at the top of the Arctic food chain. Existing
data on essential and non-essential elements from Alaska polar bears is limited (Lentfer 1976,

Lentfer and Galster 1987, Woshner et al. 2001b).



Polar bears are widely distributed throughout the Arctic and sub-Arctic region and range over
large areas in search for food (Garner et al. 1990, Amstrup et al. 2000). Data collected through
satellite telemetry indicates that there are two polar bear population stocks in Alaska, one in the
southern Beaufort Sea and the other in the Chukchi/Bering Seas (Amstrup et al. 2000). An area
of overlap occurs east of Point Barrow to Point Hope on the land, shorefast ice, and moving
offshore sea ice. Seasonal movements are closely associated with movements of the sea ice,
which in turn influences the distribution and concentration of their primary prey, ringed (Phoca
hispida) and bearded seals (Erignathus barbatus) (Stirling et al. 1982, Kingsley et al. 1985).
Polar bears move south with the ice in the fall and winter and move north as the pack ice melts in
the spring and summer. Except for the parturient females, polar bears from the two Alaskan
populations remain on the ice year-round and are considered to be some of the most pelagic bears
in the arctic polar basin (Amstrup 2003). During the spring and fall polar bears from the
Southern Beaufort Sea population preferred shallow water areas over the continental shelf and
areas with > 90% ice cover (Durner et al. 2004). It is likely polar bears move to this area during
the spring and fall to take advantage of the abundance and accessibility of ringed seals. This
parallels the findings of Stirling et al. (1982) that ringed seal densities in the Beaufort Sea were
greatest in areas with >80% ice cover and at depths of 50-100 m. Annual ice is used primarily
during the spring and fall, and areas of active ice, caused by the formation of fast-ice and
consolidation of offshore ice, are used primarily during the winter. Multi-year ice is used only
during the summer when the annual ice melts (Durner et al. 2004). Polar bears feed primarily on
ringed seals, which in turn feed on Arctic cod and large amphipods (Stirling and Archibald

1977). Bearded seals, which are more common over the shallow coastal shelf in Chukchi Sea



than the Beaufort Sea, are another important prey item. Polar bears are opportunistic feeders and
will also feed on Pacific walrus (Odobenus rosmarus divergens) and scavenge on bowhead whale
(Balaena mysticetus), grey whale (Eschrichtius robustus), beluga whale, and Pacific walrus
carcasses (Norstrom et al. 1998). Differences in the origin and movements of currents, rates of
atmospheric or geological deposition of metals, and differences in the feeding ecology of polar
bears between the Beaufort and the Chukchi/Bering Seas could affect the uptake of contaminants
in polar bears. Pacific walrus and bearded seals feed primarily on benthic organisms whereas
bowhead whales (Balaena mysticetus) feed primarily on euphausiid, copepod, mysid, and
amphipod species in the water column (Lowry 1993). For example Pacific walrus and bearded
seals make up a greater proportion of the polar bear diet in the Chukchi/Bering Seas. The Arctic
Monitoring and Assessment Programme (AMAP) has identified the polar bear as a key indicator
species of the Arctic ecosystem. Under the 1973 International Agreement on the Conservation of
Polar Bear, the United States has the responsibility to protect polar bears and their habitat in
Alaska. Identification of metal concentrations in polar bears and comparison with contaminant
levels in other populations will provide one indirect measure of the health of polar bears and the

marine ecosystem within Alaska.

Although trace elements and heavy metal concentrations have been well documented in Canada,

Norway, and Greenland polar bear populations (Norstrom et al. 1986, Norheim et al 1992, Dietz
et al. 1995, Dietz et al. 2000b), relatively little information is available for populations in Alaska.
Lentfer (1976) documented elevated mercury in polar bears, sampled prior to the major oil and

gas development on the North Slope. Hunting and utilizing marine mammals remains an



important part of the Alaska Native subsistence lifestyle. Alaska Natives are concerned about
contamination levels in the marine mammals they eat, primarily ringed, spotted (Phoca largha),
and bearded seals, Pacific walrus, bowhead whales, and polar bears. The objectives of this study
are to provide more information, to compare trace element and heavy metal concentrations
between the two Alaskan polar bear populations, and to compare these data with other Arctic
populations. This assessment will include evaluation of: selected elements of polar bears
harvested by Alaska Native subsistence hunters; whether these elements differ with age, tissue
type, and population; evaluation of potential element interactions; and report of the observed

ranges of essential elements.

METHODS

Study Area

Alaska has two polar bear populations, the Southern Beaufort Sea population, shared with
Canada, and the Chukchi/Bering Seas population, shared with Russia (Figure 1). Polar bears
from these two populations remain primarily offshore on the sea-ice throughout the year (Garner
et al. 1990, Amstrup et al. 2000). Movement of the sea ice in the southern Beaufort Sea is
primarily east-west whereas the movement of the sea ice in the Chukchi/Bering Seas is primarily
north-south. The sea ice in the southern Beaufort Sea may recede from the coast up to 160 km in
late summer. Some of the most extensive movements of the pack ice occur in the
Chukchi/Bering Seas where the difference between the maximum (winter) and minimum (late

summer) ice extent may be over 1400km (Garner et al. 1994). Polar bears are most abundant



along the edges of the pack-ice, over the shallow water areas near shorelines, and polynyas
(Durner et al. 2004). Parturient females often visit coastal areas and river drainages in the fall
looking for suitable den sites. Approximately 50% of the female bears from the Southern
Beaufort Sea population den within 25 miles of the coast in northern Alaska and 50% den on the
sea ice (Amstrup and Gardner 1994). Most of the denning in the Chukchi/Bering Seas

population occurs on land on Wrangel Island, Herald Island, and along the Chukotka coast.

Sample Collection

Liver, kidney, muscle, and fat tissues from adult male polar bears were collected by Alaska
Native subsistence hunters for contaminant analysis. Hunters were instructed to collect both
kidneys, a lobe of the liver, two large muscle samples from a major muscle group such as
quadriceps, and a large fat sample from the top of the rump above the tail. Samples were
collected for both elemental and organochlorine analysis from the same individual. Adult males
were chosen because: organochlorine concentrations are more variable in females, cubs, and
subadults due to off-loading during lactation (Polischuk 1995); males are harvested at
approximately twice the rate as females and thus samples should be easier to obtain; and because
we didn't want to encourage the hunting of adult females the most important age class with

respect to the population dynamics of this K-selected species.

All tissue samples were frozen in the field and stored at -80°C in ultra-cold freezers at the U.S.
Fish and Wildlife Service Regional Office in Anchorage, Alaska. Core samples were prepared

using the clean techniques described by Becker et al. (1988, 1991) and sent to the labs for



analysis. Briefly, organs were thawed to a semi-frozen state, and tissue samples were taken using
Teflon dissection tools on Teflon lab surface sheeting. Samples were placed in Teflon bottles or
pre-cleaned glass jars (I-CHEM 300) and shipped frozen to independent analytical laboratories
through the Service’s Division of Environmental Contaminants. Samples were also collected for
long-term storage at the National Institute of Standards and Technology as part of the Alaskan
Marine Mammal Tissue Archival Project (AMMTAP) for use in future analyses as analytical
techniques improve and to assist in the development of spatial and temporal trends of

contaminant concentrations in the Arctic.

Laboratory Methods

A summary of the methods is described below and a more detailed description of the analytical
methods is available from Patuxent Analytical Control Facility (PACF), Patuxent Wildlife
Research Center, U.S. Fish and Wildlife Service, Laurel, Maryland. Elemental analyses were
performed by Research Triangle Institute in Research Triangle Park, North Carolina. Liver,
kidney, and muscle tissues were analyzed for the following analytes: aluminum, arsenic, barium,
beryllium, cadmium, chromium, copper, iron, lead, mercury, magnesium, manganese,
molybdenum, nickel, selenium, strontium, vanadium, and zinc. In addition, eight liver samples
were analyzed for silver. Prior to the analysis all the tissue samples were homogenized and then
freeze dried for determination of percent moisture, extraction, and further analysis. Each sample
(0.25 to 0.5g) was digested in 5 ml of Baker Instra-Analyzed nitric acid in a CEM microwave
oven for 3 minutes each at 120, 300, and 450 watts. The final reside was then diluted to 50ml

with laboratory pure water.



Concentrations of arsenic, selenium, and silver were analyzed using graphite furnace atomic
absorption (GFAA) and a Perkin-Elmer Zeeman 3030 or 4100ZL atomic absorption
spectrometer. Mercury concentrations were determined using Cold Vapor Atomic Absorption
(CVAA) analysis with a tin chloride (SnCly) reduction. Concentrations of Hg were determined
on a Leeman PS200 Hg Analyzer using CVAA and SnCl, as a reducing agent on a Leeman
PS200 Hg Analyzer. The remaining elements were measured using inductively coupled/plasma
spectroscopy with a Leeman Labs Plasma Spec 1 sequential or ES2000 simultaneous

spectrometer.

Muscle tissues were also analyzed for methylmercury. Methylmercury was extracted from each
sample using 10ml of Smol/l HCL into 3 20ml aliquots of toluene. The combined toluene
aliquots were diluted to 100ml with toluene. The methylmercury was extracted from the toluene
solution with a cysteine acetate solution. The sample was digested using EPA method 7470 and
the resulting solution analyzed using CVAA spectrometry with a stannous chloride and
hydroxylamine hydrochloride (2/1) reduction. The CVAA measurements were made using an

automated mercury analyzer, the Leeman Labs PS2000.

Quality Assurance/Quality Control (QA/QC)
Quality assurance/quality control standardized procedures included analysis of procedural blanks,
standard reference materials, spiked samples, duplicates, and evaluation of the data by a senior

chemist at Patuxent Analytical Control Facility (PACF). Prior to analysis the data was reviewed



for acceptance relative to QA/QC guidelines (Quakenbush and Snyder-Conn 1993, K. Mueller,
pers. comm.). These guidelines include spike recovery data, comparison of duplicates,
procedural blanks, and analysis of Standard Reference Material (SRM) samples. Approximately
10% of the samples were tested for analytical accuracy and precision. For accuracy, an average
spike recovery between 80-120% was considered acceptable. For precision, an average relative
percent difference (RPD) was calculated based on a comparison of duplicates and was acceptable
if the average RPD was <20% (RPD= ([D1-D2]J/[(D1+D2)/2]*100); where D1 = the
concentration measured in the first analysis and D2 = the concentration measured in the second
analysis). For procedural blanks, a concentration <15% of the mean sample was considered
acceptable. An SRM (lobster hepatopancreas, NRCC TORT-2) was included in the analyses for
quality assurance purposes for all trace elements except for methylmercury. Dogfish liver
(NRCC DOLT-2) was used as the SRM for methylmercury. Elements or compounds not

meeting QA/QC criteria were eliminated from further statistical analyses.

Statistical Analysis

In addition to the QA/QC procedures the following criteria, based on percent detections, were
used to determine which elements should be included and whether non-parametric or parametric
testing was appropriate for comparative analyses: (a) no statistical tests were performed on
analytes detected in <10% of the samples in any group; (b) only ranges are presented for those
analytes detected in >10% and <50% of the samples; (c) non-parametric (univariate
KruskalWallis rank sum) testing for analytes detected in >50% and <90% of the samples; and

(d) parametric testing to compare populations where analytes were detected >90% of the
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samples; the remaining samples below the detection limit defaulted to 0.5 the detection limit for
these analyses. In order to minimize the potential effects of desiccation due to length of time
samples were stored prior to analysis, dry wights (ug/g) are reported. Wet weights may be more
meaningful from a toxicological standpoint as these better reflect physiological processes in polar
bears, and consumers normally eat fresh moist tissue. Wet weights are included in the hard

copies of the data provided by the lab and are available from the author upon request.

We examined differences in the concentration of trace elements between the Southern Beaufort
Sea and Chukchi/Bering Seas population using descriptive statistics (percent detections,
geometric means, and ranges) and a combination of parametric and non-parametric tests. For the
non-parametric analyses, concentrations of trace elements were compared using the Kruskal-
Wallis test. The trace element data was log, transformed to achieve normality. We used
multivariate analysis of variance (MANOVA) to examine variation in the concentration of trace
elements between the two populations and to reduce the number of variables. Only those
variables with univariate p-values <0.15 were used to test for differences between the two
populations in the final model. A Spearman rank correlation was used to examine the
relationship between mercury and selenium in all individuals sampled. The ratio of hepatic Hg
to Se was determined using regression analysis. For all tests, a P-value of < 0.05 was used to test
for significant differences. We examined the relationships between individual elements with age
using regression and correlation. Parametric and non-parametric statistical programs from SAS

6.12 (SAS 1999) were used for data analysis.
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RESULTS AND DISCUSSION

Essential elements, such as Cu, Fe, Mg, Mn, Se, and Zn, occur naturally and play an integral role
in the biochemical systems necessary for life. Usually only small amounts of the essential
elements are required physiologically and excess amounts are regulated in animals by a variety of
homeostatic mechanisms. Elevated levels of even essential elements may become toxic.
Nonessential elements, such as As, Ag, Cd, Hg, and Pb, have no known biological function and
are considered toxic. Those elements which are of most concern with respect to polar bear health
will be discussed. Element concentrations, comparisons between tissue types, and geographic

comparisons with other Arctic polar bear populations will be discussed for each element.

We examined liver, kidney, and muscle tissues from 36 adult male polar bears taken in northern
and western Alaska for 19 trace elements (Table 1). We focused our analysis on the non-
essential elements that were considered most toxic (As, Cd, Hg, and Pb) and the essential
elements that at high levels could be potentially toxic (Cu, Zn, Se, and V). Although we
received a complete set of samples (i.e. liver, kidney, muscle) from most polar bears, several
incomplete sample sets were received and thus the discrepancy between the total number of bears
from which samples were collected and those reported in the tables. We present the means,
standard deviations, ranges, and 95% confidence intervals in Tables 2 and Table 3. In this study
Cd, Cu, Fe, Hg, Mn, Se, and Zn were detected in greater that 90% of the kidney, liver, and
muscle samples. Molybdenum in livers and kidneys and Sr in kidneys were detected in greater

than 90% of the samples. Aluminum, Pb, V in kidneys and Cr in kidneys and muscle were
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detected in >50% of the samples. Several elements (As, Ag, B, Ba, Be) that were near the
detection limit in all tissues were not included in Table 2. Although arsenic was near the
detection level in 96% of the samples, one muscle sample from Savoonga had a high
concentration of As (21.9 ug/g dw). Cadmium, Cu, Fe, Hg, Mn, Mo, Se, Sr, and Zn, were tested

for differences between the Alaskan populations for each tissue type (Table 3).

Comparisons of concentrations of elements between different studies should be treated with
caution as there may variation due to analytical methods, sampling years, tissues sampled, sex,
age, and/or nutritional status of bears. Most of the results from other studies have combined
male and female bears from the same population or have weighted the results to account for age
and sex differences. Thus, unless males are specifically mentioned, our results on adult male
polar bears did not account for the effects of age and are being compared to results from studies
on both male and female polar bears. Previous studies have indicated that element
concentrations in polar bears are not significantly different between the sexes (Norstrom et al
1986, Braune et al. 1991, Dietz et al. 1995, Dietz et al. 2000b) and thus these comparisons seem
justified. Although information on essential and non-essential element concentrations from this
study can be used to monitor the arctic ecosystem, a comparison between the two Alaskan
populations should be viewed with caution as overlap occurs. Recent population modeling
indicates that approximately 50% of the bears harvested in the vicinity of Barrow may be from
the Chukchi/Bering Sea population (Amstrup et al. 2004 in press). In contrast all the bears
indicated as being harvested from the Chukchi/Bering Sea population were well outside the area

of overlap between the two populations (Amstrup et al. 2004 in press).
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For those analytes detected in >90% of the kidney samples, Hg, Se, and Cd contributed
significantly to the final multivariate model (MANOVA, Wilks’ A= 0.656, F4 57 = 3.55,
p<0.019). Adult male polar bears from the Southern Beaufort Sea population had significantly
higher concentrations of mercury (F;, 30 = 13.40, P<0.001) and selenium (F;, 3= 9.31, P<0.005)
in kidney tissues than bears from the Chukchi/Bering Seas population. There were no significant
differences between populations for Pb (Kruskal-Wallis test statistic = 1.1503, P=0.2835, df=1)
and Cr in kidney (Kruskal-Wallis test statistic = 1.0649, P=0.3021, df=1). Although renal
concentrations of Cd were significantly greater in the Southern Beaufort Sea population than in
the Chukchi/Bering Seas population, Cd was less significant that either Hg or Se in the final

multivariate model (F;, 3= 2.63, P<0.115).

Mercury (F1,29 = 22.30, P<.0001) and Se (Fy,29 = 12.97, P<.0012), and Fe (F;, 59 = 6.58, P<.0157)
concentrations in liver tissues were significantly greater in polar bears from the Southern
Beaufort Sea population than the Chukchi Sea population (MANOVA, Wilks’ A= 0.448, F; »;=
11.10, p<.0001). Concentrations of Fe, although significant in the final model, were above the
significance value of P<0.15 chosen for comparisons between the two Alaskan populations.
Hepatic concentrations of Cu, which were relatively high (=103 pg/g dw), were not significantly

different between the Alaskan populations.

No significant differences between the two Alaskan populations were detected for any of the

elements in muscle tissue.
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Comparison between Tissue Types

Concentrations by tissue type for Cd, Hg, Pb, Se, and V generally decreased in the order
kidney>liver>muscle (Figure 1). Liver tissues had the highest Cu, Fe, Mn, and Mo
concentrations and muscle tissues had the highest concentrations of Mg and Zn. Except for lead,
the element concentrations were significantly different (p<0.05) between the polar bear kidney
and liver tissues in the Southern Beaufort Sea and Chukchi/Bering Seas populations. Although
there were significant differences between concentrations Hg and Se in kidney and liver tissues,

no significant differences were detected in muscle tissues.

Elemental Residues and Geographic Comparisons

Mercury

Mercury is a nonessential element that occurs naturally in the environment and is released to the
environment, through weathering of rocks and volcanic activity, and augmented by significant
anthropogenic emissions. Mercury is highly volatile and natural and anthropogenic sources may
be released into the atmosphere and deposited back into the snow pack or oceans (Kim and
Fitzgerald 1986, Lindberg et al. 2002, Ebinghaus et al. 2002, and Skov et al. 2004). The major
sources of Hg in Alaska are from south-central Eurasia and Eastern Europe (Garbarino et al.
2002) whereas North America and Europe are the main Hg sources for eastern Canada (Kahl, et

al. 1989). Comparisons of Hg concentrations in ringed seals, in Canada (Wagemann et al. 1996),
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lake sediment cores in Alaska (Landers et al. 1995), and in Beluga teeth the Beaufort Sea
between the 16™ century (pre-industrial) and the 1990s (post industrial) (AMAP 2004), indicate
that Hg concentrations are considerably higher today than before the beginning of the industrial
era. In addition to natural geological sources of mercury, there is evidence that Hg is continuing
to be released into the environment by human activities such as burning coal and fossil fuels to
meet increasing energy demands (Pacyna 1996, Dietz et al. 1998b, Asmund and Nielsen 2000,
AMAP 2004). Recent studies in Barrow have documented enhanced Hg deposition in the snow
pack from the transformation of gaseous elemental Hg to reactive gaseous Hg during the polar
sunrise in the spring (Lindberg et al. 2002). This enhanced loading of the Hg during the spring is
concurrent with the increase of biological activity in the spring (Lindberg et al. 2002). Mercury
can increase through bio-magnification and is known to be toxic at relatively low concentrations.
Despite the high concentrations of Hg often found in marine mammals relative to the terrestrial
mammals, most marine mammals have evolved effective biochemical mechanisms to tolerate the

high concentrations of Hg.

Two adult male polar bears from Barrow and one from Point Lay had the highest hepatic Hg
concentrations (> 36 ug/g dw or > 10 ug/g ww). The polar bear from Point Lay (western Alaska
— Chukchi Sea) was harvested near Kasegaluk Lagoon, an area Alaska Natives traditionally use
for hunting Beluga whales. Polar bears feeding on Beluga whales in this area could be exposed
to high levels of Hg, since beluga whales from Kasegaluk Lagoon had very high Hg
concentrations in liver (24.6-72.9 ug/g ww or 102-288 dw) (Zeisler et al. 1993). High Hg

concentrations were also recorded in the snow over the sea ice in Kasegaluk Lagoon (Garbarino
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et al. 202).

Mercury levels were three times greater in hepatic tissues from polar bears in the Southern
Beaufort Sea than from polar bears in the Chukchi/Bering Seas population. Although Hg
concentrations were greater in polar bear kidney and liver tissues from the Southern Beaufort Sea
population than the Chukchi/Bering Seas popualtion, Hg concentrations were not significantly

different in the muscle tissues. Mean Hg concentrations in liver from polar bears collected in
1972 were about eight times higher in the Southern Beaufort Sea population (J_c =38.08 ug/g
ww, n=15) than the Chukchi/Bering Seas population (; =4.80 pg/g ww, n=9) (Lentfer and

Galster 1987) whereas our results were only three times higher (; =9.93 ug/g ww, n=11 vs. x =
3.23 pg/g ww, n=20). Comparison of hepatic Hg concentrations from 1972 (Lentfer and Galster
1987) with our data suggests that the Hg concentrations in polar bears have decreased fourfold in
the Southern Beaufort Sea whereas Hg concentrations from the Chukchi/Bering Seas have
remained relatively constant at low levels. Whether these changes reflect a shift in feeding
behavior or changes anthropogenic exposure is unknown. Prior to 1972, sport hunting caused
population declines in both Alaskan populations. One hypothesis is that during the sport hunting
era from the 1950s to the 1970s the distribution of polar bears that survived was further out on
the pack ice as bears closer to the coastline and villages were more susceptible to being hunted.
An increase of polar bears denning on land versus the pack ice (Amstrup and Gardner 1994) and
the use of bowhead whale carcasses from subsistence harvested whales over the past 20 years
suggest that sport hunting could have affected the polar bear distribution and accessibility to prey

and carcass remains on the shore, shorefast ice, or sea ice near the coastline. Evidence for this is
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also supported by an analysis of the bioaccumulation factors (polar bear/ringed seal persistent
organochlorine pollutants) in ringed seals and five adult male polar bears harvested near Barrow,
Alaska which suggested that polar bears in northern Alaska were preying on marine mammals at
lower trophic levels (i.e. bowhead whale, Pacific walrus, bearded seal) relative to polar bears

from other locations in the Canadian Arctic (Kucklick et al. 2002).

Differences in the Hg concentrations between the two Alaskan populations could be due to
differences in the source and turnover rate of marine and freshwater input to the Chukchi/Bering
Seas and the Beaufort Sea, different natural deposits of Hg in marine sediments or ocean floor,
and/or differences in the prey availability and utilization between the two areas. The water in the
Chukchi/Bering Sea is more heavily influenced by sea water originating in the North Pacific
Ocean and passing through the Bering Straits and freshwater runoff from western Alaska and
eastern Russia (Li et al. 2002). The turnover rate in the Chukchi Sea, which is relatively shallow,
is thought to be less than one year whereas the turnover rate for interior seas, such as the
relatively deep Beaufort Sea, is around 10 years (McDonald 2000). Sources of fresh water for

the waters in the Beaufort Sea are primarily from western Canada and northeastern Alaska.

Observed differences in mercury concentration could also be influenced by polar bear feeding
ecology. Polar bears from the Chukchi/Bering Seas have greater access to bearded seals and
Pacific walrus carcasses whereas ringed seals make up a greater proportion of the diet of polar
bears from the Southern Beaufort Sea. Pacific walrus from the Chukchi/Bering Seas (Warburton

and Seagars 1993) and Bowhead whales from the southern Beaufort Sea (Woshner et al. 2001a)
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have lower Hg hepatic concentrations than ringed seals from the same area whereas bearded seals
from the Amundsen Gulf in the eastern Beaufort Sea, Canada (Burns 1977, Smith and Armstrong
1978, Wagemann et al. 1996) and beluga whales from the Chukchi Sea and southern Beaufort
Sea (Delphinapterus leucas) (Woshner et al. 2001a) have greater Hg concentrations in liver
tissue than ringed seals (Woshner et al. 2001b) from the same area. This finding is consistent
with the data that indicated Hg residues were often higher in benthic organisms than pelagic
organisms in the same trophic level (Leonzio et al. 1981). Although high Hg concentrations in
liver tissues were found in bearded seals in central (Smith and Armstrong 1978) and western

Canadian Arctic (Wagemann et al. (1996), Hg concentrations in three bearded seals from Norton

Sound, Nome, Alaska (i.e. Chukchi Sea) were relatively low (; =4.15 pg/g ww, range 1.40-9.43
ug/g ww, n=3), which suggests that Hg concentrations, even among benthic feeders, in the
Chukchi/Bering Seas may be lower than the Southern Beaufort Sea. Differences in the feeding
habits of ringed seals may also account for some of the differences in Hg concentrations between
the two populations. Ringed seals in the Chukchi Sea were found to feed more heavily on fish
than ringed seals from the Beaufort Sea which consume a higher proportion of amphipods and
euphausids in their diet (Lowry et al. 1978, 1980). However, it seems unlikely that differential
prey selection is the primary source of the higher Hg concentrations found in polar bears from the
Southern Beaufort Sea population, as polar bears are known to feed on bowhead whale carcasses,
which have very low Hg concentrations, and there is no indication that bearded seals, which may
have high Hg concentrations, are eaten more frequently than ringed seals. More likely, the
Beaufort Sea probably contains greater concentrations of natural and/or anthropogenic sources of

Hg than either the Chukchi Sea or Bering Sea.
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Mercury concentrations in muscle and liver tissue from polar bears in the Southern Beaufort Sea
and the Chukchi/Bering Sea were about half the Hg concentrations found in polar bears from the
eastern Beaufort Sea and Amundson Gulf region in western Canada (Norstrom et al. 1986,
Braune et al.1991). Mean hepatic Hg concentrations from both Alaskan populations were similar
to values reported for adult bears from Svalbard, Norway (Norheim et al 1992). Overall the
lowest Hg concentrations of Hg have been found in Svalbard, Norway and the Chukchi Sea
(Norstom et al. 1986, Lentfer and Galster 1987, Norheim et al. 1992). Polar bears from western
Canadian Arctic and southwest Melville Island, Canada (Braune et al. 1991, Norstrom et al.
1986) and ringed seals from the western Canadian Arctic (Wagemann et al. 1996, Dietz et al.

1998b) have some of the highest known mercury concentrations.

Methylmercury (organic mercury) is more toxic than inorganic mercury and more readily
bioaccumulated. Thus the percentage of organic mercury to the total mercury is more important
biologically. Mercury poisoning is characterized by neurological impairment, compromised
immune response, and damage to the central nervous system, liver, and kidney (WHO 1989,
1990, 1991). Also, fetuses and cubs may be particularly susceptible to methylmercury during
development of the central nervous system (Dietz et al. 1998b). Although intake of as little as
4ug of Hg per kilogram of body weight in humans sensitive to methylmercury can elicit clinical
signs of Hg poisoning (Clarkson 1987), evidence of Hg poisoning in wild marine mammals is
rare. Rawson et al. (1993) found liver abnormalities in Atlantic bottlenose dolphins stranded

associated with mercury levels of (61-443 ug/g ww). By comparison the range of hepatic
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mercury levels in Alaskan polar bears was much lower (0.94-69.2 ug/g ww). Dietz et al. (1990)
noted that sick marine mammals often have higher concentrations of methylmercury which
suggests that these animals may no longer be able to efficiently detoxify methylmercury. Polar
bears may become more susceptible to Hg poisoning if they become more stressed due to the
effects of global climatic change. The low concentrations of methyl mercury and the ratio of
organic mercury to total mercury in muscle tissue in our study (Alaska - 65%) was similar to the
62% found in polar bears from Greenland (Dietz et al.1990) and slightly lower than the 72.5%
reported by Woshner et al. (2001b) for polar bears from the Southern Beaufort Sea population in
Alaska. The highest concentrations of Hg were found in the kidneys and it has been suggested
that kidneys are perhaps more capable of storing larger quantities of mercury after demethylation
which in turn may account for the low concentrations found in the muscle tissues (Dietz et al.

1990, Woshner 2001b).

Exposure to elevated levels of Hg have been shown to cause neurophysiological problems, such
as loss of coordination, loss of vision, reduced memory and language skills, and a lower attention
span in humans from the Faeroe Islands (Grandjean et al. 1997). High levels of Hg and Cd have
been associated with the consumption of marine mammals by Greenlanders from villages in the
Disko Bay region (Bjerregaard and Hansen 2000, Johansen et al. 2000). Polar bear livers are not
consumed by humans due to high and potentially toxic levels of Vitamin A and due to the
association with livers, kidneys are likewise not consumed. However polar bear meat is
consumed by Alaska Natives. Total mercury concentrations in ringed seal muscle tissue from

Barrow, Alaska (Woshner et al. 2001b) and beluga whales from northern and western Alaska
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(Woshner et al. 2001a) were 5.1 and 26.9 times greater than concentrations found in polar bear

muscle tissue in this study (; = 0.0432 pg/g ww, n=32), respectively. Although not high, Hg
concentrations in polar bear muscle tissue were 2.5 times greater than muscle tissue of bowhead
whales (Woshner 2001a). The polar bear data from this paper can be used as part of a larger and
more comprehensive study to assess the dietary risk of metal contaminants to human consumers

of marine mammals.

Selenium

The major source of Se in the environment is from the natural weathering of rock. Although an
essential element at low concentrations it can be toxic at higher concentrations causing
reproductive, congenital, and developmental and impairment of the central nervous system
(Eisler 1985b, Dietz et al. 1998b). Se concentrations in the liver (; =14.39 ug/g dw, range 7.26-
28.20 pug/g dw, n=11) and kidneys (; =29.15 pg/g dw, range 0.49-113.0 ug/g dw, n=11) of polar
bears from the Southern Beaufort Sea were within the ranges reported by (Norstom et al. 1986,
Braune et al. 1991, Wagemann et al. 1996 and Woshner et al. 2001b). Despite the high
concentrations that would be toxic for terrestrial mammals such as cattle and dogs (Puls 1994),
the polar bears appeared healthy when taken by the Alaska Native subsistence hunters. Given the
high correlation between Hg and Se, it is not surprising that comparison of Se concentrations
across geographical areas paralleled that of Hg. Selenium is thought to be able to detoxify Hg,
particularly methyl mercury, by forming insoluble Hg-Se complexes in the liver (Nigro and
Leonzio 1996, Dietz et al. 2000a). This mercury-selenium correlation has been reported for

various vertebrate species, and there is evidence that seabirds and marine mammals have the
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metabolic ability to de-methylate organic mercury, converting it to less toxic inorganic mercury,
and storing it in tissues at relatively high levels within metallothionein or selenium complexes,
eventually excreting it (Andre et al. 1990, Becker 2000, Dietz et al 2000a). Selenium has also
been shown as an antagonist to counteract the toxicity of other elements such as Cu, Cd, As, and

Ag.

Mercury/Selenium Correlation

We found significant correlations between Hg and Se (kidney, r=0.94, p<0.0001, liver, r= 0.89,
p<0.0001), Hg and Cd (kidney, r=0.72, p<0.0001, liver, r= 0.44, p<0.014), and Se with Cd
(kidney, r=0.79, p<0.0001, liver, r= 0.53, p<0.0020) in kidney and liver tissues The high
correlation between Hg and Se was similar to the combined results from male and female polar
bears in the eastern area of the Southern Beaufort Sea population in Canada (Norstrom et al.
1986, Braune et al. 1991) and other marine mammals and birds (Koeman et al. 1975). Results
from regression analyses of Hg to Se in liver tissue for the Southern Beaufort Sea (SBS) and the
Chukchi/Bering Seas (CBS) populations in Alaska indicated that both had similar slopes and
molar ratios (SBS=1.03, CBS=0.99). The ratio of Hg to Se as indicated by the regression
coefficients was close to one in liver tissues in polar bears from the Chukchi/Bering Seas and in
liver and kidney tissues from the Southern Beaufort Sea and < 1 in kidney tissues from polar
bears in the Chukchi/Bering Seas. A 1:1 molar ratio of Hg to Se and the high correlation
coefficient (0.92) between Hg and Se in liver, and lack of evidence of Hg toxicity suggests that
Se has a role in protecting against mercury toxicity (Koeman et al. 1975, Nigro and Leonzio

1996).
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Although we did not analyzed MeHg in kidney and liver tissues, there seems to be enough Se
present to detoxify the organic Hg. Mercury and Se contaminant levels in polar bears and seals
should be closely monitored as there is potential that the ability of these species to detoxify
increased Hg levels could become compromised, resulting in mercury poisoning (Dietz et al
1998a, Dietz et al. 2000a). It might be interesting to see if the Hg/Se ratios change if polar bears
from the Alaskan populations are forced to spend more time on land, particularly during the

summer, due to the loss of the sea ice habitat from global warming.

Copper

Copper concentrations in adult male polar bear livers and kidneys from the Southern Beaufort
Sea were similar to those reported by Woshner et al. (2001b), well within the ranges reported for
Canada by Norstrom et al. (1986), and higher than those in Norway (Norheim 1992). There were
no significant differences between Cu concentrations in liver or kidneys between polar bears

from the Southern Beaufort Sea and Chukchi Sea populations. The mean hepatic copper

concentration although high (J_C =33.10 pg/g ww) was close to the range, 3-30 mg/kg ww,
thought to represent the normal range of homeostatic control in marine mammals (Law et al.
1991). Although hepatic Cu concentrations in marine mammals are generally lower than 20 ug/g
ww (Thompson 1990, Wagemann et al. 1996) individual fur seals and beluga whales had very
high concentrations (Zeisler et al. 1993) that approached some of the levels reported for the
leopard seal (Thompson 1990) and Ross seal (Ommatophoca rossii) (McGlurg 1984) in the

Antarctic. The lack of clear geographical trends between Cu concentrations in marine mammals
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in areas with known high copper concentrations (Thompson et al. 1990) suggests that diet is
important in determining copper concentrations. For example, high Cu concentrations in squid,
the principle prey of Ross seals, are thought to be the primary source of copper (McClurg 1984).

Copper concentrations in liver tissue from adult male polar bears in the Southern Beaufort Sea

(; =33.61 pg/g ww, sd = 1.47, n=11) were about four times higher than ringed seals from the
same arca (Woshner et al. 2001b). Although very high concentrations of copper have been found
in livers of northern fur seals from St Paul Island (17-56 ug/g ww) (Zeisler et al. 1993), and
beluga whales from Point Lay, Alaska (16-41 ug/g/ww) (Zeisler et al. 1993, Becker et al. 1995,
Woshner et al. 2001b), these prey items are not thought to be major food items in the polar bear
diet. High copper concentrations may also be attributed to the common binding of Cu in addition
to Cd and Zn to metallothionein (MTH). The significant correlations between Cd, Zn and Cu is
most likely due to the common binding with MTH, a small molecular weigh metal-binding
protein important for both homeostasis and the detoxification of various metals, especially Hg,
Cd, Zn, and Cu (Lee et al. 1977). Copper concentrations typically decrease with age in marine
mammal livers but this trend was not evident from our data. Woshner et al. (2001b) suggested
that metallothionein may be more important for Hg detoxification in polar bears than Se and the
increase of metallothionein would in turn account for the higher concentrations of Cu and Zn in
polar bear livers. The high Cu concentrations in polar bear liver tissue and the higher
concentrations of Hg and Pb in kidneys, compared to livers, are more typical of terrestrial
mammals (Dietz et al 1995) than marine mammals and this may be related to the fairly recent
evolution of polar bears from brown bears about 200,000 to 250,000 years ago (Talbot and

Shields 1996).
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Zinc
Zinc concentrations livers and kidneys were not significantly different between the two Alaskan
polar bear populations. Zinc concentrations were highest in the muscle tissues, intermediate in

liver tissues, and lowest in kidney tissues. The hepatic Zn concentrations of the adult male polar

bears in this study (J_C =50.22 pg/g ww) were well within the normal range of Zn concentrations
(20-100 ug/g ww) required for homeostatic control in marine mammals. Zinc concentrations are
within the same range as results previously reported for Canada, Svalbard, and Greenland
(Norstrom, et al. 1986, Braune et al. 1991, Norheim et al. 1992, Dietz et al. 1995, Dietz et al.
2000b). The similarities of zinc concentrations between different populations are consistent with
the bear’s physiological ability to regulate and maintain the essential elements at the required
concentrations. Norstrom et al. (1986) postulated that elevated concentrations of Cu in the liver

could disturb the homeostatic control, resulting in high concentrations of both Cu and Zn.

Cadmium

Cadmium, a non-essential and potentially toxic element, occurs naturally and is a byproduct of
incineration of fossil fuels, mining and smelting operations, and battery production (Eisler
1985a). Cadmium has a very long half-life (30 yrs in humans) and similar to Hg, shares the
protective action of metallothionein proteins in the kidneys and liver against Cd toxicity (Dietz et
al 1998a). Cadmium concentrations were highest in the kidney tissues, with much lower
concentrations in the liver and muscle tissues. Concentrations of Cd were below the detection

limit for many of the muscle samples. Cadmium concentrations in the kidney tissues from the
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Southern Beaufort Sea were similar to those reported by Woshner (2001b) (this study - x =7.11

pg/g ww, sd = 2.84, n=11, Woshner et al. - x = 8.69 pg/g ww, sd = 5.05, n=24). Woshner et al
(2001b) found that Cd concentrations in kidneys were significantly lower in polar bears than
ringed seals from the Southern Beaufort Sea. Dietz et al (1995) also reported similar findings for

polar bears in east central Greenland.

The mean Cd concentration in polar bear kidney samples from the Southern Beaufort Sea

population (; =24.72 pg/g dw, range 6.25-47.40 ug/g dw, n=11) was approximately 20 times

greater than the next highest tissue (liver). Similarly, mean Cd kidney concentrations in the

Chukchi/Bering Seas population (J—c =16.52 pg/g dw, range 1.53-41.00 pug/g dw, n=21) were
approximately 11 times greater than liver tissue concentrations. Cadmium concentrations in polar
bear liver tissues were less than concentrations reported from eastern Canada (Norstrom et al.
1986, Braune et al. 1991) and below toxic threshold levels (=200 ug/g ww) associated with
kidney damage in mammals (Law 1996, Dietz et al 1998a). Cadmium concentrations in polar
bears from the Southern Beaufort Sea population and the Chukchi/Bering Seas population were
approximately two times greater than concentrations found in polar bears in at Melville Island in
western Canada (Norstrom et al 1986) but similar to concentrations found in the Eastern Beaufort
Sea and Amundsen Gulf (Dietz et al. 1998b). The relatively low cadmium concentrations found
in Alaska are most likely due to the geologic gradient of cadmium which decreases from east to

west across the arctic regions in North America (Wagemann et al. 1996).
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The effects of elevated cadmium concentrations in marine mammals are largely unknown (Deitz
et al. 1998). Cadmium is a known carcinogen (Eisler, 1985a) and elevated Cd levels in marine
birds and mammals is known to cause sever kidney damage, disruption of calcium and vitamin D
metabolism, bone loss, depress growth, anemia, and affect metabolism and concentration of
essential elements such as Fe, Zn, and Cu (Furnass 1996). The toxicity of Cd may be determined

by the capacity of the kidneys and livers to synthesize metallothionein.

There is some evidence that in the absence of anthropogenic contamination the feeding habits of
marine mammals may represent a major pathway for metal accumulation. For example there is
evidence that Ross seals (McClurg 1984) and crabeater seals (Lobodon carcinophagus) (Szefer et
al. 1993, Szefer et al. 1994) accumulated high concentrations of Cd from eating squid, which in
turn have high Cd concentrations in their organs. Also, it is thought that Pacific walrus obtain a
significant portion of the cadmium from eating certain species of mollusks (Mya sp.) (Miles and
Hills 1994). The differences in the habitat, with respect to natural and anthropgenic sources of

Cd, and diet determine the uptake of Cd and variation between the polar bear populations.

Lead

Although mean concentrations of Pb in muscle, kidneys, and livers were low overall there is
potential for polar bears to accumulate high Pb concentrations. For example, high concentrations
of Pb were detected in one bear from St Lawrence Island, Alaska (Liver - 16.9 pg/g dw, Kidney -
14.2 pg/g dw) and one male cub from Nuigsut (Liver — 14.7 ug/g dw, Kidney — 10.0 ug/g dw).

Concentrations above 15 ug/g dw have been associated with the clinical signs of lead toxicosis
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(Ma 1996). Although there is the possibility that these samples may have been contaminated by
lead shot we believe that the Pb concentrations are accurate due to the extreme care taken during
the sub-sampling, the normal range of values for other elements and tissues tested, and
acceptable QA/QC results. Lead concentrations, which are normally higher in surface waters,
were relatively low from the Beaufort Sea continental shelf in the western Arctic Ocean (<20-40
ng/l) (Muir et al. 1992, Pacyna et al. 1995) relative to concentrations found in surface waters
from the North Atlantic and the Norwegian Sea (80-400 ng/1) (Mart and Nurnberg, 1984). There
is potential for high concentrations of Pb to accumulate in marine mammals that feed on benthic
organisms, such as pacific walrus and bearded seals as relatively high concentrations of lead have
been found in benthic organisms (e.g. bivalve mollusks - Mya truncata), adjacent to the
Nanisivik mine in Strathcona Sound, North Baffin Island, Canada (Muir et al 1992). Although
Pb concentrations in ringed seals in the Canadian Arctic were generally higher than belugas or

narwhals lead concentrations from liver, kidney, and muscle tissues of ringed seals collected near

Barrow, Alaska were low (; =0.04 pg/g ww, sd = 0.03, n=17, Woshner et al. 2001b). High lead
concentrations in individual polar bears is probably a result of feeding near industrial sites (e.g.
lead/zinc mines) that have extremely elevated lead concentrations from industrial waste, sewage
outfall, or atmospheric emissions from smelters, smoke stacks, and exhaust (Pacyna and Keeler

1995, Pacyna 1996).

Vanadium

The concentration of V in kidney (Kruskal-Wallis test statistic = 3.8578, P=0.0495, df=1) was

significantly greater in polar bears from the Chukchi/Bering Seas population (; =0.871 pg/g dw,
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range 0.25-3.2 ug/g dw, n=21) than the Southern Beaufort Sea population ()_c =0.439 pg/g dw,

range 0.25-0.85 pg/g dw, n=11).

Vanadium was found to be higher in Alaskan cetacean and pinnipeds, relative to marine

mammals from the eastern United States (Mackey et al. 1996). The highest concentrations of

vanadium in adult male polar bears from Alaska were in the kidney tissues ()_C =0.688 ug/g dw,
range 0.245-3.20 pug/g dw, n=32). The highest concentrations of vanadium reported in marine

mammal tissues from the Arctic were from Pacific walrus liver tissues colleted in the Bering Sea
()_c =6.04 pg/g dw, range 0.96-14.55 pg/g dw, n=53). Similar high hepatic levels of vanadium

were not however detected in polar bears from the Chukchi/Bering Seas ()_C =0.309 pug/g ww,
n=20). Only 16% of the liver tissues sampled from adult male polar bears from Alaska were

above the detection limit (Table 3). Hepatic vanadium concentrations in polar bears from Alaska

()_C =0.095 ug/g ww, n=32) were similar to those reported by Norstrom et al. 1986 ()_C =0.07 pg/g
ww, n=32) and within the range of those reported (range 0.02-1.2 ug/g ww) for ringed seals
(n=13), bearded seals (n=3), Bowhead whales (n=3), and beluga whales (n=15) from
Alaska.(Mackey et al. 1996). Concentrations of vanadium in seals from industrial Northern
Europe (Frank et al. 1992) were similar to those results from the Alaskan marine mammals
(Mackey et al. 1996). The presence of vanadium in the oil from Prudhoe Bay (Hughes and Holba
1988) and natural oil seepages (Becker and Manen 1989) are potential sources of vanadium in
the Arctic. The source of relatively high concentrations of vanadium in polar bears and other

Alaskan marine mammals (Mackey et al. 1996) is currently not known.
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Age Accumulation

The mean ages of adult polar bears sampled from the Southern Beaufort Sea (; =12.0 years,
range 5-21, n=7) and the Chukchi/Bering Seas (; =10.8 years, range 5-30, n=24) were not
significantly different (t-test, P>0.670). Ages were determined from all bears sampled from the
Chukchi/Bering Seas population and only seven bears from the Southern Beaufort Sea
population. We found significant, but relatively weak, relationships between the following
elements and age in kidney, liver, and muscle tissues pooled from both populations and age:
mercury (*=0.13, p<0.05) and selenium (r’=0.15, p<0.04) in muscle tissue; cadmium (r’=0.14,
p<0.05) in kidney tissue; iron in liver (’=0.40, p<0.0004) and muscle (’=0.14, p<0.05) tissue;

and vanadium(r’=0.13, p<0.06) in kidney tissue.

Comparisons between the elemental concentrations and age were also determined for each
population separately. Significant relationships between the following elements and age in the
Chukchi/Bering Seas population were: selenium (r*=0.17, p<0.07) in muscle tissue; mercury in
kidney (*=0.15, p<0.09) and muscle (*=0.17, p<0.06) tissue; cadmium (*=0.18, p<0.06) in
kidney tissue; iron in liver (’=0.46, p<0.001) and muscle (*=0.17, p<0.06) tissue. In the
Southern Beaufort Sea population significant relationships were found only between vanadium
concentrations and age in kidney tissue (r’=0.15, p<0.04) and arsenic concentrations and age in
liver tissue (’=0.41, p<0.09). There were no significant correlations between concentrations of

Pb, Mg, Mo, Mn, Zn, Mehg, Cu and age in any tissue. The lack of more significant relationships
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between element concentrations, particularly Cd and Hg, and age for polar bear tissues from the
Southern Beaufort Sea is most likely due to the small sample size and lack of complete age

information from the Southern Beaufort Sea population.

Although concentrations of Cd, Hg, and Se in polar bear liver tissues have been found to be
significantly correlated with age (Norstrom et al. 1986, Braune et al. 1991, Dietz et al. 1995) our
results did not show a similar pattern. Dietz (2000) found significant correlations of cadmium
with kidney, liver, and muscle tissues. Mercury was only weakly correlated with age in kidney
tissues from Alaskan polar bears. The lack of many old and young adult bears in our study may
also contribute the lack of correlations of heavy metals with age in this study. Polar bears in our

study ranged from 5-30 years with the majority of individuals between 9 and 17 years (n=15).

MANAGEMENT RECOMMENDATIONS

This study presents additional information on selected essential and non-essential elements in
adult polar bears from Alaska. Some of the highest Hg levels in the Arctic are from western
Canada and the eastern Beaufort Sea, as indicated by the high Hg concentrations relative to Se
concentrations, in polar bears, ringed seals, and bearded seals. Based on the polar bear data
from this study mercury concentrations generally decreased in the order Western Canada >
eastern Beaufort Sea (Canada, Alaska) > Southern Beaufort Sea (Alaska) > Chukchi/Bering Seas
(Alaska/Russia). As mercury concentrations continue to increase in the Arctic (Asmund and

Nielsen 2000), continued effort should be taken to monitor marine mammals species, including
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polar bears and the ice (Phoca sp.) seals, to see if they can continue to be able to detoxify the
increased mercury burdens. Apparently enough Se is currently available in environment for polar
bears to detoxify the more toxic methylmercury, thus preventing Hg poisoning. Thus Se
concentrations and the other elements discussed in this study, which may have synergistic effects,
should also continue to be monitored. The sample sizes for this study were relatively small and
focused on only adult males. To look at temporal trends and variation in the sex, age,
reproductive status, habitat, location, diet, and nutritional status of polar bears we need to
increase our sample size and include all the sex and age cohorts of both polar bears and their
prey. For example very little information is known about bearded seals in northern and western
Alaska and more extensive contaminant information is required for ringed seals, the two primary
prey species of polar bears. Aside from documenting concentrations of toxic elements more
research needs to be conducted to look at the effects and relationship of these toxic elements to
polar bear physiology, disease, and population dynamics. Additional individual information that
should be collected along with the polar bear contaminant data should be basic biological
information such as accurate location information, weight, length, age, general health assessment
and with more time and money additional data could be collected to examine hormone levels,
P450 enzymes, blood chemistry, genetics, as well as histology samples. In trying to elucidate
why there were differences in contaminant loading between the two Alaskan polar bear
populations, it became apparent that more information was needed on the relative importance of
various prey items in the polar bear diet. One approach would be to collect information on fatty
acids, contaminants, and combine this with an isotopic analysis to look at marine mammal

trophic ecology (Kelly 2000). (e.g. what proportion of the polar bear diet comes from feeding on
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marine mammals below ringed seals in the food web?). In addition detailed information on
polar bear habitat use, contaminant sources, and habitat quality would assist in evaluating the
impacts and potential solutions to environmental contamination problems. Contaminant studies
are generally very expensive to conduct so maximum use should be made of long-term cryogenic

archival storage facilities for banking specimens for future use.
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