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The North American Bat Monitoring Program (NABat) is a multi-national, multi-agency 
coordinated bat monitoring program across North America. NABat seeks to address the historic 
lack of information on status and trends of North American Bats through coordinated, 
standardized, long-term data collection and integrated data analysis. Bat monitoring data 
contributed to the NABat database are used to estimate bat distributions and abundance and 
how these metrics are changing over time. This information fills critical knowledge gaps that 
support the management of bat populations in the face of multiple threats.  
 
NABat is committed to iterative improvement throughout the life of the program. To deliver the 
best available science, we will continue to pursue opportunities for improvement throughout the 
greater bat monitoring system—from data collection to information delivery. 
 

 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
To learn more about NABat visit nabatmonitoring.org.  
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Executive Summary  
• We developed an analytical pipeline supported by web-based infrastructure for 

integrating continental scale bat monitoring data (stationary acoustic, mobile acoustic, 
and capture records) to estimate summer (May 1–Aug 31) occupancy probabilities and 
changes in occupancy over time for 12 North American bat species. This serves as one of 
multiple lines of evidence that inform the status and trends of bat populations.  

• We analyzed data from a total of 12 bat species (Table 1), 11 of which have tested 
positive for Pseudogymnoascus destructans (Pd), a fungal pathogen that causes white-
nose syndrome (WNS)—a disease that has led to significant rates of mortality for 
subterranean hibernating bat species in North America. A twelfth species was also 
selected because of high rates of mortality at wind energy facilities. Additional species 
were considered but not selected due to data limitations.  

• We estimated occupancy probabilities for 2010 through 2019 for three species (Myotis 
lucifugus, MYLU; Myotis septentrionalis, MYSE; and Perimyotis subflavus, PESU). For an 
additional nine species, we estimated occupancy probabilities for 2016 through 2019 
(Myotis evotis, MYEV; Myotis grisescens, MYGR; Myotis leibii, MYLE; Myotis thysanodes, 
MYTH; Myotis volans, MYVO; Myotis yumanensis, MYYU; Eptesicus fuscus, EPFU; 
Lasionycteris noctivagans, LANO; and Lasiurus cinereus, LACI). 

• For each species, we provide range-wide occupancy probability predictions (e.g., 
predicted summer occupancy distribution maps) each year at a spatial resolution of 100 
km2 and provide regional estimates of mean occupancy probability aggregated at larger 
spatial scales (state/province/territory, range-wide).  

• For each species, we also provide trends over time (average annual change rate and 
total change rate) in mean occupancy probabilities at multiple spatial scales 
(state/province/territory, range-wide) and when possible, over multiple timescales 
(short, medium, long).  

• Results suggest that over the short-term (2016-2019), two (Myotis lucifugus and 
Perimyotis subflavus) of 12 species have experienced declines in range-wide average 
occupancy probability with at least 95% certainty. Seven species showed either minor 
increases or decreases in range-wide average occupancy probability but with less than 
95% certainty in both trend indicators. Results over the longer term (eight years and 10 
years of sampling) suggest that three hibernating species known to be highly affected by 
white-nose syndrome (Myotis lucifugus, Myotis septentrionalis, and Perimyotis 
subflavus) have experienced marked declines in range-wide average occupancy 
probabilities, with severity varying by species and region. Finally, the results for three 
species (Eptesicus fuscus, Lasiurus cinereus, Lasionycteris noctivagans) were inconclusive 
due to 1) borderline convergence issues in the model fitting procedure which suggests 
potentially unreliable estimates, 2) failure to reliably distinguish between false positives 
and true positive detections for ambiguous detections, and 3) largely uninformative 
covariates for occupancy and detection.  

• For Myotis lucifugus, Myotis septentrionalis, and Perimyotis subflavus we found 
meaningful associations in space and time between declining winter populations (likely 
a result of WNS) and summer occupancy distributions. 
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• The representativeness of sampling data for each species’ status and trend estimates 
(e.g., state/province/territory) were also evaluated based on the percent of grid cells 
sampled each year with a goal of understanding the reliability of regional estimates and 
improving future monitoring efforts. 

• This work represents the most comprehensive effort to date to model North American 
bat distributions across their continental ranges. Despite current limitations highlighted 
in the discussion, the analytical methods and resulting status and trends estimates 
provide the best available science on summer bat populations across North America and 
will continue to improve over time as monitoring data sets and analytical methods 
improve.  

• Moving forward, our occupancy analyses will continue to improve with submission of 
more 1) data from currently underrepresented areas (i.e., improved geographic 
representation), 2) manually-vetted acoustic recordings, 3) capture records, and 4) roost 
location and count data (summer and winter). 

Table 1. Species included in this analysis, with corresponding white-nose syndrome (WNS) status and 
federal listing status. WNS Status includes Confirmed = species identified with diagnostic symptoms of 
white-nose syndrome, Pd positive = species on which Pseudogymnoascus destructans (Pd) has been 
detected but WNS has not been confirmed, and Not detected = species which WNS and Pd have not 
been detected (whitenosesyndrome.org, accessed 2021-12-10). Federal listing status was obtained from 
Government of Canada Species at Risk Public Registry (https://species-registry.canada.ca/index-
en.html#/species?sortBy=commonNameSort&sortDirection=asc&pageSize=10, accessed 2021-12-10), 
U.S. Fish and Wildlife Service Endangered Species List (https://www.fws.gov/endangered/, accessed 
2021-12-10), and Mexico’s Enciclo Vida (https://enciclovida.mx/, accessed 2022-01-10). *Indicates 
species currently undergoing species status assessment by U.S. Fish and Wildlife Service. **Indicates 
species currently under review by the Committee on the Status of Endangered Wildlife in Canada 
(https://www.cosewic.ca/index.php/en-ca/reports/status-reports-preparation.html, accessed 2022-01-
10).  

Species Code Scientific Name  WNS Status  Federal Listing Status  

MYLU Myotis lucifugus Confirmed Canada: Endangered 
USA: None*  

MYSE Myotis septentrionalis Confirmed Canada: Endangered 
USA: Threatened*  

PESU Perimyotis subflavus Confirmed Canada: Endangered 
USA: None*  

MYEV Myotis evotis Confirmed Mexico: Subject to special protection 

MYGR Myotis grisescens Confirmed USA: Endangered 

MYLE Myotis leibii Confirmed None 

MYTH Myotis thysanodes Confirmed None 

MYVO Myotis volans Confirmed None 

MYYU Myotis yumanensis Confirmed None 

EPFU Eptesicus fuscus Confirmed None 

LANO Lasionycteris noctivagans Pd positive Canada: None** 
Mexico: Subject to special protection 

LACI Lasiurus cinereus Not detected Canada: None** 
 

https://www.fws.gov/endangered/
https://enciclovida.mx/
https://www.cosewic.ca/index.php/en-ca/reports/status-reports-preparation.html


vi 
 

 

Table of Contents 
Acknowledgements ....................................................................................................................................... ii 

Executive Summary ...................................................................................................................................... iv 

1. Introduction and Purpose ......................................................................................................................... 1 

2. Methods - Datasets ................................................................................................................................... 3 

2.1 Response data ..................................................................................................................................... 3 

2.1.1 Stationary acoustic sampling ....................................................................................................... 3 

2.1.2 Mobile transect acoustic sampling methods ............................................................................... 4 

2.1.3 Capture records ........................................................................................................................... 5 

2.1.4 Summary of response types......................................................................................................... 5 

2.1.5 Data sources and contributors ..................................................................................................... 6 

2.2 Covariates ........................................................................................................................................... 7 

2.2.1 Site-level covariates ..................................................................................................................... 7 

2.2.2 Seasonal connectivity metrics (integrating winter count data) ................................................... 8 

2.2.3 Other derived grid cell-level covariates sourced from spatial data sets ................................... 11 

2.2.4 Detection-level covariates ......................................................................................................... 12 

2.3 Range maps ....................................................................................................................................... 13 

3. Results ..................................................................................................................................................... 15 

3.1 Useful definitions for interpreting results ........................................................................................ 15 

3.2 Organization of results ...................................................................................................................... 16 

3.3 Myotis lucifugus ................................................................................................................................ 18 

3.4 Myotis septentrionalis ....................................................................................................................... 23 

3.5 Perimyotis subflavus ......................................................................................................................... 28 

3.6 Myotis evotis ..................................................................................................................................... 34 

3.7 Myotis grisescens .............................................................................................................................. 40 

3.8 Myotis leibii ....................................................................................................................................... 45 

3.9 Myotis thysanodes ............................................................................................................................ 50 

3.10 Myotis volans .................................................................................................................................. 56 

3.11 Myotis yumanensis ......................................................................................................................... 62 

3.12 Inconclusive Results ........................................................................................................................ 67 

3.12.1 Eptesicus fuscus ........................................................................................................................ 69 

3.12.2 Lasionycteris noctivagans ........................................................................................................ 74 

3.12.3 Lasiurus cinereus ...................................................................................................................... 79 



vii 
 

 

4. Discussion ................................................................................................................................................ 84 

4.1 Interpreting occupancy estimates and trends .................................................................................. 85 

4.2 Data limitations ................................................................................................................................. 86 

4.3 Analytical limitations ......................................................................................................................... 87 

4.4 Looking forward ................................................................................................................................ 89 

References .................................................................................................................................................. 90 

Appendix A: Statistical Method Used for the False-positive Occupancy Modeling and Predictions ......... 95 

A.1 Statistical methods used for the false-positive occupancy modeling .............................................. 95 

A.2 Observation model ........................................................................................................................... 95 

A.2.1 Data fusion and aggregation for occupancy modeling .............................................................. 95 

A.2.2 Additional model assumptions .................................................................................................. 96 

A.2.3 Statistical model ........................................................................................................................ 97 

A.2.4 Constraints on p11 and p10 for identifiability ........................................................................... 98 

A.3 Ecological model for grid cell-level occupancy ................................................................................. 98 

A.3.1 Hierarchical ecoregion effects in space and time .................................................................... 104 

A.3.2 Winter-to-summer connectivity metric ................................................................................... 106 

A.3.3 Spatial splines .......................................................................................................................... 107 

A.4 Model fitting ................................................................................................................................... 108 

A.5 Predicting occupancy maps and deriving status and trend across the species range ................... 108 

A.5.1 Temporal scope ....................................................................................................................... 108 

A.5.2 Spatial scope ............................................................................................................................ 108 

A.5.3 Measures of status and trend .................................................................................................. 109 

References cited in Appendix A ............................................................................................................ 111 

Appendix B: State/Province/Territory Level Results ................................................................................. 113 

B.1 Myotis lucifugus .............................................................................................................................. 113 

B.2 Myotis septentrionalis .................................................................................................................... 122 

B.3 Perimyotis subflavus ....................................................................................................................... 131 

B.4 Myotis evotis ................................................................................................................................... 139 

B.5 Myotis grisescens ............................................................................................................................ 144 

B.6 Myotis leibii ..................................................................................................................................... 149 

B.7 Myotis thysanodes .......................................................................................................................... 155 

B.8 Myotis volans .................................................................................................................................. 160 

B.9 Myotis yumanensis ......................................................................................................................... 165 



viii 
 

 

B.10 Eptesicus fuscus ............................................................................................................................ 170 

B.11 Lasionycteris noctivagans ............................................................................................................. 178 

B.12 Lasiurus cinereus ........................................................................................................................... 186 

Appendix C: Occupancy Modeling Covariate Effects ................................................................................ 194 

C.1 Myotis lucifugus .............................................................................................................................. 194 

C.2 Myotis septentrionalis..................................................................................................................... 196 

C.3 Perimyotis subflavus ....................................................................................................................... 198 

C.4 Myotis evotis ................................................................................................................................... 200 

C.5 Myotis grisescens ............................................................................................................................ 202 

C.6 Myotis leibii ..................................................................................................................................... 204 

C.7 Myotis thysanodes .......................................................................................................................... 206 

C.8 Myotis volans .................................................................................................................................. 208 

C.9 Myotis yumanensis ......................................................................................................................... 210 

C.10 Eptesicus fuscus ............................................................................................................................ 212 

C.11 Lasionycteris noctivagans ............................................................................................................. 214 

C.12 Lasiurus cinereus ........................................................................................................................... 216 

Appendix D: Comparing predicted occupancy probabilities to monitoring data ..................................... 219 

D.1 Myotis lucifugus .............................................................................................................................. 220 

D.2 Myotis septentrionalis .................................................................................................................... 221 

D.3 Perimyotis subflavus ....................................................................................................................... 222 

D.4 Myotis evotis ................................................................................................................................... 223 

D.5 Myotis grisescens ............................................................................................................................ 224 

D.6 Myotis leibii..................................................................................................................................... 225 

D.7 Myotis thysanodes .......................................................................................................................... 226 

D.8 Myotis volans .................................................................................................................................. 227 

D.9 Myotis yumanensis ......................................................................................................................... 228 

D.10 Eptesicus fuscus ............................................................................................................................ 229 

D.11 Lasionycteris noctivagans ............................................................................................................. 230 

D.12 Lasiurus cinereus........................................................................................................................... 231 

 

  



ix 
 

 

List of Tables 
TABLE 1. SPECIES INCLUDED IN THIS ANALYSIS, WITH CORRESPONDING WHITE-NOSE SYNDROME (WNS) STATUS AND FEDERAL LISTING 

STATUS… .................................................................................................................................................................. V 
TABLE 2. SUMMARY OF DATA AVAILABLE FOR THE SUMMER OCCUPANCY ANALYSIS... . .................................................................... 6 
TABLE 3. NAME AND SOURCE OF THE SITE-LEVEL COVARIATES IN THE NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) 

DATABASE... ............................................................................................................................................................. 7 
TABLE 4. NAME AND SOURCE OF SITE-LEVEL COVARIATES OBTAINED FROM GOOGLE EARTH ENGINE. .................................................. 7 
TABLE 5. SPECIES MEAN SEASONAL MIGRATION DISTANCE, AND SAMPLE SIZE OF RECORDS FROM THE LITERATURE AND/OR THE U.S. 

HISTORIC BAT BANDING DATABASE. .............................................................................................................................. 9 
TABLE 6. ADDITIONAL SPATIAL COVARIATES GEO-PROCESSED AND JOINED TO EACH GRID CELL IN THE CONTINENTAL NORTH AMERICAN BAT 

MONITORING PROGRAM (NABAT) SAMPLING GRID USING EITHER ARCMAP OR THE SPATIAL FEATURES (SF) PACKAGE IN R........... 11 
TABLE 7. SUMMARY OF NIGHT-LEVEL COVARIATES AGGREGATED ACROSS SEVEN-DAY PERIODS AND INCLUDED IN THE FALSE-POSITIVE 

OCCUPANCY MODEL FOR EACH BAT SPECIES... ................................................................................................................ 13 
TABLE 8. SOURCES OF SPECIES RANGE MAPS FOR BATS THAT OCCUR IN NORTH AMERICA. ............................................................... 13 
TABLE 9. A SUMMARY TABLE DEPICTING THE TOTAL NUMBER OF MONITORING DATA POINTS (GRID-CELL*OBSERVATION) OF EACH 

DETECTION HISTORY TYPE (0: NO-DETECTION, 1: AMBIGUOUS DETECTION, 2: UNAMBIGUOUS DETECTION) FOR EACH BAT SPECIES, 

INCLUDING THE NUMBER OF POINTS OF EACH TYPE THAT FELL INSIDE AND OUTSIDE OF THE REFERENCE RANGES........................... 14 
TABLE 10. THE NUMERICAL VALUES REPRESENTED IN FIGURE 7 FOR AVERAGE ANNUAL CHANGE AND TOTAL AVERAGE CHANGE OF MYOTIS 

LUCIFUGUS (MYLU) OVER SHORT-TERM (2016–2019, THREE YEAR), MEDIUM-TERM (2012–2019, SEVEN YEAR), AND LONG-

TERM (2010–2019, NINE YEAR) PERIODS. CRI = 95 CREDIBLE INTERVAL. .......................................................................... 22 
TABLE 11. THE NUMERICAL VALUES REPRESENTED IN FIGURE 12 FOR AVERAGE ANNUAL CHANGE AND TOTAL AVERAGE CHANGE OVER 

SHORT-TERM (2016–2019, THREE YEAR), MEDIUM-TERM (2012–2019, SEVEN YEAR), AND LONG-TERM (2010–2019, NINE 

YEAR) PERIODS. CRI = 95% CREDIBLE INTERVAL. ............................................................................................................ 27 
TABLE 12. THE NUMERICAL VALUES REPRESENTED IN FIGURE 17 FOR AVERAGE ANNUAL CHANGE AND TOTAL AVERAGE CHANGE 

PERIMYOTIS SUBFLAVUS (PESU) OVER SHORT-TERM (2016–2019, THREE YEAR), MEDIUM-TERM (2012–2019, SEVEN YEAR), AND 

LONG-TERM (2010–2019, NINE YEAR) PERIODS. CRI = 95 % CREDIBLE INTERVAL. .............................................................. 33 
TABLE 13. THE NUMERICAL VALUES REPRESENTED IN FIGURE 22 FOR AVERAGE ANNUAL CHANGE AND TOTAL AVERAGE CHANGE OVER A 

SHORT-TERM (2016–2019, THREE YEAR) PERIOD. CRI= 95% CREDIBLE INTERVALS. ............................................................ 39 
TABLE 14. THE NUMERICAL VALUES REPRESENTED IN FIGURE 27 FOR AVERAGE ANNUAL CHANGE AND TOTAL AVERAGE CHANGE OVER A 

SHORT-TERM (2016–2019, THREE YEAR) PERIOD. CRI = 95% CREDIBLE INTERVALS. ........................................................... 44 
TABLE 15. THE NUMERICAL VALUES REPRESENTED IN FIGURE 32 FOR AVERAGE ANNUAL CHANGE AND TOTAL AVERAGE CHANGE OVER A 

SHORT-TERM (2016–2019, THREE YEAR) PERIOD. CRI = 95% CREDIBLE INTERVAL. ............................................................. 49 
TABLE 16. THE NUMERICAL VALUES REPRESENTED IN FIGURE 37 FOR AVERAGE ANNUAL CHANGE AND TOTAL AVERAGE CHANGE OF MYOTIS 

THYSANODES (MYTH) OVER A SHORT-TERM (2016–2019, THREE YEAR) PERIOD. CRI = 95% CREDIBLE INTERVAL. ................... 55 
TABLE 17. THE NUMERICAL VALUES REPRESENTED IN FIGURE 42 FOR AVERAGE ANNUAL CHANGE AND TOTAL AVERAGE CHANGE OVER A 

SHORT-TERM (2016–2019, THREE YEAR) PERIOD. CRI = 95% CREDIBLE INTERVAL. ............................................................. 61 
TABLE 18. THE NUMERICAL VALUES REPRESENTED IN FIGURE 47 FOR AVERAGE ANNUAL CHANGE AND TOTAL AVERAGE CHANGE OVER A 

SHORT-TERM (2016–2019, THREE YEAR) PERIOD. CRI= 95% CREDIBLE INTERVAL. .............................................................. 67 
TABLE 19. THE NUMERICAL VALUES REPRESENTED IN FIGURE 52 FOR AVERAGE ANNUAL CHANGE AND TOTAL AVERAGE CHANGE OVER A 

SHORT-TERM (2016–2019, THREE YEAR) PERIOD. ......................................................................................................... 73 
TABLE 20. THE NUMERICAL VALUES REPRESENTED IN FIGURE 57 FOR AVERAGE ANNUAL CHANGE AND TOTAL AVERAGE CHANGE OVER A 

SHORT-TERM (2016–2019, THREE YEAR) PERIOD. ......................................................................................................... 78 
TABLE 21. THE NUMERICAL VALUES REPRESENTED IN FIGURE 62 FOR AVERAGE ANNUAL CHANGE AND TOTAL AVERAGE CHANGE OVER A 

SHORT-TERM (2016–2019, THREE YEAR) PERIOD. ......................................................................................................... 83 
TABLE A.1. A DESCRIPTION OF THE ECOLOGICAL MODEL FOR PREDICTING GRID CELL-LEVEL OCCUPANCY FOR EACH BAT SPECIES. NOTE THE 

PARAMETER ESTIMATES FROM FITTED MODELS AND THE RELATIVE STRENGTH OF EFFECTS ARE PROVIDED IN APPENDIX C.  AR1 = 

AUTOREGRESSIVE ................................................................................................................................................... 100 



x 
 

 

 List of Figures 
FIGURE 1. WINTER-TO-SUMMER POPULATION CONNECTIVITY VALUES HAVE DECLINED FOR (A) MYOTIS LUCIFUFUS (MYLU), (B) MYOTIS 

SEPTENTRIONALIS (MYSE), AND (C) PERIMYOTIS SUBFLAVUS (PESU) (COLOR BAR SHOWS CONNECTIVITY VALUES AFTER 

TRANSFORMATION [LOG +1 THEN CENTERING] FOR VISUALIZATION) FOR YEARS 2010 AND 2019 BASED ON THE MODELED SPECIES 

COUNTS AT WINTER HIBERNACULA EACH YEAR AND THE SPECIES SPECIFIC, WINTER-TO-SUMMER, MEAN MIGRATION DISTANCE... ... 10 
FIGURE 2. ECOLOGICAL REGIONS OF NORTH AMERICA AT LEVELS 1, 2, AND 3 (ENVIRONMENTAL PROTECTION AGENCY 2013)... .......... 12 
FIGURE 3. MYOTIS LUCIFUGUS (MYLU) MEAN OCCUPANCY PROBABILITIES (COLOR BAR) PREDICTED IN EACH NORTH AMERICAN BAT 

MONITORING PROGRAM (NABAT) GRID CELL IN THE MODELED SPECIES RANGE FOR 2019… . ................................................ 18 
FIGURE 4. MYOTIS LUCIFUGUS (MYLU) MEAN PREDICTED OCCUPANCY PROBABILITIES IN 2010, 2012, 2016, AND 2019 PREDICTED FOR 

ALL NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN THE MODELED SPECIES RANGE BASED ON SITE-LEVEL 

COVARIATES FOR EACH GRID CELL AND YEAR... ............................................................................................................... 19 
FIGURE 5. THE TOTAL CHANGE RATE IN MEAN GRID CELL OCCUPANCIES (COLOR BAR) FOR MYOTIS LUCIFUGUS (MYLU) BETWEEN 2010 

AND 2019 FOR ALL NORTH AMERICAN BAT MONITROING PROGRAM (NABAT) GRID CELLS IN THE MODELED SPECIES RANGE BASED 

ON SITE-LEVEL COVARIATES FOR EACH GRID CELL AND YEAR... ............................................................................................ 20 
FIGURE 6. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (𝜓𝑡) OF MYOTIS LUCIFUGUS (MYLU) EACH YEAR, AGGREGATED ACROSS 

ALL NABAT GRID CELLS IN THE MODELED RANGE EACH YEAR... .......................................................................................... 21 
FIGURE 7. ESTIMATES OF AVERAGE ANNUAL CHANGE (AVG_ANNUAL_CHANGE = LAMBDA_AVG – 1) AND TOTAL CHANGE (TOTAL_CHANGE 

= LAMBDA_TOT - 1) OF MYOTIS LUCIFUGUS (MYLU) OVER THE SHORT-TERM (2016–2019, THREE YEARS OF CHANGE), MEDIUM-

TERM (2012–2019, SEVEN YEARS OF CHANGE) AND LONG-TERM (2010–2019, NINE YEARS OF CHANGE)... ............................ 22 
FIGURE 8. MYOTIS SEPTENTRIONALIS (MYSE) MEAN OCCUPANCY PROBABILITIES (COLOR BAR) PREDICTED IN EACH NORTH AMERICAN BAT 

MONITORING PROGRAM (NABAT) GRID CELL IN THE MODELED SPECIES RANGE FOR 2019... .................................................. 23 
FIGURE 9. MEAN PREDICTED OCCUPANCY PROBABILITIES OF MYOTIS SEPTENTRIONALIS (MYSE) IN 2010, 2012, 2016, AND 2019 

PREDICTED FOR ALL NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN THE MODELED SPECIES RANGE BASED 

ON SITE-LEVEL COVARIATES FOR EACH GRID CELL AND YEAR... ............................................................................................ 24 
FIGURE 10. THE TOTAL CHANGE RATE IN MEAN GRID CELL OCCUPANCIES (COLOR BAR) FOR MYOTIS SEPTENTRIONALIS (MYSE) BETWEEN 

2010 AND 2019 FOR ALL NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN THE MODELED SPECIES RANGE 

BASED ON SITE-LEVEL COVARIATES FOR EACH GRID CELL AND YEAR... .................................................................................. 25 
FIGURE 11. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (𝜓𝑡) FOR MYOTIS SEPTENTRIONALIS (MYSE) EACH YEAR, AGGREGATED 

ACROSS ALL NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN MODELED RANGE EACH YEAR… ................ 26 
FIGURE 12. ESTIMATES OF AVERAGE ANNUAL CHANGE (AVG_ANNUAL_CHANGE = LAMBDA_AVG – 1) AND TOTAL CHANGE 

(TOTAL_CHANGE = LAMBDA_TOT - 1) FOR MYOTIS SEPTENTRIONALIS (MYSE) OVER THE SHORT-TERM (2016–2019, THREE YEARS 

OF CHANGE), MEDIUM-TERM (2012–2019, SEVEN YEARS OF CHANGE) AND LONG-TERM (2010–2019, NINE YEARS OF CHANGE).

 ............................................................................................................................................................................ 27 
FIGURE 13. PERIMYOTIS SUBFLAVUS (PESU) MEAN OCCUPANCY PROBABILITIES (COLOR BAR) PREDICTED IN EACH NORTH AMERICAN BAT 

MONITORING PROGRAM (NABAT) GRID CELL IN THE MODELED SPECIES RANGE FOR 2019…. ................................................. 29 
FIGURE 14. MEAN PREDICTED OCCUPANCY PROBABILITIES OF PERIMYOTIS SUBFLAVUS (PESU) IN 2010, 2012, 2016, AND 2019 

PREDICTED FOR ALL NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN THE MODELED SPECIES RANGE BASED 

ON SITE-LEVEL COVARIATES FOR EACH GRID CELL AND YEAR… . .......................................................................................... 30 
FIGURE 15. THE TOTAL CHANGE RATE IN MEAN GRID CELL OCCUPANCIES (COLOR BAR) OF PERIMYOTIS SUBFLAVUS (PESU) BETWEEN 2010 

AND 2019 FOR ALL NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN THE MODELED SPECIES RANGE BASED 

ON SITE-LEVEL COVARIATES FOR EACH GRID CELL AND YEAR… .. ......................................................................................... 31 
FIGURE 16. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (𝜓𝑡) EACH YEAR OF PERIMYOTIS SUBFLAVUS (PESU), AGGREGATED 

ACROSS ALL NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN MODELED RANGE EACH YEAR... ................ 32 
FIGURE 17. ESTIMATES OF AVERAGE ANNUAL CHANGE (AVG_ANNUAL_CHANGE = LAMBDA_AVG – 1) AND TOTAL CHANGE 

(TOTAL_CHANGE = LAMBDA_TOT - 1) OF PERIMYOTIS SUBFLAVUS (PESU), OVER THE SHORT-TERM (2016–2019, THREE YEARS OF 

CHANGE), MEDIUM-TERM (2012–2019, SEVEN YEARS OF CHANGE) AND LONG-TERM (2010–2019, NINE YEARS OF CHANGE).. .. 33 
FIGURE 18. MYOTIS EVOTIS (MYEV) MEAN OCCUPANCY PROBABILITIES (COLOR BAR) PREDICTED IN EACH NORTH AMERICAN BAT 

MONITORING PROGRAM (NABAT) GRID CELL IN THE MODELED SPECIES RANGE FOR 2019.. ................................................... 35 



xi 
 

 

FIGURE 19. MEAN PREDICTED OCCUPANCY PROBABILITIES OF MYOTIS EVOTIS (MYEV) IN 2016–2019 PREDICTED FOR ALL NORTH 

AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN THE MODELED SPECIES RANGE BASED ON SITE-LEVEL COVARIATES 

FOR EACH GRID CELL AND YEAR... ................................................................................................................................ 36 
FIGURE 20. THE TOTAL CHANGE RATE IN MEAN GRID CELL OCCUPANCIES (COLOR BAR) FOR MYOTIS EVOTIS (MYEV) BETWEEN 2016 AND 

2019 FOR ALL NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN THE MODELED SPECIES RANGE BASED ON 

SITE-LEVEL COVARIATES FOR EACH GRID CELL AND YEAR... ................................................................................................ 37 
FIGURE 21. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (𝜓𝑡) EACH YEAR FOR MYOTIS EVOTIS (MYEV), AGGREGATED ACROSS 

ALL NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN MODELED RANGE EACH YEAR... ........................... 38 
FIGURE 22. ESTIMATES OF AVERAGE ANNUAL CHANGE (AVG_ANNUAL_CHANGE = LAMBDA_AVG – 1) AND TOTAL CHANGE 

(TOTAL_CHANGE = LAMBDA_TOT - 1) FOR MYOTIS EVOTIS (MYEV) OVER THE SHORT-TERM (2016–2019, THREE YEARS OF 

CHANGE)... ............................................................................................................................................................. 39 
FIGURE 23. A MAP OF MYOTIS GRISESCENS (MYGR) MEAN OCCUPANCY PROBABILITIES (COLOR BAR) PREDICTED IN EACH NORTH 

AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELL IN THE MODELED SPECIES RANGE FOR 2019... ............................ 40 
FIGURE 24. MEAN PREDICTED OCCUPANCY PROBABILITIES FOR MYOTIS GRISESCENS (MYGR) IN 2016–2019 PREDICTED FOR ALL NORTH 

AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN THE MODELED SPECIES RANGE BASED ON SITE-LEVEL COVARIATES 

FOR EACH GRID CELL AND YEAR... ................................................................................................................................ 41 
FIGURE 25. THE TOTAL CHANGE RATE IN MEAN GRID CELL OCCUPANCIES (COLOR BAR) FOR MYOTIS GRISESCENS (MYGR) BETWEEN 2016 

AND 2019 FOR ALL NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN THE MODELED SPECIES RANGE BASED 

ON SITE-LEVEL COVARIATES FOR EACH GRID CELL AND YEAR... ............................................................................................ 42 
FIGURE 26. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (𝜓𝑡) FOR MYOTIS GRISESCENS (MYGR) EACH YEAR, AGGREGATED 

ACROSS ALL NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN MODELED RANGE EACH YEAR... ................ 43 
FIGURE 27. ESTIMATES OF AVERAGE ANNUAL CHANGE (AVG_ANNUAL_CHANGE = LAMBDA_AVG – 1) AND TOTAL CHANGE 

(TOTAL_CHANGE = LAMBDA_TOT - 1) FOR MYOTIS GRISESCENS (MYGR) OVER THE SHORT-TERM (2016–2019, THREE YEARS OF 

CHANGE)... ............................................................................................................................................................. 44 
FIGURE 28. A MAP OF MYOTIS LEIBII (MYLE) MEAN OCCUPANCY PROBABILITIES (COLOR BAR) PREDICTED IN EACH NORTH AMERICAN BAT 

MONITORING PROGRAM (NABAT) GRID CELL IN THE MODELED SPECIES RANGE FOR 2019... .................................................. 45 
FIGURE 29. MEAN PREDICTED OCCUPANCY PROBABILITIES FOR MYOTIS LEIBII (MYLE) IN 2016–2019 PREDICTED FOR ALL NORTH 

AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN THE MODELED SPECIES RANGE BASED ON SITE-LEVEL COVARIATES 

FOR EACH GRID CELL AND YEAR... ................................................................................................................................ 46 
FIGURE 30. THE TOTAL CHANGE RATE IN MEAN GRID CELL OCCUPANCIES (COLOR BAR) FOR MYOTIS LEIBII (MYLE) BETWEEN 2016 AND 

2019 FOR ALL NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN THE MODELED SPECIES RANGE BASED ON 

SITE-LEVEL COVARIATES FOR EACH GRID CELL AND YEAR... ................................................................................................ 47 
FIGURE 31. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (𝜓𝑡) FOR MYOTIS LEIBII (MYLE) EACH YEAR, AGGREGATED ACROSS ALL 

NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN MODELED RANGE EACH YEAR... ................................ 48 
FIGURE 32. ESTIMATES OF AVERAGE ANNUAL CHANGE (AVG_ANNUAL_CHANGE = LAMBDA_AVG – 1) AND TOTAL CHANGE 

(TOTAL_CHANGE = LAMBDA_TOT - 1) FOR MYOTIS LEIBII (MYLE) OVER THE SHORT-TERM (2016–2019, THREE YEARS OF 

CHANGE)... ............................................................................................................................................................. 49 
FIGURE 33. MYOTIS THYSANODES (MYTH) MEAN OCCUPANCY PROBABILITIES (COLOR BAR) PREDICTED IN EACH NORTH AMERICAN BAT 

MONITORING PROGRAM (NABAT) GRID CELL IN THE MODELED SPECIES RANGE FOR 2019... .................................................. 51 
FIGURE 34. MEAN PREDICTED OCCUPANCY PROBABILITIES OF MYOTIS THYSANODES (MYTH) IN 2016–2019 PREDICTED FOR ALL NORTH 

AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN THE MODELED SPECIES RANGE BASED ON SITE-LEVEL COVARIATES 

FOR EACH GRID CELL AND YEAR... ................................................................................................................................ 52 
FIGURE 35. THE TOTAL CHANGE RATE IN MEAN GRID CELL OCCUPANCIES (COLOR BAR) OF MYOTIS THYSANODES (MYTH) BETWEEN 2016 

AND 2019 FOR ALL NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN THE MODELED SPECIES RANGE BASED 

ON SITE-LEVEL COVARIATES FOR EACH GRID CELL AND YEAR... ............................................................................................ 53 
FIGURE 36. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (𝜓𝑡) OF MYOTIS THYSANODES (MYTH) EACH YEAR, AGGREGATED 

ACROSS ALL NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN MODELED RANGE EACH YEAR... ................ 54 



xii 
 

 

FIGURE 37. ESTIMATES OF AVERAGE ANNUAL CHANGE (AVG_ANNUAL_CHANGE = LAMBDA_AVG – 1) AND TOTAL CHANGE 

(TOTAL_CHANGE = LAMBDA_TOT - 1) FOR MYOTIS THYSANODES (MYTH) OVER THE SHORT-TERM (2016–2019, THREE YEARS OF 

CHANGE)... ............................................................................................................................................................. 55 
FIGURE 38. A MAP OF MYOTIS VOLANS (MYVO) MEAN OCCUPANCY PROBABILITIES (COLOR BAR) PREDICTED IN EACH NORTH AMERICAN 

BAT MONITORING PROGRAM (NABAT) GRID CELL IN THE MODELED SPECIES RANGE FOR 2019... ........................................... 57 
FIGURE 39. MEAN PREDICTED OCCUPANCY PROBABILITIES OF MYOTIS VOLANS (MYVO) IN 2016–2019 PREDICTED FOR ALL NORTH 

AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN THE MODELED SPECIES RANGE BASED ON SITE-LEVEL COVARIATES 

FOR EACH GRID CELL AND YEAR.. ................................................................................................................................. 58 
FIGURE 40. THE TOTAL CHANGE RATE IN MEAN GRID CELL OCCUPANCIES (COLOR BAR) FOR MYOTIS VOLANS (MYVO) BETWEEN 2016 AND 

2019 FOR ALL NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN THE MODELED SPECIES RANGE BASED ON 

SITE-LEVEL COVARIATES FOR EACH GRID CELL AND YEAR... ................................................................................................ 59 
FIGURE 41. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (𝜓𝑡) OF MYOTIS VOLANS (MYVO) EACH YEAR, AGGREGATED ACROSS 

ALL NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN MODELED RANGE EACH YEAR... ........................... 60 
FIGURE 42. ESTIMATES OF AVERAGE ANNUAL CHANGE (AVG_ANNUAL_CHANGE = LAMBDA_AVG – 1) AND TOTAL CHANGE 

(TOTAL_CHANGE = LAMBDA_TOT - 1) FOR MYOTIS VOLANS (MYVO) OVER THE SHORT-TERM (2016–2019, THREE YEARS OF 

CHANGE)... ............................................................................................................................................................. 61 
FIGURE 43. MYOTIS YUMANENSIS (MYYU) MEAN OCCUPANCY PROBABILITIES (COLOR BAR) PREDICTED IN EACH NORTH AMERICAN BAT 

MONITORING PROGRAM (NABAT) GRID CELL IN THE MODELED SPECIES RANGE FOR 2019... .................................................. 63 
FIGURE 44. MEAN PREDICTED OCCUPANCY PROBABILITIES OF MYOTIS YUMANENSIS (MYYU) IN 2016–2019 PREDICTED FOR ALL NORTH 

AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN THE MODELED SPECIES RANGE BASED ON SITE-LEVEL COVARIATES 

FOR EACH GRID CELL AND YEAR... ................................................................................................................................ 64 
FIGURE 45. THE TOTAL CHANGE RATE IN MEAN GRID CELL OCCUPANCIES (COLOR BAR) OF MYOTIS YUMANENSIS (MYYU) BETWEEN 2016 

AND 2019 FOR ALL NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN THE MODELED SPECIES RANGE BASED 

ON SITE-LEVEL COVARIATES FOR EACH GRID CELL AND YEAR... ............................................................................................ 65 
FIGURE 46. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (𝜓𝑡) OF MYOTIS YUMANENSIS (MYYU) EACH YEAR, AGGREGATED 

ACROSS ALL NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) GRID CELLS IN MODELED RANGE EACH YEAR... ................ 66 
FIGURE 47. ESTIMATES OF AVERAGE ANNUAL CHANGE (AVG_ANNUAL_CHANGE = LAMBDA_AVG – 1) AND TOTAL CHANGE 

(TOTAL_CHANGE = LAMBDA_TOT - 1) OF MYOTIS YUMANENSIS (MYYU) OVER THE SHORT-TERM (2016–2019, THREE YEARS OF 

CHANGE). MEANS (POINTS) AND 95% CREDIBLE INTERVALS (BARS) ARE DEPICTED ACCORDING TO THE PERCENT OF GRID CELLS 

SAMPLED IN THE MODELED SPECIES RANGE EACH YEAR (LEGEND)... .................................................................................... 67 
FIGURE 48. A MAP OF EPTESICUS FUSCUS (EPFU) MEAN OCCUPANCY PROBABILITIES (COLOR BAR) PREDICTED IN EACH NORTH AMERICAN 

BAT MONITORING PROGRAM (NABAT) GRID CELL IN THE MODELED SPECIES RANGE FOR 2019... ........................................... 70 
FIGURE 49. MEAN PREDICTED OCCUPANCY PROBABILITIES FOR EPTESICUS FUSCUS (EPFU) IN 2016–2019 PREDICTED FOR ALL NABAT 

GRID CELLS IN THE MODELED SPECIES RANGE BASED ON SITE-LEVEL COVARIATES FOR EACH GRID CELL AND YEAR... ....................... 70 
FIGURE 50. THE TOTAL CHANGE RATE IN MEAN GRID CELL OCCUPANCIES (COLOR BAR) FOR EPTESICUS FUSCUS (EPFU) BETWEEN 2016 

AND 2019 FOR ALL NABAT GRID CELLS IN THE MODELED SPECIES RANGE BASED ON SITE-LEVEL COVARIATES FOR EACH GRID CELL AND 

YEAR... ................................................................................................................................................................... 71 
FIGURE 51. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (𝜓𝑡) EACH YEAR FOR EPTESICUS FUSCUS (EPFU), AGGREGATED ACROSS 

ALL NABAT GRID CELLS IN MODELED RANGE EACH YEAR... ................................................................................................ 72 
FIGURE 52. ESTIMATES OF AVERAGE ANNUAL CHANGE (AVG_ANNUAL_CHANGE = LAMBDA_AVG – 1) AND TOTAL CHANGE 

(TOTAL_CHANGE = LAMBDA_TOT - 1) FOR EPTESICUS FUSCUS (EPFU) OVER THE SHORT-TERM (2016–2019, THREE YEARS OF 

CHANGE)... ............................................................................................................................................................. 73 
FIGURE 53. A MAP OF LASIONYCTERIS NOCTIVAGANS (LANO) MEAN OCCUPANCY PROBABILITIES (COLOR BAR) PREDICTED IN EACH NABAT 

GRID CELL IN THE MODELED SPECIES RANGE FOR 2019... ................................................................................................. 75 
FIGURE 54. MEAN PREDICTED OCCUPANCY PROBABILITIES FOR LASIONYCTERIS NOCTIVAGANS (LANO) IN 2016–2019 PREDICTED FOR ALL 

NABAT GRID CELLS IN THE MODELED SPECIES RANGE BASED ON SITE-LEVEL COVARIATES FOR EACH GRID CELL AND YEAR... ............ 75 
FIGURE 55. THE TOTAL CHANGE RATE IN MEAN GRID CELL OCCUPANCIES (COLOR BAR) FOR LASIONYCTERIS NOCTIVAGANS (LANO) 

BETWEEN 2016 AND 2019 FOR ALL NABAT GRID CELLS IN THE MODELED SPECIES RANGE BASED ON SITE-LEVEL COVARIATES FOR 

EACH GRID CELL AND YEAR... ...................................................................................................................................... 76 



xiii 
 

 

FIGURE 56. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (𝜓𝑡) FOR LASIONYCTERIS NOCTIVAGANS (LANO) EACH YEAR, 

AGGREGATED ACROSS ALL NABAT GRID CELLS IN MODELED RANGE EACH YEAR... .................................................................. 77 
FIGURE 57. ESTIMATES OF AVERAGE ANNUAL CHANGE (AVG_ANNUAL_CHANGE = LAMBDA_AVG – 1) AND TOTAL CHANGE 

(TOTAL_CHANGE = LAMBDA_TOT - 1) FOR LASIONYCTERIS NOCTIVAGANS (LANO) OVER THE SHORT-TERM (2016–2019, THREE 

YEARS OF CHANGE)... ................................................................................................................................................ 78 
FIGURE 58. A MAP OF LASIURUS CINEREUS (LACI) MEAN OCCUPANCY PROBABILITIES (COLOR BAR) PREDICTED IN EACH NABAT GRID CELL 

IN THE MODELED SPECIES RANGE FOR 2019... ............................................................................................................... 80 
FIGURE 59. MEAN PREDICTED OCCUPANCY PROBABILITIES DOE LASIURUS CINEREUS (LACI) IN 2016–2019 PREDICTED FOR ALL NABAT 

GRID CELLS IN THE MODELED SPECIES RANGE BASED ON SITE-LEVEL COVARIATES FOR EACH GRID CELL AND YEAR... ....................... 80 
FIGURE 60. THE TOTAL CHANGE RATE IN MEAN GRID CELL OCCUPANCIES (COLOR BAR) LASIURUS CINEREUS (LACI) BETWEEN 2016 AND 

2019 FOR ALL NABAT GRID CELLS IN THE MODELED SPECIES RANGE BASED ON SITE-LEVEL COVARIATES FOR EACH GRID CELL AND 

YEAR... ................................................................................................................................................................... 81 
FIGURE 61. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (𝜓𝑡) FOR LASIURUS CINEREUS (LACI) EACH YEAR, AGGREGATED 

ACROSS ALL NABAT GRID CELLS IN MODELED RANGE EACH YEAR... ..................................................................................... 82 
FIGURE 62. ESTIMATES OF AVERAGE ANNUAL CHANGE (AVG_ANNUAL_CHANGE = LAMBDA_AVG – 1) AND TOTAL CHANGE 

(TOTAL_CHANGE = LAMBDA_TOT - 1) FOR LASIURUS CINEREUS (LACI) OVER THE SHORT-TERM (2016–2019, THREE YEARS OF 

CHANGE)... ............................................................................................................................................................. 83 
FIGURE B.1. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (𝜓𝑡) FOR MYOTIS LUCIFUGUS (MYLU) AGGREGATED OVER ALL GRID 

CELLS FOR EACH STATE, TERRITORY OR PROVINCE IN THE MODELED SPECIES RANGE EACH YEAR... ............................................ 115 
FIGURE B.2. AVERAGE ANNUAL RATES OF CHANGE IN MEAN OCCUPANCY PROBABILITIES (AVG_ANNUAL_CHANGE = LAMBDA_AVG - 1) FOR 

MYOTIS LUCIFUGUS (MYLU) BETWEEN YEARS OVER THE DESIGNATED TIME PERIOD (THREE YEARS: 2016-2019, SEVEN YEARS: 

2012-2019, OR NINE YEARS: 2010-2019) AGGREGATED ACROSS A STATE, PROVINCE, OR TERRITORY WITHIN THE MODELED SPECIES 

RANGE... .............................................................................................................................................................. 118 
FIGURE B.3. THE TOTAL CHANGE RATE IN MEAN OCCUPANCY (TOTAL_CHANGE = LAMBDA_TOT - 1) FOR MYOTIS LUCIFUGUS (MYLU) 

GIVEN THE MEAN OCCUPANCY ESTIMATE IN LAST YEAR OF SAMPLING (2019) AND THE MEAN OCCUPANCY ESTIMATES THREE YEARS 

(2016), SEVEN YEARS (2012), AND NINE YEARS (2010) PRIOR AGGREGATED ACROSS A STATE, PROVINCE, OR TERRITORY WITHIN 

THE MODELED SPECIES RANGE................................................................................................................................... 121 
FIGURE B.4. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (ΨT) FOR MYOTIS SEPTENTRIONALIS (MYSE) AGGREGATED OVER ALL 

GRID CELLS FOR EACH STATE, TERRITORY OR PROVINCE IN THE MODELED SPECIES RANGE EACH YEAR... .................................... 124 
FIGURE B.5. AVERAGE ANNUAL RATES OF CHANGE IN MEAN OCCUPANCY PROBABILITIES (AVG_ANNUAL_CHANGE = LAMBDA_AVG - 1) FOR 

MYOTIS SEPTENTRIONALIS (MYSE) BETWEEN YEARS OVER THE DESIGNATED TIME PERIOD (THREE YEARS: 2016-2019, SEVEN YEARS: 

2012-2019, OR NINE YEARS: 2010-2019) AGGREGATED ACROSS A STATE, PROVINCE, OR TERRITORY WITHIN THE MODELED SPECIES 

RANGE... .............................................................................................................................................................. 127 
FIGURE B.6. THE TOTAL CHANGE RATE IN MEAN OCCUPANCY (TOTAL_CHANGE = LAMBDA_TOT - 1) FOR MYOTIS SEPTENTRIONALIS 

(MYSE) GIVEN THE MEAN OCCUPANCY ESTIMATE IN LAST YEAR OF SAMPLING (2019) AND THE MEAN OCCUPANCY ESTIMATES THREE 

YEARS (2016), SEVEN YEARS (2012), AND NINE YEARS (2010) PRIOR AGGREGATED ACROSS A STATE, PROVINCE, OR TERRITORY 

WITHIN THE MODELED SPECIES RANGE... ..................................................................................................................... 130 
FIGURE B.7. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (𝜓𝑡) FOR PERIMYOTIS SUBFLAVUS (PESU) AGGREGATED OVER ALL 

GRID CELLS IN THE MODELED SPECIES RANGE FOR EACH STATE, TERRITORY OR PROVINCE AND YEAR. MEANS (POINTS) AND 95% 

CREDIBLE INTERVALS (BARS) ARE DEPICTED ACCORDING TO THE PERCENT OF GRID CELLS SAMPLED (LEGEND) IN THE ENTIRE STATE, 

PROVINCE OR TERRITORY EACH YEAR (A-D)... .............................................................................................................. 132 
FIGURE B.8. AVERAGE ANNUAL RATES OF CHANGE IN MEAN OCCUPANCY PROBABILITIES (AVG_ANNUAL_CHANGE = LAMBDA_AVG - 1) FOR 

PERIMYOTIS SUBFLAVUS (PESU) BETWEEN YEARS OVER THE DESIGNATED TIME PERIOD (THREE YEARS: 2016-2019, SEVEN YEARS: 

2012-2019, OR NINE YEARS: 2010-2019) AGGREGATED ACROSS A STATE, PROVINCE, OR TERRITORY WITHIN THE MODELED SPECIES 

RANGE... .............................................................................................................................................................. 135 
FIGURE B.9. THE TOTAL CHANGE RATE IN MEAN OCCUPANCY (TOTAL_CHANGE = LAMBDA_TOT - 1) FOR PERIMYOTIS SUBFLAVUS (PESU) 

GIVEN THE MEAN OCCUPANCY ESTIMATE IN LAST YEAR OF SAMPLING (2019) AND THE MEAN OCCUPANCY ESTIMATES THREE YEARS 

(2016), SEVEN YEARS (2012), AND NINE (2010) PRIOR AGGREGATED ACROSS A STATE, PROVINCE, OR TERRITORY WITHIN THE 



xiv 
 

 

MODELED SPECIES RANGE. FOR EXAMPLE, IF TOTAL_CHANGE_9YR = -0.25, THE MEAN OCCUPANCY RATE HAS DECLINED BY 25% 

OVER THE NINE YEARS SINCE 2010, WHILE A VALUE OF 0.25 WOULD INDICATE AN INCREASE OF 25%... ................................. 138 
FIGURE B.10. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (ΨT) FOR MYOTIS EVOTIS (MYEV) AGGREGATED OVER ALL GRID 

CELLS FOR EACH STATE, TERRITORY OR PROVINCE IN THE MODELED SPECIES RANGE EACH YEAR... ............................................ 139 
FIGURE B.11. AVERAGE ANNUAL RATES OF CHANGE IN MEAN OCCUPANCY PROBABILITIES (AVG_ANNUAL_CHANGE = LAMBDA_AVG - 1) 

FOR MYOTIS EVOTIS (MYEV) BETWEEN YEARS OVER THE THREE-YEAR (2016-2019) TIME PERIOD AGGREGATED ACROSS A STATE, 

PROVINCE, OR TERRITORY WITHIN THE MODELED SPECIES RANGE. FOR EXAMPLE, IF AVG_CHANGE_3YR = -0.05, THE MEAN 

OCCUPANCY RATE HAS DECLINED ON AVERAGE BY 5% EACH YEAR OVER THE THREE YEARS SINCE 2016... ................................. 141 
FIGURE B.12. THE TOTAL CHANGE RATE IN MEAN OCCUPANCY (TOTAL_CHANGE = LAMBDA_TOT - 1) FOR MYOTIS EVOTIS (MYEV) GIVEN 

THE MEAN OCCUPANCY ESTIMATE IN LAST YEAR OF SAMPLING (2019) AND THE MEAN OCCUPANCY ESTIMATES THREE YEARS (2016) 

PRIOR AGGREGATED ACROSS A STATE, PROVINCE, OR TERRITORY WITHIN THE MODELED SPECIES RANGE... ................................ 143 
FIGURE B.13. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (𝜓𝑡) FOR MYOTIS GRISESCENS (MYGR) AGGREGATED OVER ALL 

GRID CELLS FOR EACH STATE IN THE MODELED SPECIES RANGE EACH YEAR... ....................................................................... 144 
FIGURE B.14. AVERAGE ANNUAL RATES OF CHANGE IN MEAN OCCUPANCY PROBABILITIES (AVG_ANNUAL_CHANGE = LAMBDA_AVG - 1) 

FOR MYOTIS GRISESCENS (MYGR) BETWEEN YEARS OVER THE THREE-YEAR (2016-2019) TIME PERIOD AGGREGATED ACROSS A 

STATE WITHIN THE MODELED SPECIES RANGE... ............................................................................................................ 145 
FIGURE B.15. THE TOTAL CHANGE RATE IN MEAN OCCUPANCY (TOTAL_CHANGE = LAMBDA_TOT - 1) FOR MYOTIS GRISESCENS (MYGR) 

GIVEN THE MEAN OCCUPANCY ESTIMATE IN LAST YEAR OF SAMPLING (2019) AND THE MEAN OCCUPANCY ESTIMATES THREE YEARS 

(2016) PRIOR AGGREGATED ACROSS A STATE WITHIN THE MODELED SPECIES RANGE... ........................................................ 148 
FIGURE B.16. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (𝜓𝑡) FOR MYOTIS LEIBII (MYLE) AGGREGATED OVER ALL GRID CELLS 

FOR EACH STATE IN THE MODELED SPECIES RANGE EACH YEAR.. ....................................................................................... 150 
FIGURE B.17. AVERAGE ANNUAL RATES OF CHANGE IN MEAN OCCUPANCY PROBABILITIES (AVG_ANNUAL_CHANGE = LAMBDA_AVG - 1) 

FOR MYOTIS LEIBII (MYLE) BETWEEN YEARS OVER THE THREE-YEAR (2016-2019) TIME PERIOD AGGREGATED ACROSS A STATE 

WITHIN THE MODELED SPECIES RANGE... ..................................................................................................................... 152 
FIGURE B.18. THE TOTAL CHANGE RATE IN MEAN OCCUPANCY (TOTAL_CHANGE = LAMBDA_TOT - 1) FOR MYOTIS LEIBII (MYLE) GIVEN 

THE MEAN OCCUPANCY ESTIMATE IN LAST YEAR OF SAMPLING (2019) AND THE MEAN OCCUPANCY ESTIMATES THREE YEARS (2016) 

PRIOR AGGREGATED ACROSS A STATE WITHIN THE MODELED SPECIES RANGE... ................................................................... 154 
FIGURE B.19. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (PSI_BAR) FOR MYOTIS THYSANODES (MYTH) AGGREGATED OVER 

ALL GRID CELLS FOR EACH STATE, TERRITORY OR PROVINCE IN THE MODELED SPECIES RANGE EACH YEAR... ............................... 155 
FIGURE B.20. AVERAGE ANNUAL RATES OF CHANGE IN MEAN OCCUPANCY PROBABILITIES (AVG_ANNUAL_CHANGE = LAMBDA_AVG - 1) 

FOR MYOTIS THYSANODES (MYTH) BETWEEN YEARS OVER THE THREE-YEAR TIME (2016-2019) PERIOD AGGREGATED ACROSS A 

STATE, PROVINCE, OR TERRITORY WITHIN THE MODELED SPECIES RANGE... ......................................................................... 157 
FIGURE B.21. THE TOTAL CHANGE RATE IN MEAN OCCUPANCY (TOTAL_CHANGE = LAMBDA_TOT - 1) FOR MYOTIS THYSANODES (MYTH) 

GIVEN THE MEAN OCCUPANCY ESTIMATE IN LAST YEAR OF SAMPLING (2019) AND THE MEAN OCCUPANCY ESTIMATES THREE YEARS 

(2016) PRIOR AGGREGATED ACROSS A STATE, PROVINCE, OR TERRITORY WITHIN THE MODELED SPECIES RANGE... .................... 159 
FIGURE B.22. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (ΨT) FOR MYOTIS VOLANS (MYVO) AGGREGATED OVER ALL GRID 

CELLS FOR EACH STATE, TERRITORY OR PROVINCE IN THE MODELED SPECIES RANGE EACH YEAR. MEANS (POINTS) AND 95% CREDIBLE 

INTERVALS (BARS) ARE DEPICTED ACCORDING TO THE PERCENT OF GRID CELLS SAMPLED (LEGEND) IN THE ENTIRE STATE, PROVINCE OR 

TERRITORY EACH YEAR (A AND B)... ........................................................................................................................... 160 
FIGURE B.23. AVERAGE ANNUAL RATES OF CHANGE IN MEAN OCCUPANCY PROBABILITIES (AVG_ANNUAL_CHANGE = LAMBDA_AVG - 1) 

FOR MYOTIS VOLANS (MYVO) BETWEEN YEARS OVER THE THREE-YEAR (2016-2019) TIME PERIOD AGGREGATED ACROSS A STATE, 

PROVINCE, OR TERRITORY WITHIN THE MODELED SPECIES RANGE... .................................................................................. 162 
FIGURE B.24. THE TOTAL CHANGE RATE IN MEAN OCCUPANCY (TOTAL_CHANGE = LAMBDA_TOT - 1) FOR MYOTIS VOLANS (MYVO) GIVEN 

THE MEAN OCCUPANCY ESTIMATE IN LAST YEAR OF SAMPLING (2019) AND THE MEAN OCCUPANCY ESTIMATES THREE YEARS (2016) 

PRIOR AGGREGATED ACROSS A STATE, PROVINCE, OR TERRITORY WITHIN THE MODELED SPECIES RANGE... ................................ 164 
FIGURE B.25. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (ΨT) FOR MYOTIS YUMANENSIS (MYYU) AGGREGATED OVER ALL 

GRID CELLS FOR EACH STATE, TERRITORY OR PROVINCE IN THE MODELED SPECIES RANGE EACH YEAR. MEANS (POINTS) AND 95% 

CREDIBLE INTERVALS (BARS) ARE DEPICTED ACCORDING TO THE PERCENT OF GRID CELLS SAMPLED (LEGEND) IN THE ENTIRE STATE, 

PROVINCE OR TERRITORY EACH YEAR (A AND B)... ........................................................................................................ 165 



xv 
 

 

FIGURE B.26. AVERAGE ANNUAL RATES OF CHANGE IN MEAN OCCUPANCY PROBABILITIES (AVG_ANNUAL_CHANGE = LAMBDA_AVG - 1) 

FOR MYOTIS YUMANENSIS (MYYU) BETWEEN YEARS OVER THE THREE-YEAR (2016-2019) TIME PERIOD AGGREGATED ACROSS A 

STATE, PROVINCE, OR TERRITORY WITHIN THE MODELED SPECIES RANGE... ......................................................................... 167 
FIGURE B.27. THE TOTAL CHANGE RATE IN MEAN OCCUPANCY (TOTAL_CHANGE = LAMBDA_TOT - 1) FOR MYOTIS YUMANENSIS (MYYU) 

GIVEN THE MEAN OCCUPANCY ESTIMATE IN LAST YEAR OF SAMPLING (2019) AND THE MEAN OCCUPANCY ESTIMATES THREE YEARS 

(2016) PRIOR AGGREGATED ACROSS A STATE, PROVINCE, OR TERRITORY WITHIN THE MODELED SPECIES RANGE... .................... 169 
FIGURE B.28. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (ΨT) FOR EPTESICUS FUSCUS (EPFU) AVERAGE OCCUPANCY 

PROBABILITY AGGREGATED OVER ALL GRID CELLS FOR EACH STATE IN THE MODELED SPECIES RANGE EACH YEAR... ...................... 171 
FIGURE B.29. AVERAGE ANNUAL RATES OF CHANGE IN MEAN OCCUPANCY PROBABILITIES (AVG_ANNUAL_CHANGE = LAMBDA_AVG - 1) 

FOR EPTESICUS FUSCUS (EPFU) BETWEEN YEARS OVER THE THREE-YEAR (2016-2019) TIME PERIOD AGGREGATED ACROSS A STATE, 

PROVINCE, OR TERRITORY WITHIN THE MODELED SPECIES RANGE... .................................................................................. 174 
FIGURE B.30. THE TOTAL CHANGE RATE IN MEAN OCCUPANCY (TOTAL_CHANGE = LAMBDA_TOT - 1) FOR EPTESICUS FUSCUS (EPFU) 

GIVEN THE MEAN OCCUPANCY ESTIMATE IN LAST YEAR OF SAMPLING (2019) AND THE MEAN OCCUPANCY ESTIMATES THREE YEARS 

(2016) PRIOR AGGREGATED ACROSS EACH STATE WITHIN THE MODELED SPECIES RANGE... ................................................... 177 
FIGURE B.31. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (ΨT) FOR LASIONYCTERIS NOCTIVAGANS (LANO) AGGREGATED OVER 

ALL GRID CELLS FOR EACH STATE IN THE MODELED SPECIES RANGE EACH YEAR... .................................................................. 179 
FIGURE B.32. AVERAGE ANNUAL RATES OF CHANGE IN MEAN OCCUPANCY PROBABILITIES (AVG_ANNUAL_CHANGE = LAMBDA_AVG - 1) 

FOR LASIONYCTERIS NOCTIVAGANS (LANO) BETWEEN YEARS OVER THE THREE-YEAR (2016-2019) TIME PERIOD AGGREGATED 

ACROSS A STATE WITHIN THE MODELED SPECIES RANGE... ............................................................................................... 182 
FIGURE B.33. THE TOTAL CHANGE RATE IN MEAN OCCUPANCY (TOTAL_CHANGE = LAMBDA_TOT - 1) FOR LASIONYCTERIS NOCTIVAGANS 

(LANO) GIVEN THE MEAN OCCUPANCY ESTIMATE IN LAST YEAR OF SAMPLING (2019) AND THE MEAN OCCUPANCY ESTIMATES THREE 

YEARS (2016) PRIOR AGGREGATED ACROSS A STATE WITHIN THE MODELED SPECIES RANGE... ............................................... 185 
FIGURE B.34. ESTIMATES OF THE AVERAGE OCCUPANCY PROBABILITY (ΨT) FOR LASIURUS CINEREUS (LACI) AGGREGATED OVER ALL GRID 

CELLS FOR EACH STATE IN THE MODELED SPECIES RANGE EACH YEAR... .............................................................................. 187 
FIGURE B.35. AVERAGE ANNUAL RATES OF CHANGE IN MEAN OCCUPANCY PROBABILITIES (AVG_ANNUAL_CHANGE = LAMBDA_AVG - 1) 

FOR LASIURUS CINEREUS (LACI) BETWEEN YEARS OVER THE THREE-YEAR (2016-2019) TIME PERIOD AGGREGATED ACROSS A STATE 

WITHIN THE MODELED SPECIES RANGE... ..................................................................................................................... 190 
FIGURE B.36. THE TOTAL CHANGE RATE IN MEAN OCCUPANCY (TOTAL_CHANGE = LAMBDA_TOT - 1) FOR LASIURUS CINEREUS (LACI) 

GIVEN THE MEAN OCCUPANCY ESTIMATE IN LAST YEAR OF SAMPLING (2019) AND THE MEAN OCCUPANCY ESTIMATES THREE YEARS 

(2016) PRIOR AGGREGATED ACROSS A STATE WITHIN THE MODELED SPECIES RANGE... ........................................................ 193 
FIGURE C.1. ESTIMATES OF COVARIATE EFFECTS ON GRID CELL OCCUPANCY FOR MYOTIS LUCIFUGUS (MYLU), EXCLUDING INTERCEPT 

ESTIMATES WHICH VARIED BY ECOREGIONS AND YEAR. ................................................................................................... 195 
FIGURE C.2. ESTIMATES OF OBSERVATION COVARIATES ON THE DETECTION RATE FOR MYOTIS LUCIFUGUS (MYLU). ......................... 196 
FIGURE C.3. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES FOR MYOTIS SEPTENTRIONALIS (MYSE). ............................... 197 
FIGURE C.4. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES MYOTIS SEPTENTRIONALIS (MYSE). ..................................... 198 
FIGURE C.5. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES FOR PERIMYOTIS SUBFLAVUS (PESU). ................................... 199 
FIGURE C.6. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES FOR PERIMYOTIS SUBFLAVUS (PESU). ................................... 200 
FIGURE C.7. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES FOR MYOTIS EVOTIS (MYEV). ............................................. 201 
FIGURE C.8. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES FOR MYOTIS EVOTIS (MYEV). ............................................. 202 
FIGURE C.9. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES FOR MYOTIS GRISESCENS (MYGR). ...................................... 203 
FIGURE C.10. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES FOR MYOTIS GRISESCENS (MYGR). .................................... 204 
FIGURE C.11. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES FOR MYOTIS LEIBII (MYLE). .............................................. 205 
FIGURE C.12. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES FOR MYOTIS LEIBII (MYLE). .............................................. 206 
FIGURE C.13. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES FOR MYOTIS THYSANODES (MYTH). .................................. 207 
FIGURE C.14. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES FOR MYOTIS THYSANODES (MYTH). .................................. 208 
FIGURE C.15. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES FOR MYOTIS VOLANS (MYVO). ......................................... 209 
FIGURE C.16. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES MYOTIS VOLANS (MYVO). ............................................... 210 
FIGURE C.17. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES FOR MYOTIS YUMANENSIS (MYYU). .................................. 211 
FIGURE C.18. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES MYOTIS YUMANENSIS (MYYU). ........................................ 212 



xvi 
 

 

FIGURE C.19. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES FOR EPTESICUS FUSCUS (EPFU). ........................................ 213 
FIGURE C.20. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES FOR EPTESICUS FUSCUS (EPFU). ........................................ 214 
FIGURE C.21. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES FOR LASIONYCTERIS NOCTIVAGANS (LANO). ........................ 215 
FIGURE C.22. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES LASIONYCTERIS NOCTIVAGANS (LANO). .............................. 216 
FIGURE C.23. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES FOR LASIURUS CINEREUS (LACI). ....................................... 217 
FIGURE C.24. ESTIMATES OF OCCUPANCY AND DETECTION COVARIATES FOR LASIURUS CINEREUS (LACI). ....................................... 218 
FIGURE D.1. VIOLIN PLOTS DEPICT PREDICTED OCCUPANCY PROBABILITIES FOR MYOTIS LUCIFUGUS (MYLU) COMPARED TO THE HIGHEST 

LEVEL OF SPECIES DETECTION OBSERVED FOR EACH GRID CELL AND YEAR...  ........................................................................ 220 
FIGURE D.2. VIOLIN PLOTS DEPICT PREDICTED OCCUPANCY PROBABILITIES FOR MYOTIS SEPTENTRIONALIS (MYSE) COMPARED TO THE 

HIGHEST LEVEL OF SPECIES DETECTION OBSERVED FOR EACH GRID CELL AND YEAR... ............................................................. 221 
FIGURE D.3. VIOLIN PLOTS DEPICT PREDICTED OCCUPANCY PROBABILITIES FOR PERIMYOTIS SUBFLAVUS (PESU) COMPARED TO THE 

HIGHEST LEVEL OF SPECIES DETECTION OBSERVED FOR EACH GRID CELL AND YEAR... ............................................................. 222 
FIGURE D.4. VIOLIN PLOTS DEPICT PREDICTED OCCUPANCY PROBABILITIES FOR MYOTIS EVOTIS (MYEV) COMPARED TO THE HIGHEST LEVEL 

OF SPECIES DETECTION OBSERVED FOR EACH GRID CELL AND YEAR... ................................................................................. 223 
FIGURE D.5. VIOLIN PLOTS DEPICT PREDICTED OCCUPANCY PROBABILITIES FOR MYOTIS GRISESCENS (MYGR) COMPARED TO THE HIGHEST 

LEVEL OF SPECIES DETECTION OBSERVED FOR EACH GRID CELL AND YEAR... ......................................................................... 224 
FIGURE D.6. VIOLIN PLOTS DEPICT PREDICTED OCCUPANCY PROBABILITIES FOR MYOTIS LEIBII (MYLE) COMPARED TO THE HIGHEST LEVEL 

OF SPECIES DETECTION OBSERVED FOR EACH GRID CELL AND YEAR... ................................................................................. 225 
FIGURE D.7. VIOLIN PLOTS DEPICT PREDICTED OCCUPANCY PROBABILITIES FOR MYOTIS THYSANODES (MYTH) COMPARED TO THE HIGHEST 

LEVEL OF SPECIES DETECTION OBSERVED FOR EACH GRID CELL AND YEAR... ......................................................................... 226 
FIGURE D.8. VIOLIN PLOTS DEPICT PREDICTED OCCUPANCY PROBABILITIES FOR MYOTIS VOLANS (MYVO) COMPARED TO THE HIGHEST 

LEVEL OF SPECIES DETECTION OBSERVED FOR EACH GRID CELL AND YEAR... ......................................................................... 227 
FIGURE D.9. VIOLIN PLOTS DEPICT PREDICTED OCCUPANCY PROBABILITIES FOR MYOTIS YUMANENSIS (MYYU) COMPARED TO THE HIGHEST 

LEVEL OF SPECIES DETECTION OBSERVED FOR EACH GRID CELL AND YEAR... ......................................................................... 228 
FIGURE D.10. VIOLIN PLOTS DEPICT PREDICTED OCCUPANCY PROBABILITIES FOR EPTESICUS FUSCUS (EPFU) COMPARED TO THE HIGHEST 

LEVEL OF SPECIES DETECTION OBSERVED FOR EACH GRID CELL AND YEAR... ......................................................................... 229 
FIGURE D.11. VIOLIN PLOTS DEPICT PREDICTED OCCUPANCY PROBABILITIES FOR LASIONYCTERIS NOCTIVAGANS (LANO) COMPARED TO THE 

HIGHEST LEVEL OF SPECIES DETECTION OBSERVED FOR EACH GRID CELL AND YEAR... ............................................................. 230 
FIGURE D.12. VIOLIN PLOTS DEPICT PREDICTED OCCUPANCY PROBABILITIES FOR LASIURUS CINEREUS (LACI) COMPARED TO THE HIGHEST 

LEVEL OF SPECIES DETECTION OBSERVED FOR EACH GRID CELL AND YEAR.. .......................................................................... 231 



1 
 

 

1. Introduction and Purpose 
The primary objective of the North American Bat Monitoring Program (NABat) is to provide 
reliable status and trend information for the 46 species of bats occurring in the United States, 
including species shared by Mexico and Canada. NABat status and trend information is 
intended to inform conservation decision making, leading to the long-term viability of bat 
populations across the continent (Loeb et al. 2015). Multiple lines of evidence are often 
necessary to provide insight into population status and trends because North American bats 
have varied and complex life histories (Loeb et al. 2015) and face multiple stressors. Several 
species of North American bats have experienced significant declines due to white-nose 
syndrome (WNS) (Cheng et al. 2021a), and others may be at future risk to WNS impacts and/or 
other population stressors, such as land use change, climate change, and collisions with wind 
energy turbines (Sherwin et al. 2013; O’Shea et al. 2016; Frick et al. 2020; Friedenberg and Frick 
2021). The objectives of the status and trends analyses presented here were to evaluate and 
synthesize multiple streams of NABat monitoring data to estimate annual summer population 
distributions (occupancy probabilities) of bats across their North American ranges and infer 
how their distributions have changed over time (trends). This report documents the scope, 
methods, and results of the NABat Summer Occupancy Analyses, including objectives, data 
types, data sources, data contributors, species-specific results, current limitations, and future 
directions. 

Species occupancy (i.e., presence or space-use by at least one individual versus absence) in 

space and time is a key ecological state variable used to understand the distribution of a 

species. Sampling methods for bats are imperfect, and biases from both false-negatives (i.e., 

species was present but not detected) and false-positives (e.g., an acoustic recording was 

misclassified) are important considerations (Loeb et al. 2018). Using an occupancy modeling 

framework permits estimation of and accounting for observation errors of both types (e.g., 

MacKenzie et al. 2002, MacKenzie et al. 2006, Royle and Link 2006, Chambert et al. 2015) while 

estimating occupancy probabilities and relationships with ecological predictors. Occupancy 

probability is the probability that a species occurs (i.e., is present or uses space) within a 

location (e.g., NABat 10 km x 10 km grid cell, Loeb et al. 2015) over a specified timeframe. 

Occupancy models can be used to predict species occupancy probabilities beyond locations 

where data were collected, by leveraging the modeled relationships between spatiotemporal 

predictors and species occupancy probabilities. This in turn allows for producing species-

specific maps of predicted species occupancy probabilities across a variety of spatial extents 

(e.g., all parts of the species’ range with adequate monitoring data). The use of a spatially 

balanced sampling design (e.g., NABat master sample, Talbert and Reichert 2018) helps to 

ensure a representative sample and minimize potential biases of out of sample predictions. 

Quantifying changes between occupancy probabilities at different periods of time can be used 

to infer temporal trends (i.e., rates of change) in occupancy probabilities along with estimates 

of uncertainty. 
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Species occupancy of a NABat grid cell is directly related to its population abundance within a 
grid cell (and in grid cells within bat dispersal distances), the spatial unit of interest (100 km2) 
(He and Gaston 2000, Steenweg et al. 2018), the spatial clustering of bat activity centers (i.e., 
summer roosts), bat movement behavior, and habitat use (Efford and Dawson 2012). Trends in 
occupancy probabilities over time are generally expected to correlate with changes in species 
abundance (i.e., higher expected abundances correspond with higher expected occupancy 
probabilities given constant movement behavior, Holt et al. 2002). We expect trends in bat 
occupancy probability over time to be less sensitive than changes in abundance since they are 
1) dependent on processes besides abundance, 2) based on binary detection/non-detection 
data, and 3) in some cases difficult to disentangle from the changes in detection probabilities 
linked to changes in abundance (Royle and Nichols 2003). However, measures of occupancy 
such as occupancy probability can provide an important quantifiable indicator for 
understanding the range-wide status and trend of a wildlife population and their use of space 
over time (Joseph et al. 2006, Noon et al. 2012). 

We analyzed summer (May 1 – August 31) occupancy distributions of bats using multiple 
streams of monitoring data (response data including stationary acoustic, mobile acoustic, and 
capture records) in false positive occupancy models (Appendix A). Specifically, we estimated 
occupancy probabilities for 2010 through 2019 and changes in this metric over time for three 
species (Myotis lucifugus, MYLU; Myotis septentrionalis, MYSE; and Perimyotis subflavus, PESU). 
For an additional nine species, we estimated occupancy probabilities for 2016 through 2019 
(Myotis evotis, MYEV; Myotis grisescens, MYGR; Myotis leibii, MYLE; Myotis thysanodes, MYTH; 
Myotis volans, MYVO; Myotis yumanensis, MYYU; Eptesicus fuscus, EPFU; Lasionycteris 
noctivagans, LANO; and Lasiurus cinereus, LACI). Of these 12 bat species, 11 have tested 
positive for Pseudogymnoascus destructans (Pd) (Table 1), the fungal pathogen that causes 
white-nose syndrome (WNS)—a disease that has led to significant rates of mortality for 
subterranean hibernating bat species in North America (Cheng et al. 2021a, Hoyt et al. 2021). A 
twelfth species was also selected because of high rates of mortality at wind energy facilities. 
Additional species were considered but not selected due to data limitations.  

For each species, we 1) fit false-positive occupancy models to monitoring data and estimated 
ecological covariate effects in space and time on the occupancy probability of 100 km2 areas 
(i.e., NABat grid cells), 2) predicted species’ occupancy probabilities across all NABat grid cells in 
the ‘modeled ranges’ (i.e., the spatial extent for each species’ range for which there were 
adequate monitoring data) for every year of interest, 3) derived regional predictions of the 
mean occupancy probability each year across all grid cells in each region of interest and at 
multiple scales (state/province/territory, range-wide), 4) derived annual trends (rates of 
change) and cumulative trends in average occupancy probabilities over time for each species 
and region of interest, and 5) calculated the percent of grid cells sampled in each region and 
year of interest to assess the degree of representation of each regional trend. These results are 
included in this report and the associated USGS data release (Udell et al., 2022).  
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2. Methods - Datasets 
We used data in the NABat database for summer occupancy analyses. Here we describe the 
types of data used, and statistical considerations. For detailed statistical methods, refer to 
Appendix A. 

2.1 Response data  
Our statistical analyses used two main types of summer monitoring response data: acoustic 
call-sequences (i.e., bat echolocation sequences, sometimes referred to as a bat pass, captured 
as ultrasonic recordings) and capture records. Acoustic sampling was conducted using two 
different survey methods, stationary surveys and mobile transect surveys. The call-sequences 
from each acoustic sampling method were classified via two different approaches: automated 
identification software (i.e., auto ID), and manually vetted by a human observer (manual IDs). 
Altogether, this resulted in 5 different response types (stationary acoustic-auto IDs, stationary 
acoustic-manual IDs, mobile transect acoustic-auto IDs, mobile transect acoustic-manual IDs, 
and capture records). We compiled response data from records submitted to the NABat Partner 
Portal1 by a variety of data contributors and partners including state, federal, and tribal 
agencies, non-governmental organizations, academic researchers, and private individuals. 

2.1.1 Stationary acoustic sampling  

When data were collected following NABat protocols, 2–4 stationary acoustic detectors were 
deployed within an NABat grid cell (10 km x 10 km) (Chapter 4, Loeb et al. 2015), with grid cells 
selected for sampling according to the priority sampling order of the NABat master sample 
(Talbert and Reichert 2018). In such cases, detectors were deployed for 1–4 nights, with 
detectors recording from dusk through dawn. However, all data collected between 2010–2015 
pre-dates NABat survey protocols as documented in Loeb et al. (2015), and some data 
submitted to NABat after 2015 did not follow NABat survey protocols or the master sample. For 
example, many projects contributed data spanning several weeks throughout the summer 
monitoring period and did not follow NABat probabilistic sampling order. While the variable 
effort between NABat protocol data and non-NABat protocol data are monitored and 
accounted for in statistical models, non-NABat protocol data present possible issues due to 
unknown data collection protocols. Examples include violations of independence between 
detectors (see Appendix A: A.2.1 and A.2.2), unrepresentative sampling, and unbalanced 
spatiotemporal sampling (i.e., the set of grid cells sampled each year changes in space and 
time), which can bias inferences about status and trends.  

2.1.1.1 Automatically identified call-sequences from stationary sampling (stationary auto IDs)  

Data contributors assigned automated species identifications to recorded call-sequences using 
various commercially available software types, software versions, and filters. We accepted data 
from all types and refer to such automatically classified call-sequences as auto IDs. The 
response for auto IDs in the occupancy analyses is the number of call-sequences classified to 
the species of interest via automated classification software, which is further summarized as 
species presence/absence (0/1). At the recording-night level, a ‘0’ could indicate the bat was 

 
1 https://sciencebase.usgs.gov/nabat/#/results 
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not present or the bat was present but not detected. A bat being present but not detectable or 
identifiable is a false negative, and these are known considerations for bat surveys (Loeb et al. 
2015). These can occur when 1) a bat was present but not echolocating, or 2) was echolocating 
but was too far from the microphone to be recorded by the detector, or 3) the echolocation 
call-sequence could not be identified to species or is misclassified. Issues with identification can 
occur when the recording quality is poor, when echolocation pulse parameters overlap among 
species, when call sequences are non-diagnostic, or when there are multiple species in a 
recording such that the auto identification software cannot reach consensus for one species 
assignment. False-positives due to misclassification error are also common, thus a positive 
identification can occur either from correctly detecting and identifying a call-sequence to 
species (true positive) or from an incorrect species classification (false-positive).  

2.1.1.2 Manually vetted acoustic call-sequences from stationary sampling 

Manual vetting refers to the process of a human reviewing a call-sequence recording and 
assigning or confirming a species identification after an automatic classification has been 
assigned. Data contributors conduct manual vetting or hand review in a variety of ways. 
Typically, only a subset of the highest quality automatically identified call-sequences are 
manually vetted, however, some NABat data contributors vet all auto IDs. Vetted acoustic data 
in the NABat database comes in two types: one that is unconditional on a positive species auto 
ID and one that is conditional on a positive species auto ID. Unconditional vetting includes all 
records for which there is a manual ID (e.g., auto IDs that were originally classified as noise files 
or as a different species); it is the more inclusive data type, and it is the only data type that 
existed in the NABat database when the false positive occupancy modeling methods were 
originally developed (Stratton and Irvine 2022). For these reasons, we only included 
unconditional vetting data in these occupancy analyses. Since the vetting procedures of 
individual data contributors may vary and are mostly unknown, properly inferring ‘0’ data is 
problematic for unconditional vetting data. Thus, we conservatively assume unconditional 
manual vetting represents presence-only data. This is because a value of ‘0’ could be: 1) the 
result of confirming no call-sequences were from the species of interest, 2) a result of 
overturning an auto ID recorded as the species of interest (false positive for the auto ID, zero 
for manual ID), or 3) because no effort was put towards vetting a given recording (i.e., what 
should be a n/a value). Consequently, these data also represent detection-only information. 
These data can be considered an unambiguous detection method, and we make this 
assumption in our analyses.  

Conditionally vetted data provide information about numbers of auto IDs reviewed and 
confirmed for each sampling night. Conditionally vetted data are now available in the NABat 
database and our future analyses will capitalize on these. However, they require statistical 
extensions (e.g., Chambert et al. 2015, Doser et al. 2021) to the current ‘site-confirmation’ 
analytical methods used in these analyses.  

2.1.2 Mobile transect acoustic sampling methods 

When data were collected following NABat protocols, a mobile transect (25–48 km in length) 
was driven within an NABat cell (10 x 10 km) at a minimum speed of 32 km/hr (Chapter 5, Loeb 
et al. 2015). Transects were designed such that routes refrain from doubling back, and, when a 
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constant speed is maintained throughout, the assumption can be made that each recorded call-
sequence corresponds to a single individual. Transects were driven for multiple nights, 
commencing 45 minutes after sunset. Ultrasonic acoustic detectors were mounted on top of 
vehicles to record bat calls. All data collected between 2010–2014 pre-date NABat survey 
protocols as documented in Loeb et al. (2015), and some data submitted to NABat after 2014 
did not follow NABat survey protocols or the master sample.  

2.1.2.1 Automatically identified call-sequences from mobile sampling (mobile auto IDs)  

Auto IDs for the mobile transect data stream were classified similarly to auto IDs from the 
stationary data stream. The response for mobile auto IDs in summertime analyses is the 
number of call-sequences automatically classified each night to the species of interest, which is 
further aggregated into species presence/absence (0/1) for the occupancy analysis. This data 
stream is similarly subject to false negatives and false positives.  

2.1.2.2 Manually vetted acoustic call-sequences from mobile sampling 

Manually vetted acoustic records for mobile sampling were classified the same as for stationary 
(i.e., unconditional vetting), and the same statistical considerations (presence-only data, 
unambiguous detections) are relevant. Thus, the only difference from the stationary vetted 
records is the physical mode (stationary or mobile transect) of acoustic sampling used to record 
call-sequences. Conditional vetting data for mobile transects are now available in the NABat 
database but were not included in these analyses. 

2.1.3 Capture records 

Capture records came from field biologists who captured bats in mist nets, harp traps or other 
devices. The observation unit for capture data was the individual bat. We aggregated capture 
records by species by night and grid cell for compatibility. Note that these data represent 
presence-only data because no information is available for capture attempts where no bats 
were captured. Furthermore, we assume that capture records are an unambiguous detection 
method with no incorrect species classification, which can aid in the estimation of false positive 
occupancy models. In reality, there are some species misidentifications in capture data, but for 
the purposes of these analyses, we assume these error rates are negligible when bats are  ’in-
hand.’  

2.1.4 Summary of response types  

We have taken an integrated approach to our occupancy analyses by incorporating multiple 
data types. Here we summarize those data types (Table 2). 
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Table 2. Summary of data available for the Summer Occupancy Analysis. Source refers to the five data 
types described, ‘Temporal resolution’ refers to the finest time period resolution used for each data 
type, ‘Spatial resolution’ is the finest spatial resolution used for each data type, ‘Type’ denotes whether 
the data type was considered detection/non-detection information or presence-only information, and 
‘False-positive status’ refers to whether the data are considered ambiguous (subject to false positives) 
or unambiguous (no false positives) for use in the occupancy analyses. NABat = North American Bat 
Monitoring Program. 

Source Temporal 
resolution 

Spatial 
resolution 

Type  False-positive status  

Auto ID stationary  Night NABat grid cell 
Detection/ non-
detection 

ambiguous 

Manual ID stationary 
(unconditional) 

Night NABat grid cell Presence only unambiguous 

Auto ID Mobile  Night NABat grid cell 
Detection/ non-
detection 

ambiguous 

Manual ID mobile Night NABat grid cell Presence only unambiguous 

Capture Night NABat grid cell Presence only unambiguous 

 

2.1.5 Data sources and contributors  

The stationary and mobile acoustic data sets were contributed by NABat partners (see 
Acknowledgements) and sourced from the NABat Monitoring Database via a data request 
process (https://www.nabatmonitoring.org/get-data). Data were pulled from the NABat 
Database on October 18, 2021:  

North American Bat Monitoring Program (NABat) Database v7.0.2 (Provisional Release): U.S. 
Geological Survey. Accessed 2021-10-18. NABat Request Number 35. 
https://doi.org/10.5066/P9UXA6CF  

North American Bat Monitoring Program (NABat) Database v7.0.2 (Provisional Release): U.S. 
Geological Survey. Accessed 2021-10-18. NABat Request Number 34. 
https://doi.org/10.5066/P9UXA6CF  

North American Bat Monitoring Program (NABat) Database v7.0.14 (Provisional Release): U.S. 
Geological Survey. Accessed 2021-10-18. NABat Request Number 73. 
https://doi.org/10.5066/P9UXA6CF  
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2.2 Covariates  
We incorporated into our statistical analyses a suite of ecological predictor variables 
(covariates) including those that influence where bats occur in space and time and those that 
influence bat detectability in space and time. We used grid cell-level (occupancy) and 
observation-level (detection) covariates. In order to be incorporated into these analyses, spatial 
predictors for a species occupancy probability needed to be available at the NABat grid cell 
level across all grid cells in a species range, while spatiotemporal covariates also needed to be 
available at an annual temporal resolution. Detection-level covariates needed to be available at 
the nightly resolution for sampled NABat grid cells. We also incorporated a winter-to-summer 
population connectivity metric which allowed for linking the potential influence of known 
winter populations (and regional declines due to WNS impacts) with a species’ summer 
occupancy distribution space and time. 

2.2.1 Site-level covariates  

2.2.1.1. In the NABat database 

We used site-level (i.e., a 100 km2 NABat grid cell) covariates available in the NABat database to 
inform site-level occupancy when analyzing acoustic data sets (Table 3).  

Table 3. Name and source of the site-level covariates in the North American Bat Monitoring Program 
(NABat) database. 

Name Source  

Annual mean precipitation Fick, S.E. and R.J. Hijmans, 2017. Worldclim 2: New 1-km spatial 
resolution climate surfaces for global land areas. International 
Journal of Climatology. http://www.worldclim.com/version2 
 

Annual mean temperature 

Percent forest cover 2010 North American Land Cover at 250 m spatial resolution. 
Produced by Natural Resources Canada/Canada Centre for Remote 
Sensing (NRCan/CCRS), United States Geological Survey (USGS); 
Insituto Nacional de Estadística y Geografía (INEGI), Comisión 
Nacional para el Conocimiento y Uso de la Biodiversidad 
(CONABIO) and Comisión Nacional Forestal (CONAFOR). 
http://www.cec.org/north-american-environmental-atlas/land-
cover-2010-modis-250m/ 

Percent water  
Percent wetland  

 

2.2.1.2 Sourced from Google Earth Engine  

Additional covariates were extracted from Google Earth Engine and summarized at the NABat 
grid cell level (Table 4).  

Table 4. Name and source of site-level covariates obtained from Google Earth Engine. 

Name Source  

Max elevation U.S. Geological Survey. 1999. GTOPO30. 
https://doi.org/10.5066/F7DF6PQS 

Physiographic diversity  Theobald, D.M., Harrison-Atlas, D., Monahan, W.B. and Albano, C.M., 
2015. Ecologically-relevant maps of landforms and physiographic 
diversity for climate adaptation planning. PloS one, 10(12), p.e0143619. 

http://www.worldclim.com/version2
http://www.cec.org/north-american-environmental-atlas/land-cover-2010-modis-250m/
http://www.cec.org/north-american-environmental-atlas/land-cover-2010-modis-250m/
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We aggregated mean elevation across each NABat grid cell (10 km x 10 km) by taking the 
maximum across all pixels (at a 30 arc second resolution) within each grid cell. Next, we 
aggregated physiographic diversity across each NABat grid cell by taking the mean across pixels 
at a 30 m resolution (Theobald 2015). Physiographic diversity (Theobald et al. 2015) is a variable 
the combines information on elevation (mean and standard deviation at multiple spatial 
scales), slope, aspect, multi-scale topographical position index, latitude, continuous heat load 
index, and parent material to classify landforms (e.g., valleys, ridges, cliffs) and physiographic 
classes, then summarizes the diversity of physiographic classes at a 30 m resolution. This 
variable is a measure of landscape complexity (i.e., ruggedness), including geographic and 
physiographic characteristics. Meaningful correlations between physiographic diversity and 
vertebrate diversity across the USA suggest that this metric captures key ecosystem features 
that structure biodiversity (Theobald et al. 2015), and previous work has also suggested that 
landscape complexity and areas of topographic relief are important predictors of bats 
distributions (Armstrong et al. 1994, Patten 2004).  

2.2.2 Seasonal connectivity metrics (integrating winter count data) 

We calculated a winter-to-summer seasonal population connectivity metric for Myotis lucifugus 
(MYLU), Myotis septentrionalis (MYSE), and Perimyotis subflavus (PESU) to link the potential 
spatiotemporal influence of abundance in the known winter range to occupancy in the summer 
range. Winter counts for these species have declined drastically since the arrival of white-nose 
syndrome (WNS), with regional differences depending on the timing of WNS arrival (Cheng et 
al. 2021a). We used a seasonal connectivity approach to examine whether there is a 
measurable spatiotemporal influence of known winter populations (and observed declines due 
to WNS) on the summer distribution of bats. We also included seasonal connectivity metrics in 
species’ occupancy models to leverage the spatiotemporal information in the winter population 
monitoring data to help predict species’ occupancy probabilities in space and time across 
summer distributions. For example, suitable habitat that was historically occupied at high rates 
may no longer be occupied due to severe regional WNS impacts. 

The winter-to-summer seasonal population connectivity metric quantifies the hypothesis that 
spatial proximity of known winter hibernacula to summer grid cells (scaled by seasonal 
migration distance of the species) and the abundances of each known winter hibernacula (i.e., 
counts of hibernating bats at winter roost sites) over time are related to occupancy probability 
of a grid cell during each summer. We hypothesized that bat abundances declining over time in 
winter hibernacula due to mortality from WNS would reduce occupancy probabilities of 
summer habitat, with the largest declines in occupancy occurring in grid cells in close proximity 
to the largest declines in winter population counts. We define a ‘potential connectivity’ metric 
based on metapopulation theory (Hanski and Ovaskainen 2000, Moilanen and Hanski 2001), 
where the seasonal connectivity of a grid cell in the summer range is dependent on three 
factors: 1) the spatial distribution of all known winter hibernacula in the species range and the 
species abundance at each, 2) the distances between each hibernaculum and the summer grid 
cell of interest, and 3) the seasonal migration movement behavior of the bats (See Appendix A, 
Section A.3.2 for more details) 
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Because this is a spatiotemporal covariate, it provides an additional source of information to 
estimate occupancy probabilities and trends over space and time, which could be especially 
useful in years and/or regions of interest with sparse summer monitoring data. In regions of 
interest without winter monitoring data and known hibernacula locations, this metric may not 
appropriately reflect the true winter-to-summer connectivity because extremely low values 
represent no data rather that lack of winter populations. In these cases, the effects of this 
variable were set to zero so that occupancy probabilities and trends over time were not 
influenced by lack of data.  

Seasonal connectivity metrics are species-specific and use hibernacula locations (at the 
resolution of the NABat grid cell centroid), annual abundances, and mean migration distances 
for each species. Locations were joined to the NABat grid cell, and these centroid coordinates 
were used as the locations for each hibernaculum when calculating distances. We used the 
modeled hibernacula counts and locations for MYLU, MYSE, and PESU from the Cheng et al. 
(2021b) analysis of colony counts, which utilized colony count data contained in the NABat 
database. The seasonal connectivity metric was calculated for MYLU, MYSE, and PESU for years 
2010–2019, and maps from 2010 can be viewed for each species range (Fig. 2). To estimate the 
average migration distance of each species, we relied mostly on documented migration records 
in the literature. Some historic records from the U.S. Bat Banding Database were also used 
when calculating migration distance for MYLU (Table 5).  

Table 5. Species mean seasonal migration distance, and sample size of records from the literature 
and/or the U.S. Historic Bat Banding Database.  

Species Mean 
Number of studies or 
individual movements 

MYLU 119.69 km 219 individuals 
MYSE 62 km 2 studies 
PESU 227 km 3 studies 

 

Some populations have experienced large declines in estimated winter colony counts due to 
WNS (Cheng et al. 2021a, Cheng et al 2021b). As such, seasonal connectivity also declines 
steeply over the same time, which represents a decline in the expected number of winter-to-
summer migrants in summer grid cells (Figure 1).  
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Figure 1. Winter-to-summer population connectivity values have declined for (A) Myotis lucifufus 
(MYLU), (B) Myotis septentrionalis (MYSE), and (C) Perimyotis subflavus (PESU) (color bar shows 
connectivity values after transformation [log +1 then centering] for visualization) for years 2010 and 
2019 based on the modeled species counts at winter hibernacula each year and the species specific, 
winter-to-summer, mean migration distance. The decline in this metric seen between 2010-2019 
reflects a decline in winter counts due to WNS, and a corresponding decline in potential seasonal 
connectivity (i.e., relative number of predicted seasonal migrants).  
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2.2.3 Other derived grid cell-level covariates sourced from spatial data sets  

Several habitat features may affect bat occurrence; however, however only a few were 
available in the NABat database. We thus geo-processed and incorporated several additional 
ecological predictors of bat occupancy probability for each grid cell for use in the occupancy 
analysis (Table 6). 
 
Table 6. Additional spatial covariates geo-processed and joined to each grid cell in the continental North 
American Bat Monitoring Program (NABat) sampling grid using either ArcMap or the spatial features (sf) 
package in R. 

Name Description Source  

Ecoregions of North 
America (Levels 1, 2 
and 3)  

 

Hierarchal ecoregion names and 
numbers. For example, where 
numbers are encoded as 
level1.level2.level3. Grid cells 
classified as “water” were 
reassigned to the nearest 
ecoregion.  

U.S. Environmental Protection Agency, 
2013, Level III ecoregions of the 
continental United States: Corvallis, 
Oregon, U.S. EPA–National Health and 
Environmental Effects Research 
Laboratory, map scale 1:7,500,000, 
https://www.epa.gov/eco-
research/level-iii-and-iv-ecoregions-
continental-united-states. 

Omernik, J.M. and G.E. Griffith. 2014. 
Ecoregions of the conterminous United 
States: evolution of a hierarchical spatial 
framework. Environmental Management 
54(6):1249–1266. 

Karst indicator All grid cells that intersected the 
karst polygons were assigned a 
value of 1, else 0.  

Chen, Z., Auler, A.S., Bakalowicz, M. et 
al. The World Karst Aquifer Mapping 
project: concept, mapping procedure 
and map of Europe. Hydrogeol J 25, 
771–785 (2017). 
https://doi.org/10.1007/s10040-016-
1519-3 

Mines The distance from the centroid of 
each grid cell to the nearest mine 
polygon.  

Maus, Victor; Giljum, Stefan; 
Gutschlhofer, Jakob; da Silva, Dieison M; 
Probst, Michael; Gass, Sidnei L B; 
Luckeneder, Sebastian; Lieber, Mirko; 
McCallum, Ian (2020): Global-scale 
mining polygons (Version 1). PANGAEA, 
https://doi.org/10.1594/PANGAEA.9108
94 

Rivers and Shorelines 
indicator 

All grid cells that intersected rivers 
or shorelines were assigned a value 
of 1, else 0. 

Commission for Environmental 
Cooperation. 2006. North American 
Rivers and Lakes. 
https://www.sciencebase.gov/catalog/it
em/4fb55df0e4b04cb937751e02 

https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
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Ecological regions (i.e., Ecoregions) of North America provide natural and hierarchical 
classifications of spatial regions based on meaningful ecological characteristics, the underlying 
ecological communities, and geographic space. Thus, in comparison to arbitrary geopolitical 
boundaries such as states, provinces, or territories, they provide an ecologically grounded 
approach to including regional spatiotemporal structure into the occupancy model. Ecoregions 
may capture regional variation in bat occupancy distributions above and beyond the range-
wide influences of other ecological predictors (e.g., elevation, temperature). The hierarchical 
nature of these ecoregions (level-3 within level-2 within level-1) helps describe regional 
influences on occupancy at several spatial scales given the underlying ecological communities in 
each (which may be important for explaining bat occupancy, bat detection, and 
misclassification rates). Thus, ecoregions provide useful hierarchical structure to account for 
spatial autocorrelation at several spatial scales (i.e., all other unmeasured influences in bat 
occupancy that vary spatially). Finally, ecoregions provide useful spatial units to structure 
changes in occupancy probabilities over time, especially compared to the null model of 
modeling temporal change as constant across a species range.  

 

 

Figure 2. Ecological regions of North America at levels 1, 2, and 3 (Environmental Protection Agency 
2013). Names of ecoregions and shapefiles are available at https://www.epa.gov/eco-
research/ecoregions. 

 

2.2.4 Detection-level covariates 

The detectability of a bat species in a grid cell on a given night is dependent on many factors, 
most notably factors that affect bat activity and the amount of time over which monitoring 
occurs (Table 7). For example, monitoring on longer and/or warmer nights is generally more 
likely to result in more recorded call-sequences than on shorter and/or cooler nights. 
 
 
 

https://www.epa.gov/eco-research/ecoregions
https://www.epa.gov/eco-research/ecoregions
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Table 7. Summary of night-level covariates aggregated across seven-day periods and included in the 
false-positive occupancy model for each bat species. Effort index = length of detection history 
aggregated over for each seven-day observation period (e.g., aggregating over 4 nights in 7-day period 
at a single stationary detector would result in an effort of 4). Effort index was derived from monitoring 
data while all other night-level covariates came from Daymet.  

Name Source  

Day length Thornton, M.M., R. Shrestha, Y. Wei, P.E. Thornton, S. Kao, 
and B.E. Wilson. 2020. Daymet: Annual Climate Summaries 
on a 1-km Grid for North America, Version 4. ORNL DAAC, 
Oak Ridge, Tennessee, USA. 
https://doi.org/10.3334/ORNLDAAC/1852 

Day of year 
Maximum air temperature 
Minimum air temperature 
Water vapor pressure  
Effort index  Derived from monitoring data 

 

2.3 Range maps 
Numerous sources for species range maps exist and maps vary in range extent and boundaries 
(Table 8). Many species range maps have not been updated in the last 10 years despite 
evidence that some species’ ranges are expanding due to climate change (McCracken et al. 
2018). In this analysis, we bound the total geographic extent of occupancy predictions 
(hereafter ‘modeled species range’) for each species by the geographic scope of monitoring 
data rather than the published species range (hereafter ‘reference range’). This approach 
ensured that predictions were not extrapolated beyond the bounds of the data. In some cases, 
model predictions may extend beyond the reference range, or may only cover a portion of the 
reference range based on the extent of monitoring data. Discrepancies between the modeled 
species’ range and reference range are shown in the figures in Section 3. Note, the polygon 
depicting the reference range is for illustrative purposes only and does not indicate a modeling 
parameter.  

In most cases, the reference ranges reflected are from the National Atlas of the United States 
(2011); however, in two instances (MYGR and PESU) we instead have used recently updated 
and refined range maps provided by the U.S. Fish and Wildlife Service’s species leads. These 
maps were developed using a combination of known roosts, historical capture records, and 
expert elicitation. In the case of MYGR only, the modeled species range was clipped to the 
reference range provided by the U.S. Fish and Wildlife Service to bound predictions within the 
recently established boundaries.  

Table 8. Sources of species range maps for bats that occur in North America. 

Source URL  

National Atlas of the United States https://purl.stanford.edu/pz329xp4277 
U.S. Fish and Wildlife Service Environmental 
Conservation Online System 

https://ecos.fws.gov/ecp/report/current-range-all 

International Union for Conservation on Nature https://www.iucnredlist.org/resources/spatial-
data-download 

NatureServe https://www.natureserve.org/conservation-
tools/digital-distribution-maps-mammals-western-
hemisphere  

https://www.iucnredlist.org/resources/spatial-data-download
https://www.iucnredlist.org/resources/spatial-data-download
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.natureserve.org%2Fconservation-tools%2Fdigital-distribution-maps-mammals-western-hemisphere&data=04%7C01%7Cjhcox%40contractor.usgs.gov%7C06f428d9d4cc4e644bdf08d8f092a282%7C0693b5ba4b184d7b9341f32f400a5494%7C0%7C0%7C637523859881091691%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=knhSYqCtPAqXLXCx9kiuCgYXqJZon41XX3G%2BZ9SA2LU%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.natureserve.org%2Fconservation-tools%2Fdigital-distribution-maps-mammals-western-hemisphere&data=04%7C01%7Cjhcox%40contractor.usgs.gov%7C06f428d9d4cc4e644bdf08d8f092a282%7C0693b5ba4b184d7b9341f32f400a5494%7C0%7C0%7C637523859881091691%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=knhSYqCtPAqXLXCx9kiuCgYXqJZon41XX3G%2BZ9SA2LU%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.natureserve.org%2Fconservation-tools%2Fdigital-distribution-maps-mammals-western-hemisphere&data=04%7C01%7Cjhcox%40contractor.usgs.gov%7C06f428d9d4cc4e644bdf08d8f092a282%7C0693b5ba4b184d7b9341f32f400a5494%7C0%7C0%7C637523859881091691%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=knhSYqCtPAqXLXCx9kiuCgYXqJZon41XX3G%2BZ9SA2LU%3D&reserved=0
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Table 9. A summary table depicting the total number of monitoring data points (grid-cell*observation) 
of each detection history type (0: no-detection, 1: ambiguous detection, 2: unambiguous detection) for 
each bat species, including the number of points of each type that fell inside and outside of the 
reference ranges. 

Species Total 
0's 

Inside 
0's  

Outside 
0's  

Total 
1's 

Inside 
1's  

Outside 
1's  

Total 
2's 

Inside 
2's 

Outside 
2's 

MYLU 4731 4468 263 4255 3891 364 2985 2700 285 

PESU 4067 3959 108 4717 4659 58 1474 1417 57 

MYSE 7440 5992 1448 1323 935 388 928 845 83 

MYYU 973 597 376 461 299 162 647 595 52 

MYTH 1444 793 651 410 197 213 387 272 115 

MYVO 902 642 260 994 846 148 654 619 35 

MYEV 967 608 359 460 301 159 1059 942 117 

MYLE 2818 1567 1251 333 256 77 175 139 36 

MYGR 3546 352 3194 1047 478 569 154 134 20 

EPFU 3691 3497 194 5743 5558 185 4267 4062 205 

LANO 4707 4276 431 3617 3373 244 2555 2331 224 

LACI 3417 3227 190 5788 5521 267 2812 2588 224 
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3. Results  
3.1 Useful definitions for interpreting results 

• Occupancy state: The presence/absence status of a species in a NABat 100 km2 grid cell 
during a summer season. Bats are mobile animals, therefore occupancy is interpreted as 
space-use (i.e., whether or not a grid cell is used by a species, where use is any type of 
space use in a grid cell including flying through or accessing water sources). 

• Species distribution: The geographical distribution of species’ occurrence across its’ 
range. For the purpose of these analyses, it is the true but unknown spatial 
configuration of species occupancy (i.e., space use) across grid cells each year.  

• Occupancy probability: The probability (ranging between zero and one) that a species 
occupies/uses a grid cell in a summer season. We make predictions for the occupancy 
probability for each species and year across all grid cells in each modeled species range.  

• Range: The geographic limits of a particular species’ distribution. 

• Modeled species range: The geographic extent of occupancy probability predictions 
that were modeled for each species, based on the geographic scope of the species 
detections in the monitoring data.  

• Posterior distribution (Posterior probability distribution): A probability distribution for 
a parameter estimate given information in the data, and the resulting inference from a 
Bayesian analysis. Point estimates (the posterior mean) and 95% credible intervals are 
used to summarize the posterior distribution of each parameter for inference. 

• Posterior mean: The mean of the posterior distribution, which we use as the point 
estimate (best single point guess) for each parameter.  

• 95% credible interval (95% CRI): The interval of credible values for a parameter for 
which there is a 95% probability that the true (unknown) value is contained within the 
interval. Also, a measure of uncertainty for each parameter estimate (larger the interval 
= more uncertain). We calculate an equal tailed 95% credible interval and define the 
lower and upper limits based on the 2.5% and 97.5% quantiles. Thus, all values for a 
parameter outside of this interval together have 5% probability of being true, with a 
2.5% probability of being less than the lower limit, and a 2.5% probability of being 
greater than upper limit. These intervals also provide information on the ‘significance’ 
(or certainty) of direction of association (positive or negative) of an estimate. If the 95% 
credible intervals are entirely negative (i.e., intervals do not overlap zero or contain 
positive values), we can infer that parameter value is negative with at least 0.95 
probability (95% certainty). The same logic holds for 95% credible intervals that are 
entirely positive, that is, there is at least a 95% certainty that the parameter is positive. 
When the 95% credible interval overlaps zero and spans both negative and positive 
values, there is less than a 95% certainty that the parameter is ‘significantly’ negative or 
positive.  

• Region: The term ‘region’, or ‘regional’ in the results refers to various geographic or 
geopolitical areas of interest for which aggregate measures of status occupancy and 
trends were calculated including states, provinces, and territories, and the modeled 
species ranges.  
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• Average occupancy probability (regional or range-wide): The average occupancy 
probability across all grid cells in a region of interest (e.g., state/province/territory or 
species range). Also, the expected value for the proportion of occupied grid cells in the 
region.  

• Annual change: The proportional rate of change in average occupancy probability 
between two subsequent years. 

• Average annual change: The average annual proportional rate of change in the average 
occupancy probability over a time period of interest.  

• Total change: The total proportional rate of change in the average occupancy 
probability between the first and last year of sampling.  

• Proportion of grid cells sampled: The proportion of grid cells sampled for each region, 
species, and year. Higher values indicate a higher degree of representativeness of the 
sampling data for each regional estimate. 

3.2 Organization of results  
In this section, we depict several occupancy status and trend results for each species at the grid 
cell and range-wide spatial extents. Sections are organized by species.  

• For each species, we first present range-wide occupancy probability maps across all grid 
cells in each species’ modeled range including the most recent occupancy probability 
map in 2019, the same map with sampled locations and detection histories are shown, 
and a time series of maps of four years of occupancy probabilities and visit histories. 

• For the time series maps, years 2010, 2012, 2016, and 2019 are displayed for MYLU, 
PESU, and MYSE, while years 2016–2019 are displayed for all other species 

• We provide a map of change in grid cell-level occupancy probabilities for each species, 
with the total change between 2010–2019 for MYLU, PESU, and MYSE and from 2016–
2019 for all other species.  

• Next, we depict the time series of average occupancy probability each year aggregated 
across all grid cells in the modeled species’ range, while also depicting the percent of 
grid cells in the modeled species’ range that were surveyed each year. Means and 95% 
credible intervals are provided for each parameter.  

• We also provide two trend metrics based on average occupancy probability per year, 
average annual change and total change between the starting and ending year.  

o We provide these trend estimates at three different temporal windows for 
MYLU, PESU, and MYSE (three years of change: 2016–2019; seven years of 
change: 2012–2019; and nine years of change: 2010–2019) and only for short 
time scales for all other species.  

o For example, if avg_change_9yr = -0.05, the average occupancy rate for a region 
of interest declined on average by 5% each year over the nine years since 2010. 
Likewise, if total_change_9yr = -0.25, the average occupancy rate for a region of 
interest declined by a total of 25% over the nine years since 2010, while a value 
of 0.25 would indicate an increase of 25%.  

o We infer the ‘significance’ of a trend estimate based on the 95% credible 
intervals. When 95% credible intervals are entirely positive (i.e., not overlapping 
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zero or containing any negative values), or entirely negative, then there is at 
least a 0.95 probability (95% certainty) that the predicted occupancy 
probabilities are truly increasing (for positive intervals) or decreasing (for 
negative intervals). Otherwise, we have less than 95% certainty that the estimate 
is truly different than zero.  

• Similar regional estimates of the average occupancy probability aggregated across all 
grid cells in a region of interest are provided for each state/province/territory for each 
species and year (Appendix B).  

• The proportion of grid cells sampled in each region of interest and year for each species 
is also depicted in the same figures to delineate the representativeness of each 
estimate. 

• Both trend indicators (average annual change and total change) were also calculated for 
these time series, the same as for the range-wide trends (Appendix B).  

• Results of parameter estimates from each species occupancy model, including grid cell-
level occupancy predictor effects and detection effects, are presented in Appendix C. 

• Finally, Appendix D contains plots that depict an informal model assessment for each 
species, comparing the predicted occupancy probabilities to the monitoring data.  
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3.3 Myotis lucifugus 
(A) 

 
(B)

 
Figure 3. Myotis lucifugus (MYLU) mean occupancy probabilities (color bar) predicted in each North 
American Bat Monitoring Program (NABat) grid cell in the modeled species range for 2019. Probabilities 
are depicted against the reference range map (blue polygon; National Atlas of the United States, 2011) 
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and borders of U.S. states and Canadian provinces/territories (A and B). Note, the polygon depicting the 
reference range is for illustrative purposes only and was not used to bound occupancy probability 
predictions  – instead, the analyses are bound by the geographic scope of monitoring data. All sampled 
locations (2010–2019) and detection summaries are also overlaid (B), including sampled locations where 
the species was never detected (brown ‘+’ signs), locations where the species was detected at least once 
by acoustic auto IDs (blue dots), and locations where the species was detected either by manually 
verified acoustic records or capture data (black dots). 

 

 
Figure 4. Myotis lucifugus (MYLU) mean predicted occupancy probabilities in 2010, 2012, 2016, and 
2019 predicted for all North American Bat Monitoring Program (NABat) grid cells in the modeled species 
range based on site-level covariates for each grid cell and year. This is depicted against the reference 
range map (blue polygon; National Atlas of the United States, 2011) and borders of U.S. states and 
Canadian provinces/territories. Note, the polygon depicting the reference range is for illustrative 
purposes only and was not used to bound occupancy probability predictions – instead, the analyses are 
bound by the geographic scope of monitoring data. The grid cells sampled each year are also displayed 
based on detection histories as: brown ‘+’ signs= never detected, blue dots = detected with an auto ID, 
black dots = detected with manual vetting and/or capture.  
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Figure 5. The total change rate in mean grid cell occupancies (color bar) for Myotis lucifugus (MYLU) 
between 2010 and 2019 for all North American Bat Monitoring Program (NABat) grid cells in the 
modeled species range based on site-level covariates for each grid cell and year. This is depicted against 
the reference range map (blue polygon; National Atlas of the United States, 2011) and borders of U.S. 
states and Canadian provinces/territories. Note, the polygon depicting the reference range is for 
illustrative purposes only and was not used to bound occupancy probability predictions – instead, the 
analyses are bound by the geographic scope of monitoring data. For visualization purposes, the upper 
bound of the scalebar is truncated at 1.5 (150%) and corresponds to values of 1.5 and above, while the 
lower bound is naturally bounded at -1 (-100%).  

  



21 
 

 

 
Figure 6. Estimates of the average occupancy probability (�̂�𝑡) of Myotis lucifugus (MYLU) each year, 
aggregated across all NABat grid cells in the modeled range each year. Means (points) and 95% credible 
intervals (bars) are depicted according to the percent of grid cells sampled in the modeled species range 
that each year (legend). 
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Figure 7. Estimates of average annual change (avg_annual_change = lambda_avg – 1) and total change 
(total_change = lambda_tot - 1) of Myotis lucifugus (MYLU) over the short-term (2016–2019, three years 
of change), medium-term (2012–2019, seven years of change) and long-term (2010–2019, nine years of 
change). Means (points) and 95% credible intervals (bars) are depicted according to the percent of grid 
cells sampled in the modeled species range each year (legend). Note the 95% credible intervals do not 
overlap zero, meaning there is at least 95% certainty that trends in MYLU occupancy are negative. 

Table 10. The numerical values represented in Figure 7 for average annual change and total average 
change of Myotis lucifugus (MYLU) over short-term (2016–2019, three year), medium-term (2012–2019, 
seven year), and long-term (2010–2019, nine year) periods. CRI = 95 credible interval. 

Trend Type Quantity  Mean Lower CRI Upper CRI 

Annual avg_annual_change_3yr -0.0383 -0.0618 -0.0125 
Annual avg_annual_change_7yr -0.0298 -0.0429 -0.0162 
Annual avg_annual_change_9yr -0.0248 -0.0370 -0.0118 
Total total_change_3yr -0.1147 -0.1799 -0.0430 
Total total_change_7yr -0.1981 -0.2724 -0.1168 
Total total_change_9yr -0.2103 -0.2974 -0.1157 
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3.4 Myotis septentrionalis  
(A) 

 
(B) 

 
Figure 8. Myotis septentrionalis (MYSE) mean occupancy probabilities (color bar) predicted in each 

North American Bat Monitoring Program (NABat) grid cell in the modeled species range for 2019. 

Probabilities are depicted against the reference range map (blue polygon; National Atlas of the United 

States, 2011) and borders of U.S. states and Canadian provinces/territories (A and B). Note, the polygon 

depicting the reference range is for illustrative purposes only and was not used to bound occupancy 

probability predictions – instead, the analyses are bound by the geographic scope of monitoring data. All 
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sampled locations (2010–2019) and detection summaries are also overlaid (B), including sampled 

locations where the species was never detected (brown ‘+’ sign), locations where the species was 

detected at least once by acoustic auto IDs (blue dots), and locations where the species was detected 

either by manually verified acoustic records or capture data (black dots).  

 
Figure 9. Mean predicted occupancy probabilities of Myotis septentrionalis (MYSE) in 2010, 2012, 2016, 
and 2019 predicted for all North American Bat Monitoring Program (NABat) grid cells in the modeled 
species range based on site-level covariates for each grid cell and year. This is depicted against the 
reference range map (blue polygon; National Atlas of the United States, 2011) and borders of U.S. states 
and Canadian provinces/territories. Note, the polygon depicting the reference range is for illustrative 
purposes only and was not used to bound occupancy probability predictions – instead, the analyses are 
bound by the geographic scope of monitoring data. The grid cells sampled each year are also displayed 
based on detection histories as: brown ‘+’ sign = never detected, blue dots = detected with an auto ID, 
black dots= detected with manual vetting and/or capture. 
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Figure 10. The total change rate in mean grid cell occupancies (color bar) for Myotis septentrionalis 
(MYSE) between 2010 and 2019 for all North American Bat Monitoring Program (NABat) grid cells in the 
modeled species range based on site-level covariates for each grid cell and year. This is depicted against 
the reference range map (blue polygon; National Atlas of the United States, 2011) and borders of U.S. 
states and Canadian provinces/territories. Note, the polygon depicting the reference range is for 
illustrative purposes only and was not used to bound occupancy probability predictions – instead, the 
analyses are bound by the geographic scope of monitoring data. For visualization purposes, the upper 
bound of the scalebar is truncated at 1.5 (150%) and corresponds to values of 1.5 and above, while the 
lower bound is naturally bounded at -1 (-100%).  
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Figure 11. Estimates of the average occupancy probability (�̂�𝑡) for Myotis septentrionalis (MYSE) each 
year, aggregated across all North American Bat Monitoring Program (NABat) grid cells in modeled range 
each year. Means (points) and 95% credible intervals (bars) are depicted according to the percent of grid 
cells sampled in the modeled species range each year (legend). 
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Figure 12. Estimates of average annual change (avg_annual_change = lambda_avg – 1) and total change 
(total_change = lambda_tot - 1) for Myotis septentrionalis (MYSE) over the short-term (2016–2019, 
three years of change), medium-term (2012–2019, seven years of change) and long-term (2010–2019, 
nine years of change). Means (points) and 95% credible intervals (bars) are depicted according to the 
percent of grid cells sampled in the modeled species range each year (legend). Note that when the 95% 
credible intervals do not overlap zero, there is at least 95% certainty that trends in species occupancy 
are either negative or positive. When credible intervals overlap zero, there is less than 95% certainty 
that these trends are different than zero. 

Table 11. The numerical values represented in Figure 12 for average annual change and total average 
change over short-term (2016–2019, three year), medium-term (2012–2019, seven year), and long-term 
(2010–2019, nine year) periods. CRI = 95% credible interval. 

Trend Type Quantity  Mean Lower CRI Upper CRI 

Annual avg_annual_change_3yr 0.0717 -0.0042 0.1597 
Annual avg_annual_change_7yr -0.0120 -0.0497 0.0340 
Annual avg_annual_change_9yr -0.0371 -0.0699 -0.0035 
Total total_change_3yr 0.1366 -0.0881 0.4443 
Total total_change_7yr -0.2026 -0.4185 0.0808 
Total total_change_9yr -0.4028 -0.5693 -0.1853 
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3.5 Perimyotis subflavus  
(A) 
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(B) 

 
Figure 13. Perimyotis subflavus (PESU) mean occupancy probabilities (color bar) predicted in each North 

American Bat Monitoring Program (NABat) grid cell in the modeled species range for 2019. Probabilities 

are depicted against the reference range map (blue polygon range map provided by M. Turner, U.S. Fish 

and Wildlife Service, written communication, August 20, 2021) and borders of U.S. states and Canadian 

provinces/territories (A and B). Note, the polygon depicting the reference range is for illustrative 

purposes only and was not used to bound occupancy probability predictions – instead, the analyses are 

bound by the geographic scope of monitoring data. All sampled locations (2010–2019) and detection 

summaries are also overlaid (B), including sampled locations where the species was never detected ( 

brown ‘+’ sign), locations where the species was detected at least once by acoustic auto IDs (blue dots), 

and locations where the species was detected either by manually verified acoustic records or capture 

data (black dots). 
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Figure 14. Mean predicted occupancy probabilities of Perimyotis subflavus (PESU) in 2010, 2012, 2016, 
and 2019 predicted for all North American Bat Monitoring Program (NABat) grid cells in the modeled 
species range based on site-level covariates for each grid cell and year. This is depicted against the 
reference range map (blue polygon range map provided by M. Turner, U.S. Fish and Wildlife Service, 
written communication, August 20, 2021) and borders of U.S. states and Canadian provinces/territories. 
Note, the polygon depicting the reference range is for illustrative purposes only and was not used to 
bound occupancy probability predictions – instead, the analyses are bound by the geographic scope of 
monitoring data. The grid cells sampled each year are also displayed based on detection histories as: 
brown ‘+’ sign = never detected, blue dots = detected with an auto ID, black dots= detected with manual 
vetting and/or capture. 
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Figure 15. The total change rate in mean grid cell occupancies (color bar) of Perimyotis subflavus (PESU) 
between 2010 and 2019 for all North American Bat Monitoring Program (NABat) grid cells in the 
modeled species range based on site-level covariates for each grid cell and year. This is depicted against 
the reference range map (blue polygon range map provided by M. Turner, U.S. Fish and Wildlife Service, 
written communication, August 20, 2021) and borders of U.S. states and Canadian provinces/territories. 
Note, the polygon depicting the reference range is for illustrative purposes only and was not used to 
bound occupancy probability predictions – instead, the analyses are bound by the geographic scope of 
monitoring data. For visualization purposes, the upper bound of the scalebar is truncated at 1.5 (150%) 
and corresponds to values of 1.5 and above, while the lower bound is naturally bounded at -1 (-100%).  
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Figure 16. Estimates of the average occupancy probability (�̂�𝑡) each year of Perimyotis subflavus (PESU), 
aggregated across all North American Bat Monitoring Program (NABat) grid cells in modeled range each 
year. Means (points) and 95% credible intervals (bars) are depicted according to the percent of grid cells 
sampled in the modeled species range each year (legend). 
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Figure 17. Estimates of average annual change (avg_annual_change = lambda_avg – 1) and total change 
(total_change = lambda_tot - 1) of Perimyotis subflavus (PESU), over the short-term (2016–2019, three 
years of change), medium-term (2012–2019, seven years of change) and long-term (2010–2019, nine 
years of change). Means (points) and 95% credible intervals (bars) are depicted according to the percent 
of grid cells sampled in the modeled species range each year (legend). Note that the 95% credible 
intervals do not overlap zero, meaning there is at least 95% certainty that trends in PESU occupancy are 
negative.  

Table 12. The numerical values represented in Figure 17 for average annual change and total average 
change Perimyotis subflavus (PESU) over short-term (2016–2019, three year), medium-term (2012–
2019, seven year), and long-term (2010–2019, nine year) periods. CRI = 95 % credible interval. 

Trend Type Quantity  Mean Lower CRI Upper CRI 

Annual avg_annual_change_3yr -0.1628 -0.2050 -0.1159 
Annual avg_annual_change_7yr -0.0624 -0.0806 -0.0432 
Annual avg_annual_change_9yr -0.0623 -0.0831 -0.0400 
Total total_change_3yr -0.4249 -0.5147 -0.3243 
Total total_change_7yr -0.4210 -0.5101 -0.3240 
Total total_change_9yr -0.4968 -0.5922 -0.2883 
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3.6 Myotis evotis  
(A) 
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(B) 

 
Figure 18. Myotis evotis (MYEV) mean occupancy probabilities (color bar) predicted in each North 
American Bat Monitoring Program (NABat) grid cell in the modeled species range for 2019. Probabilities 
are depicted against the reference range map (blue polygon; National Atlas of the United States, 2011) 
and borders of U.S. states and Canadian provinces/territories (A and B). Note, the polygon depicting the 
reference range is for illustrative purposes only and was not used to bound occupancy probability 
predictions – instead, the analyses are bound by the geographic scope of monitoring data. All sampled 
locations (2016–2019) and detection summaries are also overlaid (B), including sampled locations where 
the species was never detected (brown ‘+’ sign), locations where the species was detected at least once 
by acoustic auto IDs (blue dots), and locations where the species was detected either by manually 
verified acoustic records or capture data (black dots). 
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Figure 19. Mean predicted occupancy probabilities of Myotis evotis (MYEV) in 2016–2019 predicted for 
all North American Bat Monitoring Program (NABat) grid cells in the modeled species range based on 
site-level covariates for each grid cell and year. This is depicted against the reference range map (blue 
polygon; National Atlas of the United States, 2011) and borders of U.S. states and Canadian 
provinces/territories. Note, the polygon depicting the reference range is for illustrative purposes only 
and was not used to bound occupancy probability predictions – instead, the analyses are bound by the 
geographic scope of monitoring data. The grid cells sampled each year are also displayed based on 
detection histories as: brown ‘+’ sign = never detected, blue dots= detected with an auto ID, black dots= 
detected with manual vetting and/or capture. 
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Figure 20. The total change rate in mean grid cell occupancies (color bar) for Myotis evotis (MYEV) 
between 2016 and 2019 for all North American Bat Monitoring Program (NABat) grid cells in the 
modeled species range based on site-level covariates for each grid cell and year. This is depicted against 
the reference range map (blue polygon; National Atlas of the United States, 2011) and borders of U.S. 
states and Canadian provinces/territories. Note, the polygon depicting the reference range is for 
illustrative purposes only and was not used to bound occupancy probability predictions – instead, the 
analyses are bound by the geographic scope of monitoring data. For visualization purposes, the upper 
bound of the scalebar is truncated at 1.5 (150%) and corresponds to values of 1.5 and above, while the 
lower bound is naturally bounded at -1 (-100%). 
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Figure 21. Estimates of the average occupancy probability (�̂�𝑡) each year for Myotis evotis (MYEV), 
aggregated across all North American Bat Monitoring Program (NABat) grid cells in modeled range each 
year. Means (points) and 95% credible intervals (bars) are depicted according to the percent of grid cells 
sampled in the modeled species range each year (legend). 
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Figure 22. Estimates of average annual change (avg_annual_change = lambda_avg – 1) and total change 

(total_change = lambda_tot - 1) for Myotis evotis (MYEV) over the short-term (2016–2019, three years 

of change). Means (points) and 95% credible intervals (bars) are depicted according to the percent of 

grid cells sampled in the modeled species range each year (legend). Note that the 95% credible intervals 

overlap zero, meaning there is less than 95% certainty that trends in MYEV occupancy different than 

zero. 

Table 13. The numerical values represented in Figure 22 for average annual change and total average 
change over a short-term (2016–2019, three year) period. CRI= 95% credible intervals. 

Trend Type Quantity  Mean Lower CRI Upper CRI 

Annual avg_annual_change_3yr 0.0091 -0.0327 0.0543 
Total total_change_3yr 0.0229 -0.1025 0.1687 
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3.7 Myotis grisescens  
(A) 

 
(B) 

 
Figure 23. A map of Myotis grisescens (MYGR) mean occupancy probabilities (color bar) predicted in 
each North American Bat Monitoring Program (NABat) grid cell in the modeled species range for 2019. 
Probabilities are depicted against the reference range map (blue polygon range map provided by I. 
Kuczynska, U.S. Fish and Wildlife Service, written communication, September 30, 2021) and borders of 
U.S. states (A and B). All sampled locations (2016–2019) and detection summaries are also overlaid (B), 
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including sampled locations where the species was never detected (brown ‘+’ sign), locations where the 
species was detected at least once by acoustic auto IDs (blue dots), and locations where the species was 
detected either by manually verified acoustic records or capture data (black dots).  

 
Figure 24. Mean predicted occupancy probabilities for Myotis grisescens (MYGR) in 2016–2019 
predicted for all North American Bat Monitoring Program (NABat) grid cells in the modeled species 
range based on site-level covariates for each grid cell and year. This is depicted against the reference 
range map (blue polygon range map provided by I. Kuczynska, U.S. Fish and Wildlife Service, written 
communication, September 30, 2021) and borders of U.S. states. The grid cells sampled each year are 
also displayed based on detection histories as: brown ‘+’ sign = never detected, blue dots = detected 
with an auto ID, black dots = detected with manual vetting and/or capture. 
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Figure 25. The total change rate in mean grid cell occupancies (color bar) for Myotis grisescens (MYGR) 
between 2016 and 2019 for all North American Bat Monitoring Program (NABat) grid cells in the 
modeled species range based on site-level covariates for each grid cell and year. This is depicted against 
the reference range map (blue polygon range map provided by I. Kuczynska, U.S. Fish and Wildlife 
Service, written communication, September 30, 2021) and borders of U.S. states. For visualization 
purposes, the upper bound of the scalebar is truncated at 1.5 (150%) and corresponds to values of 1.5 
and above, while the lower bound is naturally bounded at -1 (-100%). 
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Figure 26. Estimates of the average occupancy probability (�̂�𝑡) for Myotis grisescens (MYGR) each year, 
aggregated across all North American Bat Monitoring Program (NABat) grid cells in modeled range each 
year. Means (points) and 95% credible intervals (bars) are depicted according to the percent of grid cells 
sampled in the modeled species range each year (legend). 
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Figure 27. Estimates of average annual change (avg_annual_change = lambda_avg – 1) and total change 
(total_change = lambda_tot - 1) for Myotis grisescens (MYGR) over the short-term (2016–2019, three 
years of change). Means (points) and 95% credible intervals (bars) are depicted according to the percent 
of grid cells sampled in the modeled species range each year (legend). Note that the 95% credible 
intervals overlap zero, meaning there is less than 95% certainty that trends in MYGR occupancy are 
different than zero. 

Table 14. The numerical values represented in Figure 27 for average annual change and total average 
change over a short-term (2016–2019, three year) period. CRI = 95% credible intervals. 

Trend Type Quantity  Mean Lower CRI Upper CRI 

Annual avg_annual_change_3yr 0.0568 -0.0234 0.1410 
Total total_change_3yr 0.1645 -0.1023 0.4725 
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3.8 Myotis leibii  
(A) 

 
(B) 

 
Figure 28. A map of Myotis leibii (MYLE) mean occupancy probabilities (color bar) predicted in each 
North American Bat Monitoring Program (NABat) grid cell in the modeled species range for 2019. 
Probabilities are depicted against the reference range map (blue polygon; National Atlas of the United 
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States, 2011) and borders of U.S. states and Canadian provinces/territories (A and B). Note, the polygon 
depicting the reference range is for illustrative purposes only and was not used to bound occupancy 
probability predictions – instead, the analyses are bound by the geographic scope of monitoring data. All 
sampled locations (2016–2019) and detection summaries are also overlaid (B), including sampled 
locations where the species was never detected (brown ‘+’ sign), locations where the species was 
detected at least once by acoustic auto IDs (blue dots), and locations where the species was detected 
either by manually verified acoustic records or capture data (black dots). 

  

 
Figure 29. Mean predicted occupancy probabilities for Myotis leibii (MYLE) in 2016–2019 predicted for 
all North American Bat Monitoring Program (NABat) grid cells in the modeled species range based on 
site-level covariates for each grid cell and year. This is depicted against the reference range map (blue 
polygon; National Atlas of the United States, 2011) and borders of U.S. states and Canadian 
provinces/territories. Note, the polygon depicting the reference range is for illustrative purposes only 
and was not used to bound occupancy probability predictions – instead, the analyses are bound by the 
geographic scope of monitoring data. The grid cells sampled each year are also displayed based on 
detection histories as: brown ‘+’ sign = never detected, blue dots = detected with an auto ID, black dots 
= detected with manual vetting and/or capture. 
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Figure 30. The total change rate in mean grid cell occupancies (color bar) for Myotis leibii (MYLE) 
between 2016 and 2019 for all North American Bat Monitoring Program (NABat) grid cells in the 
modeled species range based on site-level covariates for each grid cell and year. This is depicted against 
the reference range map (blue polygon; National Atlas of the United States, 2011) and borders of U.S. 
states and Canadian provinces/territories. Note, the polygon depicting the reference range is for 
illustrative purposes only and was not used to bound occupancy probability predictions – instead, the 
analyses are bound by the geographic scope of monitoring data. For visualization purposes, the upper 
bound of the scalebar is truncated at 1.5 (150%) and corresponds to values of 1.5 and above, while the 
lower bound is naturally bounded at -1 (-100%). 
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Figure 31. Estimates of the average occupancy probability (�̂�𝑡) for Myotis leibii (MYLE) each year, 
aggregated across all North American Bat Monitoring Program (NABat) grid cells in modeled range each 
year. Means (points) and 95% credible intervals (bars) are depicted according to the percent of grid cells 
sampled in the modeled species range that each year (legend). 
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Figure 32. Estimates of average annual change (avg_annual_change = lambda_avg – 1) and total change 

(total_change = lambda_tot - 1) for Myotis leibii (MYLE) over the short-term (2016–2019, three years of 

change). Means (points) and 95% credible intervals (bars) are depicted according to the percent of grid 

cells sampled in the modeled species range each year (legend). Note that the 95% credible intervals 

overlap zero, meaning there is less than 95% certainty that trends in MYLE occupancy different than 

zero. 

Table 15. The numerical values represented in Figure 32 for average annual change and total average 
change over a short-term (2016–2019, three year) period. CRI = 95% credible interval. 

Trend Type Quantity  Mean Lower CRI Upper CRI 

Annual avg_annual_change_3yr 0.0934 -0.0856 0.3456 
Total total_change_3yr 0.0002 -0.4131 0.5495 
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3.9 Myotis thysanodes 
(A) 
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(B) 

 
Figure 33. Myotis thysanodes (MYTH) mean occupancy probabilities (color bar) predicted in each North 
American Bat Monitoring Program (NABat) grid cell in the modeled species range for 2019. Probabilities 
are depicted against the reference range map (blue polygon; National Atlas of the United States, 2011) 
and borders of U.S. states and Canadian provinces/territories (A and B). Note, the polygon depicting the 
reference range is for illustrative purposes only and was not used to bound occupancy probability 
predictions – instead, the analyses are bound by the geographic scope of monitoring data. All sampled 
locations (2016–2019) and detection summaries are also overlaid (B), including sampled locations where 
the species was never detected (brown ‘+’ sign), locations where the species was detected at least once 
by acoustic auto IDs (blue dots), and locations where the species was detected either by manually 
verified acoustic records or capture data (black dots). 
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Figure 34. Mean predicted occupancy probabilities of Myotis thysanodes (MYTH) in 2016–2019 
predicted for all North American Bat Monitoring Program (NABat) grid cells in the modeled species 
range based on site-level covariates for each grid cell and year. This is depicted against the reference 
range map (blue polygon; National Atlas of the United States, 2011) and borders of U.S. states and 
Canadian provinces/territories. Note, the polygon depicting the reference range is for illustrative 
purposes only and was not used to bound occupancy probability predictions – instead, the analyses are 
bound by the geographic scope of monitoring data. The grid cells sampled each year are also displayed 
based on detection histories as: red = never detected, blue = detected with an auto ID, black= detected 
with manual vetting and/or capture. 
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Figure 35. The total change rate in mean grid cell occupancies (color bar) of Myotis thysanodes (MYTH) 
between 2016 and 2019 for all North American Bat Monitoring Program (NABat) grid cells in the 
modeled species range based on site-level covariates for each grid cell and year. This is depicted against 
the reference range map (blue polygon; National Atlas of the United States, 2011) and borders of U.S. 
states and Canadian provinces/territories. Note, the polygon depicting the reference range is for 
illustrative purposes only and was not used to bound occupancy probability predictions – instead, the 
analyses are bound by the geographic scope of monitoring data. For visualization purposes, the upper 
bound of the scalebar is truncated at 1.5 (150%) and corresponds to values of 1.5 and above, while the 
lower bound is naturally bounded at -1 (-100%).  
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Figure 36. Estimates of the average occupancy probability (�̂�𝑡) of Myotis thysanodes (MYTH) each year, 
aggregated across all North American Bat Monitoring Program (NABat) grid cells in modeled range each 
year. Means (points) and 95% credible intervals (bars) are depicted according to the percent of grid cells 
sampled in the modeled species range each year (legend). 
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Figure 37. Estimates of average annual change (avg_annual_change = lambda_avg – 1) and total change 

(total_change = lambda_tot - 1) for Myotis thysanodes (MYTH) over the short-term (2016–2019, three 

years of change). Means (points) and 95% credible intervals (bars) are depicted according to the percent 

of grid cells sampled in the modeled species range each year (legend). Note that the 95% credible 

intervals overlap zero, meaning there is less than a 95% certainty that trends in MYTH occupancy are 

different than zero. 

Table 16. The numerical values represented in Figure 37 for average annual change and total average 
change of Myotis thysanodes (MYTH) over a short-term (2016–2019, three year) period. CRI = 95% 
credible interval. 

Trend Type Quantity  Mean Lower CRI Upper CRI 

Annual avg_annual_change_3yr 0.0257 -0.317 0.0892 
Total total_change_3yr 0.0702 -0.1003 0.2731 
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3.10 Myotis volans 
(A) 
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(B) 

 
Figure 38. A map of Myotis volans (MYVO) mean occupancy probabilities (color bar) predicted in each 

North American Bat Monitoring Program (NABat) grid cell in the modeled species range for 2019. 

Probabilities are depicted against the reference range map (blue polygon; National Atlas of the United 

States, 2011) and borders of U.S. states and Canadian provinces/territories (A and B). Note, the polygon 

depicting the reference range is for illustrative purposes only and was not used to bound occupancy 

probability predictions – instead, the analyses are bound by the geographic scope of monitoring data. All 

sampled locations (2016–2019) and detection summaries are also overlaid (B), including sampled 

locations where the species was never detected (brown ‘+’ sign), locations where the species was 

detected at least once by acoustic auto IDs (blue dots), and locations where the species was detected 

either by manually verified acoustic records or capture data (black dots).  
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Figure 39. Mean predicted occupancy probabilities of Myotis volans (MYVO) in 2016–2019 predicted for 
all North American Bat Monitoring Program (NABat) grid cells in the modeled species range based on 
site-level covariates for each grid cell and year. This is depicted against the reference range map (blue 
polygon; National Atlas of the United States, 2011) and borders of U.S. states and Canadian 
provinces/territories. Note, the polygon depicting the reference range is for illustrative purposes only 
and was not used to bound occupancy probability predictions – instead, the analyses are bound by the 
geographic scope of monitoring data. The grid cells sampled each year are also displayed based on 
detection histories as: brown ‘+’ sign = never detected, blue dots = detected with an auto ID, black dots 
= detected with manual vetting and/or capture. 
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Figure 40. The total change rate in mean grid cell occupancies (color bar) for Myotis volans (MYVO) 
between 2016 and 2019 for all North American Bat Monitoring Program (NABat) grid cells in the 
modeled species range based on site-level covariates for each grid cell and year. This is depicted against 
the reference range map (blue polygon; National Atlas of the United States, 2011) and borders of U.S. 
states and Canadian provinces/territories. Note, the polygon depicting the reference range is for 
illustrative purposes only and was not used to bound occupancy probability predictions – instead, the 
analyses are bound by the geographic scope of monitoring data. For visualization purposes, the upper 
bound of the scalebar is truncated at 1.5 (150%) and corresponds to values of 1.5 and above, while the 
lower bound is naturally bounded at -1 (-100%).  
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Figure 41. Estimates of the average occupancy probability (�̂�𝑡) of Myotis volans (MYVO) each year, 
aggregated across all North American Bat Monitoring Program (NABat) grid cells in modeled range each 
year. Means (points) and 95% credible intervals (bars) are depicted according to the percent of grid cells 
sampled in the modeled species range each year (legend).  
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Figure 42. Estimates of average annual change (avg_annual_change = lambda_avg – 1) and total change 

(total_change = lambda_tot - 1) for Myotis volans (MYVO) over the short-term (2016–2019, three years 

of change). Means (points) and 95% credible intervals (bars) are depicted according to the percent of 

grid cells sampled in the modeled species range each year (legend). Note that the 95% credible intervals 

overlap zero, meaning there is less than 95% certainty that trends in MYVO occupancy are different than 

zero. 

Table 17. The numerical values represented in Figure 42 for average annual change and total average 
change over a short-term (2016–2019, three year) period. CRI = 95% credible interval. 

Trend Type Quantity  Mean Lower CRI Upper CRI 

Annual avg_annual_change_3yr -0.0209 -0.0894 0.0486 
Total total_change_3yr -0.0783 -0.2544 0.1170 
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3.11 Myotis yumanensis  
(A) 
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(B) 

 
Figure 43. Myotis yumanensis (MYYU) mean occupancy probabilities (color bar) predicted in each North 

American Bat Monitoring Program (NABat) grid cell in the modeled species range for 2019. Probabilities 

are depicted against the reference range map (blue polygon; National Atlas of the United States 2011) 

and borders of U.S. states and Canadian provinces/territories (A and B). Note, the polygon depicting the 

reference range is for illustrative purposes only and was not used to bound occupancy probability 

predictions – instead, the analyses are bound by the geographic scope of monitoring data. All sampled 

locations (2016–2019) and detection summaries are also overlaid (B), including sampled locations where 

the species was never detected (brown ‘+’ sign), locations where the species was detected at least once 

by acoustic auto IDs (blue dots), and locations where the species was detected either by manually 

verified acoustic records or capture data (black dots).  
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Figure 44. Mean predicted occupancy probabilities of Myotis yumanensis (MYYU) in 2016–2019 
predicted for all North American Bat Monitoring Program (NABat) grid cells in the modeled species 
range based on site-level covariates for each grid cell and year. This is depicted against the reference 
range map (blue polygon; National Atlas of the United States, 2011) and borders of U.S. states and 
Canadian provinces/territories. Note, the polygon depicting the reference range is for illustrative 
purposes only and was not used to bound occupancy probability predictions – instead, the analyses are 
bound by the geographic scope of monitoring data. The grid cells sampled each year are also displayed 
based on detection histories as: brown ‘+’ sign = never detected, blue dots = detected with an auto ID, 
black dots= detected with manual vetting and/or capture. 
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Figure 45. The total change rate in mean grid cell occupancies (color bar) of Myotis yumanensis (MYYU) 
between 2016 and 2019 for all North American Bat Monitoring Program (NABat) grid cells in the 
modeled species range based on site-level covariates for each grid cell and year. This is depicted against 
the reference range map (blue polygon; National Atlas of the United States, 2011) and borders of U.S. 
states and Canadian provinces/territories. Note, the polygon depicting the reference range is for 
illustrative purposes only and was not used to bound occupancy probability predictions – instead, the 
analyses are bound by the geographic scope of monitoring data. For visualization purposes, the upper 
bound of the scalebar is truncated at 1.5 (150%) and corresponds to values of 1.5 and above, while the 
lower bound is naturally bounded at -1 (-100%).  



66 
 

 

 
Figure 46. Estimates of the average occupancy probability (�̂�𝑡) of Myotis yumanensis (MYYU) each year, 
aggregated across all North American Bat Monitoring Program (NABat) grid cells in modeled range each 
year. Means (points) and 95% credible intervals (bars) are depicted according to the percent of grid cells 
sampled in the modeled species range each year (legend). 
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Figure 47. Estimates of average annual change (avg_annual_change = lambda_avg – 1) and total change 

(total_change = lambda_tot - 1) of Myotis yumanensis (MYYU) over the short-term (2016–2019, three 

years of change). Means (points) and 95% credible intervals (bars) are depicted according to the percent 

of grid cells sampled in the modeled species range each year (legend). Note that the 95% credible 

intervals overlap zero, meaning there is less than 95% certainty that trends in MYYU occupancy are 

different than zero. 

Table 18. The numerical values represented in Figure 47 for average annual change and total average 
change over a short-term (2016–2019, three year) period. CRI= 95% credible interval. 

Trend Type Quantity  Mean Lower CRI Upper CRI 

Annual avg_annual_change_3yr 0.0006 -0.0551 0.0598 
Total total_change_3yr -0.0054 -0.1635 0.1819 

 

3.12 Inconclusive Results 
The results for three species (Eptesicus fuscus, Lasionycteris noctivagans, Lasiurus cinereus), 
were inconclusive due to 1) borderline convergence issues in the model fitting procedure 
leading to potentially unreliable estimates, 2) largely uninformative covariates for occupancy 
and detectability, which led to both estimation and prediction issues, and 3) failure to reliably 
distinguish between false positives and true positives for ambiguous species detections. All 
three species required very long model runs (in comparison to species with similar amounts for 
data) to achieve convergence. A high degree of autocorrelation in the MCMC chains led to very 
slow mixing and low effective sample sizes, which can indicate issues with model identifiability 
(Ogle and Barber 2020) or multi-modality in posterior distributions. 
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Monitoring effort (the length of the detection history aggregated over each 7-day observation 
period) was estimated to have large effect sizes, while most other detection covariates had 
effect sizes near zero (Appendix C.10 – C.12). Whether the lack of informative detection 
covariates reflects species behavior or analytical limitations is unclear, but this resulted in a 
poor ability of the model to distinguish between true positive and false positive detections in 
the ambiguous detection data of two species (Eptesicus fuscus and Lasiurus cinereus; Appendix 
D.10 -D.11). Thus, relatively little information was gleaned about species occupancy from these 
detections. Furthermore, there were large geographic biases in the unambiguous data 
compared to ambiguous detections for all 3 species, with mostly unambiguous detections in the 
west, and ambiguous detections in the east.  

An additional consideration for these species was that effects of ecoregions largely 
overpowered all other grid cell level covariates (e.g., physiographic diversity, elevation) for 
predicting species’ occupancy. This was despite the use of regularization priors to minimize the 
strength of these effects (Appendix A.2). Predictions for occupancy probabilities in space and 
time were largely driven by ecoregion effects, resulting in mostly homogenous occupancy 
probabilities within each ecoregion and year, and unrealistic hard boundaries between 
ecoregions. There were also large swings in ecoregion effects over time, which led to trends of 
especially large magnitude compared to trends for the other nine species evaluated. While 
these swings could be driven by species’ movement behavior and differences in space use from 
year to year, they could also be driven by sampling artifacts compounded with otherwise weak 
predictors to explain spatiotemporal variation.  

Finally, there are common estimation issues with false-positive occupancy models that must be 
overcome by either including site-level confirmation data, observation-level confirmation data, 
or parameter constraints (e.g., constraining detectability to be greater than the false-positive 
rate, Royle and Link 2006, Chambert et al. 2015). Furthermore, simply collecting more data to 
obtain larger sample sizes does not help overcome limitations of false-positives; in fact, 
according to the third law of mark-recapture (Kéry and Royle 2020) and its corollary: “the 
problem of false positives does not vanish as sample sizes grow, quite on the contrary, more 
false positive errors accumulate when more surveys are conducted.” These three species are 
relatively widespread throughout North America and are often included in species lists when 
processing acoustic monitoring files. They also had the most data collected from 2016-2019 
(Table 9), comparable in total sample size to MYLU, MYSE, and PESU, but with only 4 years of 
monitoring data. We used a combination of site-level confirmation data and parameter 
constraints when fitting species occupancy models, and the addition of the parameter 
constraints improved model estimation for the other 9 species. However, it could be that these 
parameter constraints are too restrictive for EPFU, LACI, and LANO, especially when aggregating 
detections at 7-day periods.  

 

 

 



69 
 

 

3.12.1 Eptesicus fuscus 

(A) 

 
(B) 
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Figure 48. A map of Eptesicus fuscus (EPFU) mean occupancy probabilities (color bar) predicted in each 

North American Bat Monitoring Program (NABat) grid cell in the modeled species range for 2019. 

Probabilities are depicted against the reference range map (blue polygon; National Atlas of the United 

States, 2011) and borders of U.S. states and Canadian provinces/territories (A and B). Note, the polygon 

depicting the reference range is for illustrative purposes only and was not used to bound occupancy 

probability predictions – instead, the analyses are bound by the geographic scope of monitoring data. All 

sampled locations (2016–2019) and detection summaries are also overlaid (B), including sampled 

locations where the species was never detected (brown ‘+’ sign), locations where the species was 

detected at least once by acoustic auto IDs (blue dots), and locations where the species was detected 

either by manually verified acoustic records or capture data (black dots). Note the results for EPFU were 

inconclusive due to issues reported in section 3.12. 

 

 
Figure 49. Mean predicted occupancy probabilities for Eptesicus fuscus (EPFU) in 2016–2019 predicted 
for all NABat grid cells in the modeled species range based on site-level covariates for each grid cell and 
year. This is depicted against the reference range map (blue polygon; National Atlas of the United 
States, 2011) and borders of U.S. states and Canadian provinces/territories. Note, the polygon depicting 
the reference range is for illustrative purposes only and was not used to bound occupancy probability 
predictions – instead, the analyses are bound by the geographic scope of monitoring data. The grid cells 
sampled each year are also displayed based on detection histories as: brown ‘+’ sign = never detected, 
blue dots = detected with an auto ID, black dots = detected with manual vetting and/or capture. Note 
the results for EPFU were inconclusive due to issues reported in section 3.12. 
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Figure 50. The total change rate in mean grid cell occupancies (color bar) for Eptesicus fuscus (EPFU) 
between 2016 and 2019 for all NABat grid cells in the modeled species range based on site-level 
covariates for each grid cell and year. This is depicted against the reference range map (blue polygon; 
National Atlas of the United States, 2011) and borders of U.S. states and Canadian provinces/territories. 
Note, the polygon depicting the reference range is for illustrative purposes only and was not used to 
bound occupancy probability predictions – instead, the analyses are bound by the geographic scope of 
monitoring data. For visualization purposes, the upper bound of the scalebar is truncated at 1.5 (150%) 
and corresponds to values of 1.5 and above, while the lower bound is naturally bounded at -1 (-100%). 
Note the results for EPFU were inconclusive due to issues reported in section 3.12. 
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Figure 51. Estimates of the average occupancy probability (�̂�𝑡) each year for Eptesicus fuscus (EPFU), 
aggregated across all NABat grid cells in modeled range each year. Means (points) and 95% credible 
intervals (bars) are depicted according to the percent of grid cells sampled in the modeled species range 
each year (legend). Note the results for EPFU were inconclusive due to issues reported in section 3.12. 
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Figure 52. Estimates of average annual change (avg_annual_change = lambda_avg – 1) and total change 

(total_change = lambda_tot - 1) for Eptesicus fuscus (EPFU) over the short-term (2016–2019, three years 

of change). Means (points) and 95% credible intervals (bars) are depicted according to the percent of 

grid cells sampled in the modeled species range each year (legend). Note that the credible intervals 

overlap zero, meaning there is less than 95% certainty that trends in EPFU occupancy are different than 

zero. Note the results for EPFU were inconclusive due to issues reported in section 3.12. 

Table 19. The numerical values represented in Figure 52 for average annual change and total average 
change over a short-term (2016–2019, three year) period. 

Trend Type Quantity  Mean Lower CRI Upper CRI 

Annual avg_annual_change_3yr 0.0131 -0.0223 0.0512 
Total total_change_3yr 0.0262 -0.0737 0.1369 
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3.12.2 Lasionycteris noctivagans  

(A) 

 
(B) 
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Figure 53. A map of Lasionycteris noctivagans (LANO) mean occupancy probabilities (color bar) 

predicted in each NABat grid cell in the modeled species range for 2019. Probabilities are depicted 

against the reference range map (blue polygon; National Atlas of the United States, 2011) and borders 

of U.S. states and Canadian provinces/territories (A and B). Note, the polygon depicting the reference 

range is for illustrative purposes only and was not used to bound occupancy probability predictions – 

instead, the analyses are bound by the geographic scope of monitoring data. All sampled locations 

(2016–2019) and detection summaries are also overlaid (B), including sampled locations where the 

species was never detected (brown ‘+’ sign), locations where the species was detected at least once by 

acoustic auto IDs (blue dots), and locations where the species was detected either by manually verified 

acoustic records or capture data (black dots). Note the results for LANO were inconclusive due to issues 

reported in section 3.12. 

 

 
Figure 54. Mean predicted occupancy probabilities for Lasionycteris noctivagans (LANO) in 2016–2019 
predicted for all NABat grid cells in the modeled species range based on site-level covariates for each 
grid cell and year. This is depicted against the reference range map (blue polygon; National Atlas of the 
United States, 2011) and borders of U.S. states and Canadian provinces/territories. Note, the polygon 
depicting the reference range is for illustrative purposes only and was not used to bound occupancy 
probability predictions – instead, the analyses are bound by the geographic scope of monitoring data. 
The grid cells sampled each year are also displayed based on detection histories as: brown ‘+’ sign = 
never detected, blue dots = detected with an auto ID, black dots = detected with manual vetting and/or 
capture. Note the results for LANO were inconclusive due to issues reported in section 3.12. 
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Figure 55. The total change rate in mean grid cell occupancies (color bar) for Lasionycteris noctivagans 
(LANO) between 2016 and 2019 for all NABat grid cells in the modeled species range based on site-level 
covariates for each grid cell and year. This is depicted against the reference range map (blue polygon; 
National Atlas of the United States, 2011) and borders of U.S. states and Canadian provinces/territories. 
Note, the polygon depicting the reference range is for illustrative purposes only and was not used to 
bound occupancy probability predictions – instead, the analyses are bound by the geographic scope of 
monitoring data. For visualization purposes, the upper bound of the scalebar is truncated at 1.5 (150%) 
and corresponds to values of 1.5 and above, while the lower bound is naturally bounded at -1 (-100%). 
Note the results for LANO were inconclusive due to issues reported in section 3.12. 
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Figure 56. Estimates of the average occupancy probability (�̂�𝑡) for Lasionycteris noctivagans (LANO) 
each year, aggregated across all NABat grid cells in modeled range each year. Means (points) and 95% 
credible intervals (bars) are depicted according to the percent of grid cells sampled in the modeled 
species range each year (legend). Note the results for LANO were inconclusive due to issues reported in 
section 3.12. 
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Figure 57. Estimates of average annual change (avg_annual_change = lambda_avg – 1) and total change 

(total_change = lambda_tot - 1) for Lasionycteris noctivagans (LANO) over the short-term (2016–2019, 

three years of change). Means (points) and 95% credible intervals (bars) are depicted according to the 

percent of grid cells sampled in the modeled species range each year (legend). Note that the 95% 

credible intervals do not overlap zero, indicating there is at least 95% certainty that trends in LANO 

occupancy are positive. Note the results for LANO were inconclusive due to issues reported in section 

3.12. 

Table 20. The numerical values represented in Figure 57 for average annual change and total average 
change over a short-term (2016–2019, three year) period. 

Trend Type Quantity  Mean Lower CRI Upper CRI 

Annual avg_annual_change_3yr 0.0354 0.0110 0.0601 
Total total_change_3yr 0.1080 0.0310 0.1876 
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3.12.3 Lasiurus cinereus  

(A) 

  
(B)
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Figure 58. A map of Lasiurus cinereus (LACI) mean occupancy probabilities (color bar) predicted in each 
NABat grid cell in the modeled species range for 2019. Probabilities are depicted against the reference 
range map (blue polygon; National Atlas of the United States, 2011) and borders of U.S. states and 
Canadian provinces/territories (A and B). Note, the polygon depicting the reference range is for 
illustrative purposes only and was not used to bound occupancy probability predictions – instead, the 
analyses are bound by the geographic scope of monitoring data. All sampled locations (2016–2019) and 
detection summaries are also overlaid (B), including sampled locations where the species was never 
detected (brown ‘+’ sign), locations where the species was detected at least once by acoustic auto IDs 
(blue dots), and locations where the species was detected either by manually verified acoustic records 
or capture data (black dots). Note the results for LACI were inconclusive due to issues reported in 
section 3.12. 

 

 
Figure 59. Mean predicted occupancy probabilities doe Lasiurus cinereus (LACI) in 2016–2019 predicted 
for all NABat grid cells in the modeled species range based on site-level covariates for each grid cell and 
year. This is depicted against the reference range map (blue polygon; National Atlas of the United 
States, 2011) and borders of U.S. states and Canadian provinces/territories. Note, the polygon depicting 
the reference range is for illustrative purposes only and was not used to bound occupancy probability 
predictions – instead, the analyses are bound by the geographic scope of monitoring data. The grid cells 
sampled each year are also displayed based on detection histories as: brown ‘+’ sign = never detected, 
blue dots = detected with an auto ID, black dots = detected with manual vetting and/or capture. Note 
the results for LANO were inconclusive due to issues reported in section 3.12. 
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Figure 60. The total change rate in mean grid cell occupancies (color bar) Lasiurus cinereus (LACI) 
between 2016 and 2019 for all NABat grid cells in the modeled species range based on site-level 
covariates for each grid cell and year. This is depicted against the reference range map (blue polygon; 
National Atlas of the United States, 2011) and borders of U.S. states and Canadian provinces/territories. 
Note, the polygon depicting the reference range is for illustrative purposes only and was not used to 
bound occupancy probability predictions – instead, the analyses are bound by the geographic scope of 
monitoring data. For visualization purposes, the upper bound of the scalebar is truncated at 1.5 (150%) 
and corresponds to values of 1.5 and above, while the lower bound is naturally bounded at -1 (-100%). 
Note the results for LANO were inconclusive due to issues reported in section 3.12. 
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Figure 61. Estimates of the average occupancy probability (�̂�𝑡) for Lasiurus cinereus (LACI) each year, 
aggregated across all NABat grid cells in modeled range each year. Means (points) and 95% credible 
intervals (bars) are depicted according to the percent of grid cells sampled in the modeled species range 
each year (legend). Note the results for LACI were inconclusive due to issues reported in section 3.12. 
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Figure 62. Estimates of average annual change (avg_annual_change = lambda_avg – 1) and total change 

(total_change = lambda_tot - 1) for Lasiurus cinereus (LACI) over the short-term (2016–2019, three years 

of change). Means (points) and 95% credible intervals (bars) are depicted according to the percent of 

grid cells sampled in the modeled species range each year (legend). Note that when the 95% credible 

intervals do not overlap zero, there is at least 95% certainty that trends in species occupancy are either 

negative or positive. When credible intervals overlap zero, there is less than a 95% certainty that these 

trends are different than zero. Note the results for LACI were inconclusive due to issues reported in 

section 3.12. 

Table 21. The numerical values represented in Figure 62 for average annual change and total average 
change over a short-term (2016–2019, three year) period. 

Trend Type Quantity  Mean Lower CRI Upper CRI 

Annual avg_annual_change_3yr 0.0535 0.0026 0.1069 
Total total_change_3yr 0.1494 -0.0020 0.3120 
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4. Discussion  
Bats in North America follow a complex seasonal life cycle with a maternity season in summer 
(Loeb et al. 2015). In this report, we used summer population monitoring data (acoustic and 
capture records) from the NABat database as a line of evidence to better understand the status 
and trends of 12 bat species across their North American ranges. Specifically, we used 
occupancy analysis (e.g., MacKenzie et al. 2002, MacKenzie et al. 2008, Chambert et al. 2015) to 
produce occupancy probability distribution maps and related metrics based on modeled habitat 
relationships. While summer occupancy is often positively correlated with changes in local 
abundance, occupancy provides additional insight into species’ distributions, which are driven 
by a variety of factors including animal movement, space use, and habitat selection (Gaston 
2003). These analyses represent one of multiple lines of evidence necessary to provide a full 
picture of the status and trends of bat populations (Loeb et al. 2015). The results provided here 
should be taken in context with additional NABat status and trends analyses on summer 
abundance analyses (e.g., from analyzing just the mobile acoustic data) and winter abundance 
(from analyzing internal roost counts), both of which are currently underway for species which 
sufficient data are available.  

We calculated several status and trend-related metrics based on species occupancy 
probabilities across multiple spatial and temporal scales. Maps of species occupancy 
probabilities are useful for informing management decisions that are influenced by where and 
in what likelihood a bat species may be present (e.g., forest management practices) during a 
specific period of time. Estimates of grid cell-level occupancy can be useful for comparisons 
across space (regions of high and low occurrence) or comparing trends over time. Aggregate 
measures of occupancy at larger spatial scales (i.e., the average over all grid cells in a region of 
interest) can be similarly compared across space and time to gain insights into the status and 
trends of species distributions. Time series in the average occupancy probabilities at the range-
wide scale and at state/province/territories (Appendix B) can be useful for these comparisons. 
We calculated two different trend indicators (average annual change and total change) over 
short-, medium-, and long-term trends for all 12 species at multiple spatial scales, which can 
help to inform species’ conservation efforts (e.g., status assessments, prioritization efforts).  

We found marked long-term declines in the range-wide average occupancy probabilities of 
three species of North American bats (MYLU, PESU, and MYSE). For MYLU, we found average 
annual declines in range-wide occupancy probability between 2010 and 2019 of -2.48% 
(95%CRI = -3.7% – -1.18%) per year and a total change between 2010 and 2019 of -21.03% 
(95%CRI = -29.74% – -11.57%). For PESU, we found average annual declines in range-wide 
occupancy probability between 2010 and 2019 of -6.23% (95%CRI = -8.31% – -4.00%) per year 
and a total change between 2010 and 2019 of -49.68% (95%CRI = -59.22% – -38.83%). For MYSE 
between 2010 and 2019, we found average annual declines in range-wide occupancy 
probability of -3.71% (95%CRI = -6.99% – -3.50%) per year and total change between 2010 and 
2019 of -40.28% (95%CRI = -56.93% – -18.53%). These large declines in average occupancy 
probability corresponded with the continued progression of white-nose syndrome since its 
discovery in 2006, and the coincident declines in winter colony counts (Cheng et al. 2021a). This 
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was also evidenced by the meaningful spatiotemporal associations we found between winter-
to-summer connectivity metrics and summer occupancy probabilities (Appendix C, C.1 – C.3).  

4.1 Interpreting occupancy estimates and trends  
Estimates of species occupancy are associated with a specific geographic region of interest and 
year. As different trends can arise at different spatial scales (e.g., range-wide declines despite 
some regional increases), it is important to keep the geographic extent of a trend estimate in 
mind when interpreting results. We provide estimates of ‘range-wide’ occupancy, yet they do 
not correspond with the entire reference range of each species because 1) a lack of data and 2) 
uncertainty regarding the true range limit of each species (e.g., confirmation data exist outside 
of the published species’ ranges). Furthermore, reference range maps often vary between 
sources and there is a lack of consensus on the most accurate source for each species. We 
make the distinction between the ‘modeled species range (summer),’ which we used 
throughout these analyses when referring to ‘range-wide’ estimates, and the true but unknown 
species range across all North America. We infer range-wide status and trends based on the 
extent of the occupancy map predictions. As a result, range-wide species occupancy estimates 
may evolve as better approximations of the true extent of species ranges emerge. In the future, 
as more data become available and modeling approaches are refined, occupancy analyses may 
themselves be used to update species range maps.  

The degree to which monitoring data and inferences drawn from monitoring data (e.g., species-
habitat relationships, trends in average occupancy probability) are representative of a given 
region of interest (state/province/territory or modeled range) and/or year are dependent on 
the percent of grid cells sampled and the representativeness of the underlying environmental 
covariates at sampled locations. In some cases, average occupancy probability estimates for an 
ecoregion can be quite precise, despite very little sampling in an overlapping state, province, or 
territory. This occurs when there are sufficient data within the ecoregions used to fit the 
models and make the predictions, but relatively few data from the state, province, or territory 
of interest. To acknowledge this source of uncertainty in occupancy estimates, we depicted the 
percent of grid cells sampled in each region of interest and year for each species using a grey 
scale and shapes. Several regional estimates had less than 3% sampling each year and these 
results may motivate future monitoring efforts with an eye towards improving representation 
for all states, provinces, and territories.  

We found that short-term trend indicators may provide early insight into the most recent 
changes in occupancy, but were generally prone to issues of small sample sizes and the 
potential for a single year to drive averages. Furthermore, we found that short-term trends 
might be positive despite long-term declines, especially if most severe declines pre-dated the 
sampling period. For MYSE, the estimated low point of the time series for range-wide average 
occupancy probability occurred in 2016 (the first year of the short-term time period), which is 
followed by a small increase in 2017, a very large increase in 2018, and a decline in 2019 to near 
2017 levels. The point estimates for both short-term trend indicators (average annual change 
and total change) were positive, while the 95% credible intervals suggest there was less than 
(but quite close to) a 0.95 probability that the trend was positive. However, the point estimates 
for both medium-term indicators were negative with less than 95% certainty (i.e., credible 
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intervals overlapping zero), and the point estimates for both long-term indicators were 
negative with greater than 95% certainty (i.e., 95% credible intervals not overlapping zero). So, 
in this case, the positive short-term trend is driven by an all-time low point in MYSE’s occupancy 
estimates in 2016 and a single high point average occupancy probability in 2018.  

Medium-term and long-term trends are more robust to issues of small sample sizes but require 
longer-term data sets to estimate. Given the spread of WNS over time and declines in winter 
colony counts (Cheng et al. 2021a), longer-term trends are also more likely to capture historical 
impacts of WNS (if pre-WNS monitoring data are available). However, it is worth noting that 
severe impacts due to WNS had already been realized in parts of the Northeastern United 
States before 2010 (Cheng et al. 2021a). For most species, monitoring data are only available 
starting in 2016. For other species, data are relatively sparse prior to 2015 and don’t follow 
NABat monitoring guidelines (Loeb et al. 2015). Uncertainty in estimates for these earlier years 
are appropriately higher than later years due to small sample sizes. So, despite the strengths of 
long-term trend indicators, they also have limitations in the current analyses. To help mitigate 
these sampling limitations in early years, we included winter-to-summer connectivity metrics as 
predictors of summer occupancy probabilities for MYLU, MYSE, and PESU. Winter-to-summer 
connectivity metrics can change in space and time based on winter hibernacula counts each 
year (Section 2.2.3). We also included an autoregressive (AR1) process to account for 
biologically plausible temporal autocorrelation on occupancy intercepts over time (Appendix A). 
However, estimates in early years in regions of interest without known hibernacula (e.g., the 
western U.S. for MYLU) were more uncertain. With an additional five years of NABat monitoring 
data, these limitations in medium- and long-term trend indicators may become less 
problematic. Similarly, additional years of data will allow for medium- and long-term trend 
estimates to be calculated for the additional nine species in these analyses for which we 
currently only provide short-term trend estimates.  

4.2 Data limitations 
There were several limitations of the available monitoring data. First, acoustic monitoring 
methods for bat populations are subject to both false positive and false negatives, which 
required statistical consideration (Banner et al. 2018). Second, manually vetted data and 
capture data were conservatively treated as presence only, and this limited the types of false 
positive occupancy models that could be implemented (Stratton and Irvine 2022). Next, while 
the NABat protocol (Loeb et al. 2015) was specifically designed to follow a probabilistic 
sampling order to ensure spatial randomness and representation, these data were combined 
with historical data that did not follow a probabilistic sampling framework for selecting grid 
cells to sample, which could result in analytical biases (Irvine et al. 2018). Next, there are clear 
geographic biases in regions of interest with no sampling data or limited sampling data, and 
these regions of interest are underrepresented in the analyses. While predictions in occupancy 
and trends can be made for these regions of interest (and sometimes with high precision based 
on underlying ecoregion sampling), estimates in geographic regions of interest with little to no 
data are less representative than those with higher sampling effort.  

Another limitation of the available monitoring data was that sampled locations were often 
different between years (i.e., a non-spatiotemporally balanced sample). As a result, estimates 
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of occupancy relationships and trends over time may be biased due to sampling artifacts (Irvine 
et al. 2018). This limited the types and the spatial scale of spatiotemporal dynamics that could 
be built into these occupancy models (Appendix A, Section A.2). There may also be potential 
geographic biases in mobile transect surveys from a non-random distribution of roads with 
respect to bat habitat. Finally, the summer space use distribution of many bat species is 
strongly tied to summer roost locations. Inclusion of summer roost locations and abundances 
over time may help to improve occupancy estimates of some species. For example, based on 
the distribution of summer roost locations and counts, the occupancy probabilities for MYGR 
may be overpredicted for parts of eastern Tennessee and western North Carolina (where bat 
counts at individual summer roosts are often less than a few hundred individuals), and 
underpredicted in central Kentucky and central Tennessee (where populations in individual 
summer roosts can be greater than 50,000 bats; I. Kuczynska, U.S. Fish and Wildlife Service, 
written communication, February 15, 2022). However, while occupancy and abundance are 
related (especially at the grid cell level), a region with lower abundances at summer roost could 
feasibly have a higher proportion of grid cells occupied than a region with higher abundances if 
summer roosts are more widely dispersed across the landscape. Inclusion of known roost 
location data (and counts when available) in future analyses may help to reconcile these 
differences and contributing these data to the NABat database is encouraged.  

4.3 Analytical limitations 
The observation component of our false positive occupancy model allowed us to account for 
both false positives and false negatives by combining information on auto IDs with manually 
vetted data and capture data. However, due to data limitations (i.e., presence-only 
representations of manual vetting and capture data), we were limited to using site-level 
confirmation methods (Chambert et al. 2015, Stratton and Irvine 2022). These methods are 
generally less estimable than observation-level confirmation methods and are more prone to 
biases (Chambert et al. 2015, Section A.2.4). Following suggestions in the literature for site-
confirmation false-positive methods (Royle and Link 2006), we included an additional constraint 
that true positive rates (aggregated over a seven-day observation period) must be higher than 
false positive rates to improve estimation and reduce potential biases (Section A.2.4). This 
assumption is likely to hold better for some species than others. In fact, fitting models for EPFU, 
LANO, and LACI was considerably more difficult than for other species, which is likely related to 
higher false positive rates for these species paired with mostly small and unimportant 
estimated effects of detection covariates (Section 3.12, Appendix C). A recent development of 
‘conditional vetting’ in the NABat database, for which the number of auto IDs reviewed and the 
number of auto IDs confirmed can be inferred, allows for observation confirmation methods (at 
the individual call-sequence level) to be implemented in future modeling efforts. A final 
limitation of the observation model was aggregating detector-level responses at the sampling 
night across seven-day observation periods. This was done to mitigate concerns of non-
independence in time (Appendix A.1.1); however, this precluded the inclusion of nightly level 
resolution of predictors on the observation process. We will investigate options in the future 
for how to account for these finer scale sources of variation. 

The ecological component of each species occupancy model estimated species-specific 
environmental relationships, and, in conjunction with additional spatiotemporal effects, 
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allowed for making predictions in species occupancy probabilities across modeled species 
ranges. The degree to which the predicted occupancy map and trends over time reflect the 
‘true’ distribution and trends of a species is thus dependent on how well the important factors 
that determine species distributions and their changes over time are captured in these models. 
Despite the inclusion of abiotic and biotic covariates, predictions of occupancy probability can 
diverge from the true species distribution for all the same reasons that the realized niche of a 
species diverges from the fundamental niche (e.g., unaccounted for influences of biotic 
interactions, dispersal limitation, disturbance, source-sink dynamics, anthropogenic impacts). 
Furthermore, these statistical models are rough approximations of biological processes. Ideally, 
we would fit fully spatiotemporally dynamic occupancy models at the grid cell spatial scale (e.g., 
Rodhouse et al. 2015, Wright et al. 2021). However, we cannot currently meet the data and 
computational requirements of these models given issues of non-spatiotemporally balanced 
sampling and further complications of spatiotemporal models, and of false positive occupancy 
models. Instead, we used a combination of hierarchical ecoregion random effects in space and 
time, a temporal autoregressive (AR1) process, spatial grid cell-level predictors (e.g., elevation, 
temperature, physiographic diversity, percent forest cover) and, in some cases (MYYU, MYVO), 
a grid cell-level multivariate spatial spline to account for unmeasured, spatial continuous 
influences at large spatial scales (Appendix 3.2). Also, in the case of MYLU, MYSE, and PESU, a 
winter-to-summer connectivity metric (Section 2.2.3) provided additional spatiotemporal 
information for predicting summer occupancy probabilities in space and time.  

A general set of ecological predictors was included for each species (Section 2.2, Section A.3), 
and additional covariates were included based on discussions with species experts and the 
availability of data-sets across the entirety of North America. Strong correlations in potential 
predictor variables sometimes precluded the inclusion of some pairs of predictor variables (e.g., 
both percent forest cover and Normalized Difference Vegetation Index, NDVI). Moderate 
correlations between some important predictor variables were mostly unavoidable given the 
correlated physical and biological processes that influence these factors (e.g., temperature and 
elevation, physiographic diversity and percent forest). Correlations in predictor variables make 
interpreting covariate effects in isolation problematic. For example, MYSE is dependent on 
deciduous or mixed hardwood-coniferous forests for summer habitat (e.g., Henderson et al. 
2008); however, the estimated effect for percent forest cover (of any forest type) was negative 
for MYSE after accounting for all other correlated covariate effects (e.g., elevation, 
physiographic diversity, winter to summer connectivity). Furthermore, the inclusion of 
additional ecoregion effects or spatial splines can sometimes absorb the influence of spatially 
correlated predictors. Given the correlations in predictor variables, these current models are 
currently better suited for making predictions of occupancy probabilities as opposed to testing 
specific hypotheses of influences on species occupancy in isolation of other covariate effects. 
Three final complications include: 1) we are missing regional covariates that may only be 
relevant in portions of the range, 2) we do not capture interaction differences in covariate 
effects across geographic regions (e.g., the effects of elevation on species occupancy may in 
fact be different at 5,000 ft in the interior Rocky Mountains versus the mountains on the Pacific 
coast), and 3) some predictor variables (e.g., percent forest of any kind) may not fully capture 
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important heterogeneity in the ecological relationships of specialist species (e.g., selection for 
deciduous versus coniferous forest).  

4.4 Looking forward 
Together with the NABat community, we have developed a pipeline for assessing status and 
trends of North American bat populations from multiple sources of monitoring data. This 
pipeline allows us to make data-driven, repeatable, and transparent inferences by constructing 
the best possible approximation of reality given limitations in the data and available analytical 
methods. All forms of ecological inference (formal or informal) depend on assumptions (either 
explicit or implicit) and are subject to observation biases (e.g., detectability). This report reflects 
the current state of the science and can serve to identify specific areas for improvement. Our 
ability to assess bat populations will improve as additional years of data are collected, 
geographic gaps in sampling are rectified, and the representativeness of sampling is increased. 
Additionally, uploading the actual recording files will facilitate our ability to reprocess call-
sequences as new software become available with improved classification accuracy. Also, 
increasing the proportion of unambiguous data sets (e.g. manually-vetted acoustic observations 
and capture data) would help to improve inference by overcoming limitations for false-positives 
introduced by ambiguous acoustic detections. Obtaining and including data on summer and 
winter roost locations and abundances could also help to improve summer occupancy 
predictions by anchoring on known population centers. We will continue to incorporate 
feedback from NABat Technical Working Groups and Community of Practice to improve data 
quality and efficiencies in data collection and upload procedures, while developing novel 
statistical methods to maximize the utility of available data. Thus, NABat reports on status and 
trends of North American bat species will evolve as the state of the science and NABat 
monitoring data advance over time.  
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Appendix A: Statistical Method Used for the False-positive Occupancy 
Modeling and Predictions  

A.1 Statistical methods used for the false-positive occupancy modeling  
Data collected under the NABat probabilistic sampling protocol are well suited to analysis via 
occupancy modeling. In fact, they have been specifically designed for analyzing bat distributions 
using occupancy modeling at continental scales (Loeb et al. 2015). The purpose of occupancy 
modeling (e.g., MacKenzie et al. 2002, MacKenzie et al. 2006) is to estimate the probability of 
species presence (i.e., the occupancy probability) each summer in each sampled grid cell (10 km 
x 10 km) using data from replicated surveys of grid cells within each summer. Then, using the 
estimated spatial and temporal covariate effects on grid cell-level occupancy for each species, 
predictions can be made for each grid cell in the species range for each year of interest. Thus, 
occupancy analysis can provide distributional maps of species occupancy probabilities across 
their ranges, along with estimates of the mean occupancy probability aggregated across larger 
spatial regions of interest (e.g., Colorado, range-wide) and how these have changed over time 
(trends). By conducting these analyses in a hierarchical Bayesian analytical framework, we can 
also provide estimates of uncertainty for each of these quantities at different spatial scales (grid 
cell, state/province, range).  

A.2 Observation model  
A key feature of occupancy models is the ability to separate biases due to observation 
processes (e.g., detectability and false positives) from the ecological process of interest (e.g., 
occupancy). False positive occupancy models (Royle and Link 2006, Miller et al. 2011, Chambert 
et al. 2015) incorporate both false positives (misclassification) and false negatives (species was 
present but not detected) into the detection process and require confirmation data at the site, 
site/night, or call-sequence level or explanatory covariates on the detection parameters. 
Following previous work using false-positive occupancy models in the U.S. Fish and Wildlife 
Service 3 Bat Species Status Assessment (SSA) by Stratton and Irvine (2022) and work by Miller 
et al. (2011) on site-level confirmation models, we employed a multiple detection state site 
confirmation model (MDSM) for the summertime false-positive occupancy modeling. While site 
confirmation methods are more limited than observation-level models (Chambert et al. 2015), 
the data requirements are more easily met (i.e., more suitable for presence-only confirmation 
data such as the unconditional manual vetting data or capture data).  

A.2.1 Data fusion and aggregation for occupancy modeling  

To incorporate all five data sources into a coherent false-positive occupancy modeling 
framework, we classify each response as: (0) non-detection, (1) ambiguous detection, or (2) 
unambiguous detection. This classification system is consistent with the false-positive 
occupancy models developed by Miller et al. (2011). For our analysis, a manual identification or 
capture record was considered an unambiguous detection and an automatically identified call-
sequence was considered an ambiguous detection. Classifying each response in this manner is 
consistent with the recent literature applying false-positive models from Miller et al. (2011) to 
acoustic data (Balantic and Donovan 2019). 
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One assumption of the occupancy modeling framework is that repeated visits to a site (or 10 x 
10 km cell in the context of our analysis) are temporally and spatially independent. Continuous 
periods of monitoring potentially violate the assumption of temporal independence, as we 
would expect sequential nights of monitoring to be similar due to runs in bat activity (Wright, 
Irvine, and Rodhouse 2016; Wright, Irvine, and Higgs 2019). To avoid the violation of temporal 
independence among revisits to a site, continuous periods of monitoring were aggregated to 
seven-day periods. Also, reducing the size of otherwise very large monitoring data sets reduced 
the computational demands and improved the feasibility of Bayesian model fitting. The seven-
day period started from the first visit to a grid cell. For example, if the first visit occurred on a 
Tuesday, the next 6 nights would be included in the seven-day period if there were additional 
visits to that same grid cell. Detection status for each period was summarized as the highest 
level of species detection (0: no species detections, 1: at least one ambiguous detection, 2: at 
least on unambiguous detection) over the entire seven-days. If a site had multiple visits 
separated by more than seven days, each was treated as an independent revisit. 

Multiple assumptions were made regarding the spatial independence of revisits to a site (see 
below). These assumptions could not be assessed as event-specific coordinates because 
contributed data were not consistently available. These assumptions included the following 
conditions: 

1) If multiple detectors were deployed simultaneously, they were assumed far 
enough apart from one another to maintain independence. Because data collected 
before 2016 predates NABat protocols, this may not strictly hold for all observations. 
However, because the spatial coordinates of many detectors were missing, this was not 
possible to evaluate.  

2) If multiple detection methods occurred concurrently (i.e., mobile transects and 
stationary acoustic surveys occurred during the same span of time), they were assumed 
to be spatially independent.  

Based on these assumptions, detection matrices were created for each species.  

A.2.2 Additional model assumptions 

The occupancy modeling framework includes two key assumptions: 1) the occupancy state at 
each site is closed for the duration of each summer and 2) detection both within and between 
sites must be independent. We assume that within each site (10 x 10 km cell) the occupancy 
state does not change over the course of a summer (May 1–Aug 31). However, the closure 
assumption for the occupancy modeling framework is made at a species level, which means 
that individuals may move in and out of the grid cell throughout the summer. Also, the closure 
assumption does not require that a species roosts within a particular grid cell, only that the 
species occurs/uses the grid cell (MacKenzie et al. 2006).  

We assume both that detection of the target species at one site does not affect detection of 
that species at another site and that detection of the target species during one visit to a site 
does not affect detection of that species during subsequent visits to the site. We assume there 
is no unexplained spatial or temporal correlation among observations both within and among 
sites after accounting for observation level covariates and other spatial or temporal random 
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effects. The master sample design outlined in A Plan for the North American Monitoring 
Program was constructed to ensure that sampled grid cells are far enough apart to be 
considered spatially independent (Loeb et al. 2015). However, as mentioned previously, the 
fusion of data types (stationary surveys, mobile surveys, and capture data) and of data that did 
and did not follow NABat monitoring protocols as documented in Loeb et al. 2015 means the 
spatial independence assumptions are not necessarily satisfied. 

To ensure that the data are consistent with the assumption of independent detections within a 
site, there must again be no unexplained sources of temporal or spatial correlation. Temporal 
correlation in detection within a site may arise from continuous periods of monitoring. To 
account for this potential source of temporal correlation, responses were aggregated up to a 
weekly level. Spatial correlation in detection within a site may arise from detection methods 
being deployed too close in proximity to each other. Loeb et al. (2015) provides suggested 
protocols for how to deploy multiple detection methods simultaneously within the same site 
while still maintaining spatial independence in detections. However, point specific coordinates 
for detections were unavailable. Therefore, a direct assessment of the spatial independence 
assumption within a grid cell is not possible. As a result, we conduct these analyses under the 
assumption that if multiple detection methods were deployed within a cell concurrently 
(multiple stationary detection devices deployed simultaneously, stationary and mobile acoustic 
detectors deployed concurrently, etc.) they were deployed far enough apart to be spatially 
independent. Data collected following the NABat plan adhere to this assumption, but data 
collected prior to the existence of the NABat plan or under different conditions may not.  

A.2.3 Statistical model 

Each grid cell (i) had one or more ‘visits’ (j) within a given year. Multiple detector locations in 

each grid cell, multiple sampling events per location, and observations by different survey types 

(stationary, mobile, capture) are treated as repeated and independent visits to a grid cell. For 

example, four locations with a stationary detector in a grid cell result in four independent visits 

for each observation event (7-day period). . We model the partially observed latent occupancy 

state (𝑧𝑖) and the observed response for grid cell i during visit (𝑦𝑖𝑗| 𝑧𝑖) as follows: 

𝑧𝑖 ~ Bernoulli(𝜓𝑖) 

𝑦𝑖𝑗| 𝑧𝑖 ~ Categorical(𝑀𝑖𝑗) 

where [𝑀𝑖𝑗| 𝑧𝑖𝑗 = 0 ] = [{1 − 𝑝10𝑗
} {𝑝10𝑗

} {0}] for observation states 𝑦𝑖𝑗 = {0,1,2} when 𝑧𝑖 =

0 and [𝑀𝑖𝑗| 𝑧𝑖𝑗 = 1] = [{1 − 𝑝11𝑗
} {(1 − 𝑏𝑗) ∗ 𝑝11} {𝑏𝑗 ∗ 𝑝11𝑗

}] for observation states 𝑦𝑖𝑗 =

{0,1,2} when 𝑧𝑖 = 1.  

For this analysis, the probability of the species occurring at site 𝑖 (𝜓𝑖) was modeled as a 
function of grid-cell specific covariates (see ecological state model Section A.3) using a logit link. 
Each of the detection-level parameters (𝑝11, 𝑝10, 𝑏) was modeled with a random intercept by 
year and ecoregion level-3 (Section 2.2.4) to account for unmeasured temporal and spatial 
influences (e.g., ecological communities, bat abundances, environmental conditions, likelihood 
of capture effort, potential project level differences in monitoring equipment/analysis in each 
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geographic region) on the observation processes. Furthermore, observation-level covariates 
collected from Daymet were aggregated temporally (to match the response data) and were 
included as covariates on the detectability 𝑝11. These variables included day length, day of year, 
precipitation (a 0/1 indicator), minimum air temperature, and water vapor pressure. A rough 
measure of total effort (the total number of rows in the response data aggregated across for 
each observation) was also included to account for variable effort.  

A.2.4 Constraints on p11 and p10 for identifiability  

Lack of identifiability in false-positive occupancy model parameters is a known issue, and 
sufficient information about classification probabilities is required to resolve the problem 
(Royle and Link 2006, Chambert et al. 2012, Chambert et al. 2015) This is because in the implicit 
mixture of true positives and false positives, 𝑝11  ∗ 𝑧𝑖  + (1 − 𝑧𝑖) ∗ 𝑝10, different values of p11 
and p10 can lead to the same likelihood values. Several methods are available to overcome this 
issue: 1) incorporate observation level confirmation methods instead of site level, 2) include 
informative, distinct, and non-correlated covariates for each parameter, or 3) constrain the 
model so that p11 (the true positive rate) must be greater than p10 (the false negative) (Royle 
and Link 2006). The false positive framework used here is a site-level confirmation method, 
which precludes option 1. Option 2 requires good covariates for all three observation 
parameters; however, while we have a priori biologically meaningful covariates for true positive 
rates, we do not have informative covariates for false positive rates which may be largely driven 
by the noise in the underlying ecological community (e.g., other bat species) and classification 
software types. Nor do we have predictive covariates for the confirmation rate, which is the 
product of the probability of confirmation effort and the probability that at least one 
observation over each seven-day period was a true positive. The confirmation rate is also a mix 
of acoustic confirmation, and capture confirmation, which further complicates the 
interpretation of this parameter.  

Thus, we are left with option 3, constraining the model so that p11 is greater than p10. We 
found that this constraint greatly improved both our model fitting procedures and predicted 
occupancy maps (based on discussions with species experts). These assumptions also agree 
with NABat guidance for vetting auto IDs (i.e., when reviewing auto IDs and lacking diagnostic 
evidence of a misclassification, accept the auto ID; Reichert et al. 2018). This assumption is 
further justified when considering that p11 and p10 do not correspond to call-sequence level 
false positives and true positives, but rather to detection rates aggregated over seven-night 
periods and potentially multiple detectors. Thus, p11 corresponds to the probability of getting 
at least one true call-sequence over the entire aggregation period, while p10 is the probability 
that every auto ID detection over the aggregation period is a false negative (Royle and Link 
2006). Moving beyond site-level confirmation methods to observation level confirmation 
methods should allow for this assumption to be relaxed.  

A.3 Ecological model for grid cell-level occupancy  
An ecological model for predicting grid cell-level occupancy probabilities in space and time for 
each species was developed following several steps. First, a general set of grid cell level 
predictors based on the previous literature and conversations with bat species experts were 
considered, including maximum elevation, average annual temperature, physiographic 



99 
 

 

diversity, annual precipitation, percent forest, and percent wetlands (Sections 2.2.1 and 2.2.2). 
Quadratic effects of maximum elevation and average annual temperature were also included to 
allow for hump shaped relationships rather than strictly logit-linear, which is especially 
important when modeling ecological relationships range-wide. These covariates provided the 
base model for each species, which were modeled on species occupancy using a logit link given 
the intercept (with spatiotemporal structure) and the ecological predictors. Second, the 
spatiotemporal dynamics were modeled on the intercept by including hierarchical ecoregion 
spatial effects (at levels 1, 2, and/or 3) and autoregressive (AR1) temporal effects each year at 
ecoregion level-1 or level-2 depending on the species (See A.3, Table A.1). The inclusion of a 
temporal AR1 process was to account for correlation in species occupancy over time (i.e., that 
random year effects are not completely independent of one another, and years closer together 
in time should be more similar than years that are further apart in time). Third, additional 
spatiotemporal covariates (i.e., predictors that varied in space and time) were included where 
available, for example, the winter to summer connectivity metrics for MYLU, PESU, and MYSE 
(Section 2.2.3). 

Next, after preliminary models were fit and predictions for occupancy maps across species’ 
ranges were made, species experts were consulted about the occupancy map predictions and 
estimated ecological relationships for each species. Additional covariates were sometimes 
included on a species-by-species basis based on these discussions. For example, for MYLU, 
MYSE, PESU, and MYGR, a karst indictor was included to capture the effects of caves, and for 
MYSE, the effects of karst varied by year to capture the expected impacts of White Nose 
Syndrome (i.e., the a priori prediction was the effect of karst/caves would become increasingly 
negative over time due to WNS impacts). Distance to mines was also included for MYSE, MYLU, 
and PESU. For MYSE, the inclusion of time varying effects of karst, and effects of regional WNS 
impacts (via the winter-to-summer connectivity effects) was also consistent with a recent 
empirical study (Barr et al. 2021). Finally, a river and shoreline indicator was included for MYGR 
since summer roost locations and space-use are strongly tied to distance to large bodies of 
water. For MYYU and MYVO, a multivariate Gaussian spatial spline was also included (using a 
tensor product interaction via the mgcv R package, Wood 2012, 2016) after finding the model 
predictions better matched the a priori predictions of species experts with regards to 
elevational effects and predicted species distributions. See Table A.1 below for a description of 
each species model.  
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Table A.1. A description of the ecological model for predicting grid cell-level occupancy for each bat species. Note the parameter estimates from 
fitted models and the relative strength of effects are provided in Appendix C.  AR1 = autoregressive  

Species  Intercept  Winter-to-summer 
connectivity  

Spatial covariates Spatial covariates with 
AR1 time varying effects  

Spatial spline  

MYLU Space: Ecoregions levels 1, 
2, and 3 
 
Time (AR1): Ecoregion 
level-1 

Yes 
 
Effect set to zero in 
level-3 ecoregions 
with a mean 
connectivity less than 
-2.5 

Elevation 
Elevation2 

Temp 
Temp2 

Physiographic diversity  
Precipitation 
Percent Forest  
Percent Wetlands 
Karst (East Only)  
Distance to mines (East only) 

No No 

PESU Space: Ecoregions levels 1, 
2, and 3 
 
Time (AR1): Ecoregion 
level-1 

Yes Elevation 
Elevation2 

Temp 
Temp2 

Physiographic diversity  
Precipitation 
Percent Forest  
Percent Wetlands 
Karst  
Distance to mines  

No No 

MYSE Time (AR1): homogenous 
across space 

Yes Elevation 
Elevation2 

Temp 
Temp2 

Physiographic diversity  
Precipitation 
Percent Forest  
Percent Wetlands 
Distance to mines  

Karst No 
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Species  Intercept  Winter-to-summer 
connectivity  

Spatial covariates Spatial covariates with 
AR1 time varying effects  

Spatial spline  

MYYU Space: Ecoregions levels 2 
and 3 
 
Time (AR1): Ecoregion 
level-2 

No Elevation 
Elevation2 

Temp 
Temp2 

Physiographic diversity  
Precipitation 
Percent Forest  
Percent Wetlands 

No Tensor product 
interaction with 
5 knots in each 
direction (25 
total) 

MYTH Space: Ecoregions levels 2 
and 3 
 
Time (AR1): Ecoregion 
level-2 

No Elevation 
Elevation2 

Temp 
Temp2 

Physiographic diversity  
Precipitation 
Percent Forest  
Percent Wetlands 

No No 

MYEV Space: Ecoregions levels 2 
and 3 
 
Time (AR1): Ecoregion 
level-2 

No Elevation 
Elevation2 

Temp 
Temp2 

Physiographic diversity  
Precipitation 
Percent Forest  
Percent Wetlands 

No No 

MYVO Space: Ecoregions levels 2 
and 3 
 
Time (AR1): Ecoregion 
level-2 

No Elevation 
Elevation2 

Temp 
Temp2 

Physiographic diversity  
Precipitation 
Percent Forest  
Percent Wetlands 

No Tensor product 
interaction with 
5 knots in each 
direction (25 
total) 
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Species  Intercept  Winter-to-summer 
connectivity  

Spatial covariates Spatial covariates with 
AR1 time varying effects  

Spatial spline  

MYEV Space: Ecoregions levels 2 
and 3 
 
Time (AR1): Ecoregion 
level-2 

No Elevation 
Elevation2 

Temp 
Temp2 

Physiographic diversity  
Precipitation 
Percent Forest  
Percent Wetlands 

No No 

EPFU Space: Ecoregions levels 2 
and 3 
 
Time (AR1): Ecoregion 
level-2 

No Elevation 
Elevation2 

Temp 
Temp2 

Physiographic diversity  
Precipitation 
Percent Forest  
Percent Wetlands 

No No 

LACI Space: Ecoregions levels 2 
and 3 
 
Time (AR1): Ecoregion 
level-2 

No Elevation 
Elevation2 

Temp 
Temp2 

Physiographic diversity  
Precipitation 
Percent Forest  
Percent Wetlands 

No No 

LANO Space: Ecoregions levels 2 
and 3 
 
Time (AR1): Ecoregion 
level-2 

No Elevation 
Elevation2 

Temp 
Temp2 

Physiographic diversity  
Precipitation 
Percent Forest  
Percent Wetlands 

No No 
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Species  Intercept  Winter-to-summer 
connectivity  

Spatial covariates Spatial covariates with 
AR1 time varying effects  

Spatial spline  

MYLE Time (AR1): homogenous 
across space 

No Elevation 
Elevation2 

Temp 
Temp2 

Physiographic diversity  
Precipitation 
Percent Forest  
Percent Wetlands 

No No 

MYGR Time (AR1): homogenous 
across space 

No Elevation 
Elevation2 

Temp 
Temp2 

Physiographic diversity  
Precipitation 
Percent Forest  
Percent Wetlands 

Karst  
River/Shoreline 

No 
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In general, the finer the spatial scale used for modeling temporal change, the more accurately 
the model can capture temporal change across a landscape; however, due to the non-spatially 
balanced nature of sampling data over time (i.e., the sampling effort is shifting in space over 
time) care was taken to ensure the spatiotemporal component did not stratify the data too 
finely in space and time. This was to minimize potential biases in occupancy over time due to 
sampling issues and to minimize the number of regions and years with no sampling data. While 
Bayesian variants of information criterion can be calculated to help inform the model selection 
process, metrics such as Deviance Information Criterion (DIC) are not strictly valid for discrete 
mixture models, and Widely Applicable Information Criterion (WAIC) is not strictly valid when 
there is spatial or temporal autocorrelation (Hooten and Hobbs 2015). Furthermore, finer scale 
spatial models (e.g., spatial splines) were often favored by these metrics as opposed to those 
with less spatial structure, however, we found these effects often overpowered all other 
predictor effects and lead to overprediction for out of sample data. So, while information 
criterion metrics (DIC and WIAC) were calculated and were loosely used to guide initial model 
development, feedback received from species experts on the output of sample predictions (i.e., 
predicted occupancy maps) was given priority in guiding the final model structure for each 
species.  

Thus, the exact specification of spatiotemporal dynamics was different between species 
depending on 1) the scope/geographic size of the species range, 2) the amount of sampling in 
ecoregions over time, and 3) whether additional spatiotemporal covariates were available 
(Table A.1). For example, for MYLU, MYSE and PESU which all had winter-to-summer 
connectivity metrics to help explain spatiotemporal dynamics, temporal effects were included 
at larger spatial scales (Ecoregion level-1 for MYLU and PESU, range-wide for MYSE). Note that 
we bounded the effect of connectivity to be strictly positive to better disentangle these 
spatiotemporal effects from other spatially correlated predictors and to reflect the a priori 
hypothesis for this variable should have a minimum value of zero (i.e., no effect). For other 
species with large geographic ranges but without connectivity metrics to help explain fine scale 
temporal change, temporal dynamics were modeled at Ecoregion level-2. We did not include 
ecoregion effects for some species with limited geographic ranges (e.g., MYGR). In the next 
section, an example specification of hierarchical spatiotemporal ecoregion effects (the model 
used for both MYLU and PESU) is described. The same general structure was used for other 
species, but ecoregion level-1 was dropped, and temporal effects were modeled at ecoregion 
level-2.  

A.3.1 Hierarchical ecoregion effects in space and time  

The purpose of including hierarchical ecoregions effects was to, 1) to better account for 
unmeasured regional spatial influences that are not captured in the other grid cell-level 
predictors (e.g., spatiotemporal autocorrelation), 2) to provide useful spatiotemporal structure 
(i.e., allow occupancy to vary across time at different rates in different ecologically meaningful 
regions), and 3) allow for sharing of information at several hierarchical spatial scales. While fully 
spatiotemporal dynamic models at the grid cell scale (e.g., Wright et al. 2021) are desirable, we 
cannot currently meet the data requirements of such models. However, the addition of 
hierarchical ecoregions effects allowed us to incorporate a more useful spatiotemporal 
structure beyond a single range-wide intercept.  
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Let 𝑚 represent level-1 ecoregions, 𝑛 represent level-2 ecoregions, 𝑡 represent level-3 
ecoregions, and 𝑗 represent years. The overall intercept 𝜇𝑎𝑙𝑙, is the hyperparameter mean of 
the ecoregion level-1 random intercepts in space 𝜇𝐸1𝑚

, which come from a normal distribution 

with standard deviation 𝑠𝑑𝑒1.  

𝜇𝐸1𝑚
 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑎𝑙𝑙 , 𝑠𝑑𝑒1) 

A vague normal prior is used for 𝜇𝑎𝑙𝑙.The random intercept each year varied by ecoregion level-
1 based on a multivariate normal autoregressive process, where the level-1 ecoregion spatial 
effects serve as the mean across years for each ecoregion level-1, and the covariance matrix is 
defined based on the overall temporal variance 𝜎𝑦

2, and the correlation parameter 𝜌 (which 

determines the degree of autocorrelation over time) scaled by the distance between years.  

𝜇𝐸1𝑌𝑒𝑎𝑟𝑚,𝑗
 ~ 𝑀𝑉𝑁(𝜇𝐸1𝑚

, Σ) 

The temporal correlation matrix across years 𝑗 was constructed as follows. First, a square matrix 
with the number of rows and columns equal to the total number of years was specified with 
rows as 𝑖 and columns as 𝑘. Σ was constructed by looping over each entry 𝑖 and 𝑘 in the matrix, 

and when 𝑖 = 𝑘, then Σ𝑖,𝑘 = 𝜎𝑦
2, and when 𝑖 ≠ 𝑘, then Σ 𝑖,𝑘 = 𝜎𝑦

2 ∗ 𝜌|𝑖−𝑘|, where 𝜎𝑦
2 is the 

shared variance across level-1 ecoregions for year effects, while 𝜌 is the temporal correlation 
parameter and determines the degree of covariance between years given the distance between 
them (|𝑖 − 𝑘|). Level-2 and level-3 Ecoregion spatial effects were drawn from normal 
distributions with means of zero and standard deviations of 𝑠𝑑𝑒2 and 𝑠𝑑𝑒3 respectively, and 

these effects were added to the Ecoregion level-1 by year random intercepts (𝜇𝐸1𝑌𝑒𝑎𝑟𝑚,𝑗
).  

𝜇𝐸2𝑛
 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑠𝑑𝑒2) 

𝜇𝐸2𝑌𝑒𝑎𝑟𝑛,𝑗
= 𝜇𝐸1𝑌𝑒𝑎𝑟𝑚[𝑛],𝑗

+  𝜇𝐸2𝑛
  

𝜇𝐸3𝑡
 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑠𝑑𝑒3) 

𝜇𝐸3𝑌𝑒𝑎𝑟𝑡,𝑗
= 𝜇𝐸1𝑌𝑒𝑎𝑟𝑛[𝑡],𝑗

+  𝜇𝐸3𝑡
  

The levels of ecoregions used, especially for the temporal component, varied from species to 
species. An attempt was made to strike a balance between the finest level possible of spatial 
resolution in temporal change while also not dividing up the data too finely in space and time 
given limitations in the dataset (e.g., a non-spatiotemporally balanced sample). For MYLU, 
MYSE, and PESU, a winter to summer connectivity covariate was also incorporated, which 
accounts for expected grid cell-level spatiotemporal dynamics in the summer distribution given 
changes in the winter hibernacula counts, so temporal effects in the intercept were able to be 
modeled at a larger spatial scale than for species without this covariate. For MYSE, MYGR, and 
MYLE, ecoregions were dropped all together in favor of a range-wide intercept and covariate 
effects that changed over time (e.g., the effects of karst) and because in the case of MYGR, the 
range covers a small geographic extent. For MYSE, this was due to expert feedback that models 
with ecoregions tended to overpredict in some regions and lead to undesirable hard boundaries 
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between ecoregions, while the model without ecoregions matched more closely with expert 
expectations.  

For MYLU and PESU, temporal effects were modeled at the ecoregion level-1, because when 
paired with a winter to summer connectivity metric, this allowed for an adequate spatial 
resolution to temporal change without dividing the data too finely from region and year. For 
the remaining species (MYYU, MYEV, MYVO, MYTH, EPFU, LACI, and LANO), ecoregion level-1 
effects were removed, and year effects included at ecoregion level-2 to provide a finer scale of 
spatiotemporal change. We also received feedback from some species experts that ecoregion 
level-1 spatial and temporal effects spanned too large a spatial scale for some species and 
regions, that ecoregions levels 2 and 3 were a better representation.  

Spatial effects of ecoregions often overpowered other grid cell-level covariates and resulted in 
undesirable and unrealistic ‘hard edges’ between ecoregions in the predicted occupancy maps. 
To ameliorate this issue, we included moderately informative regularization priors on the 
standard deviations of the space and time random effects (i.e., by including a prior with high 
support at relatively small values and low support at larger values ). This is a common way of 
providing regularization in Bayesian models by pulling the coefficient effects towards zero (or 
towards the mean depending on parameterization) unless strongly supported in the data 
(Hooten and Hobbs 2015). Half-t distribution priors were used for these standard deviations, 
and the hyperparameters for degrees of freedom and scale varied by species depending on the 
amount of sampling data, where the target for the posterior distribution means on the 
standard deviations was less than 0.5 for ecoregions at level-1 and 2, and less than 0.25 for 
ecoregions level-3. Furthermore, the temporal autocorrelation parameter also provides a 
means of regularization of the change in occupancy over time and controls the degree of 
smoothness in the resulting time series of annual intercepts. To represent the a priori belief 
that the time series in bat occupancy should resemble Markovian dynamics (i.e., similar to the 
previous year) rather than entirely independent estimates from year to year, we put a weakly 
informative prior on the autocorrelation parameter of Beta (3,1), to ensure moderate amount 
of smoothness in the resulting time series.  

A.3.2 Winter-to-summer connectivity metric  

We calculated a winter-to-summer seasonal population connectivity metric for Myotis lucifugus 
(MYLU), Myotis septentrionalis (MYSE), and Perimyotis subflavus (PESU) to link the potential 
spatiotemporal influence of abundance in the known winter range to occupancy in the summer 
range. Winter counts for these species have declined drastically since the arrival of white-nose 
syndrome (WNS), with regional differences depending on the timing of WNS arrival (Cheng et 
al. 2021). We used a seasonal connectivity approach to examine whether there is a measurable 
spatiotemporal influence of known winter populations (and observed declines due to WNS) on 
the summer distribution of bats. We also included seasonal connectivity metrics in species’ 
occupancy models to leverage the spatiotemporal information in the winter population 
monitoring data to help predict species’ occupancy probabilities in space and time across 
summer distributions. For example, suitable habitat that was historically occupied at high rates 
may no longer be occupied due to severe regional WNS impacts. 
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We define a ‘potential connectivity’ metric based on metapopulation theory (Hanski and 
Ovaskainen 2000, Moilanen and Hanski 2001) to quantify winter-to-summer population 
connectivity, where the seasonal connectivity of a grid cell in the summer range is dependent 
on three factors: 1) the spatial distribution of all known winter hibernacula in the species range 
and the species abundance at each, 2) the distances between each hibernaculum and the grid 
cell of interest for summer occupancy, and 3) the seasonal migration movement behavior of the 
bats. One critical component of this metric is the seasonal migration/dispersal kernel, which 

describes the probability (𝑝𝑖𝑗) that summer site i (i.e., a grid cell) and winter hibernaculum j are 

connected based on the distance between them (𝑑𝑖𝑗). We chose the commonly used 

exponential kernel, which has a single parameter (𝛼: the inverse of the mean migration 
distance), for simplicity and ease of parameterization. Species-specific values for the mean 
migration distances are given in Table 5 (Section 2.2.3).  

𝑝𝑖𝑗 = exp(−𝛼 ∗ 𝑑𝑖𝑗) 

The pairwise connectivity each year y, between each grid cell i and known winter hibernaculum 

j, is then calculated by multiplying 𝑝𝑖𝑗 by hibernaculum abundances each year (𝐴𝑗𝑦).  

𝑆𝑖𝑗𝑦 = 𝑝𝑖𝑗 ∗ 𝐴𝑗𝑦  

Thus, 𝑆𝑖𝑗𝑦 is a proxy for the relative number of seasonal migrants between locations. Finally, 

the total seasonal connectivity in each grid cell and year is calculated by summing the 
contributions from each hibernaculum to each summer grid cell and year.  

𝑆𝑖𝑦 = ∑ 𝑆𝑖𝑗𝑦

𝑗

 

The winter-to-summer connectivity values for each grid cell and year (𝑆𝑖𝑦) were then included 

in the occupancy analyses as additional spatiotemporal covariates to estimate and predict 
trends in occupancy probabilities in space and time. When used as a predictor variable in 
occupancy analysis which utilizes a logistic regression, non-normal distributions, especially 
those that span values greater than three or less than negative three, can cause issues with the 
estimation procedure. This is especially true when all other predictor variables are centered 
(mean of zero) and scaled to have a standard deviation of one (implying that more than 95% of 
values should fall between negative two and two). Values were scaled for use in the occupancy 
models by taking a ‘log plus one’ transformation and then centering by the mean across 
sampled locations and years to improve estimation. The log transformation was used to 
normalize the raw data, which spanned many orders of magnitude, and the ‘plus one’ was 
included to limit the precision of values less than one, especially values very close to zero (e.g., 
1e-17) which functionally represent zero expected seasonal migrants.  
 

A.3.3 Spatial splines  

For two species (MYYU and MYVO), we also included large-scale and continuous spatial effects 
at a grid cell-level using a multivariate Gaussian spatial spline (Wood 2016). We included this 
effect as a tensor product interaction (i.e., a different degree of smoothness in either 
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dimension) on the x and y coordinates. This improved distribution maps and estimated 
ecological covariate effects for both species based on expert feedback (and based on DIC and 
WIAC) by resolving problematic areas in the occupancy predictions. All components of the 
spatial spline (the JAGS code, the matrix spatial knots, and variance matrix) were created by 
mgcv R package (Wood 2012, 2016) by specifying a null model of the same dimensions as the 
occupancy model and were incorporated into the JAGS models. Predictions to out of sample 
grid cells required a matrix of knot values based on the spatial coordinates of each. These were 
calculated for each grid cell by feeding the spatial coordinates to the mgcv model object used to 
create the initial components for the JAGS model by making predictions for the ‘lpmatrix’, or 
the linear predictor matrix of the spatial knots. This matrix was incorporate in the same fashion 
as other spatial covariates when making occupancy predictions.  

A.4 Model fitting  
Due to the computational demands of Bayesian hierarchical models with large data sets, we 
modeled each species independently. We fit the MDSM false positive occupancy model for 
each species via MCMC using JAGS 4.3.0 (Plummer 2003) in R (R Core Team 2020). Each model 
was fit using three independent chains. The base settings were to run 10,000 iterations for each 
chain, with 5,000 being discarded as burn-in. We monitored convergence via visuals diagnostic 
criteria and by evaluating the Gelman-Rubin statistic, which suggest convergence with values 
near one (Gelman and Rubin 1992). If models had not converged after the initial run, we 
increased the number of iterations and burn-in until convergence was reached or until model 
runtimes became impractical. For some species with fewer years of data and additional spatial 
random effects (e.g., MYYU), much longer runs were possible and were sometime needed for 
convergence (for example, a burn-in of 30,000 with 80,000 total iterations).  

A.5 Predicting occupancy maps and deriving status and trend across the species range  
A.5.1 Temporal scope  

For occupancy models, the period of interest within each year was May 1–Aug 31. Occupancy 
maps were predicted and status and trends were assessed from 2010–2019 for MYLU, PESU, 
and MYSE and from 2016–2019 for all other species. For EPFU and LACI, data from 2010–2015 
was also included in model fitting to aid convergence, but predictions were only made for 
2016–2019.  

A.5.2 Spatial scope 

Ideally, we would infer the status and trends of species across their entire North American 
ranges. However, despite several potential sources of species range maps (see section 2.3), 
there are often species detections assumed to be unambiguous for purposes of these analyses 
(i.e., manually vetted acoustic files or capture data) in the NABat database which fall outside of 
these published ranges. Also, when using ecological models to make predictions (e.g., 
occupancy probability) across a species range, it is best practice to limit the spatial scope of 
inference within the geographic extent of the sampling data to avoid issues of extrapolation. 
For these reasons, our general approach for inferring species status and trends at the species 
level was to make inferences across the ‘Modeled Species Range,’ which is the region of space 
where the species may feasibly occur, but within the geographic extent of the sampling data. 
For each species, we produced a spatial 2-dimensional kernel around all positive species 
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detections (ambiguous and unambiguous) for each species over all years of sampling. A polygon 
for the ‘modeled species range’ was produced by imposing a threshold on the underlying 
continuous kernel after tuning the threshold for each species to avoid ‘islands’ in the 
distribution. Furthermore, we only made predictions to ecoregions (level-3) for which we have 
sampling data for each species, thus we did not make predictions to level-3 ecoregions in the 
modeled species range without sampling data. 

A.5.3 Measures of status and trend 

For this analysis, we defined status as a measure of the ecological population variable of 
interest (occupancy probability). Site-level occupancy probabilities 𝜓𝑖𝑡 in each grid cell 𝑖 and 
year 𝑡 were predicted for each cell in the species range based on the grid cell-level predictor 
values and the posterior mcmc samples 𝑘 of each occupancy covariate coefficient from the 
occupancy model. Summary statistics for 𝜓𝑖𝑡 were calculated based on the posterior predictive 

samples 𝜓𝑖𝑡
𝑘 for each grid cell and year.  

The average occupancy aggregated across all grid cells in a region of interest each year �̂�𝑡 (or 
psi_bar) was derived by first taking the mean over all grid cells 𝑖 for each year 𝑡 and mcmc 
sample 𝑘, and then taking the mean over all mcmc samples 𝑘 for each year 𝑡.  
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Where �̂�𝒌
𝒕
 is a matrix of mcmc samples k for every year 𝑡 for the average occupancy 

probability across all grid cells in a region of interest. The ratio of annual change (�̂�𝑡) in the 

average aggregate occupancy �̂�𝑡 between subsequent years is derived using samples �̂�𝒌
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The trend parameter 𝜆𝑡𝑜𝑡 estimates cumulative change over the timeframe of interest “[which] 
can be thought of as change in the mean of total response (McDonald 2003, pg. 279)”. The 
trend parameter 𝜆𝑎𝑣𝑔 is the average annual change over all years in a timeframe of interest. 

When this value is less than one, these values indicate a declining population. Following Banner 
et al. (2018) and Stratton and Irvine (2022), 𝜆𝑡𝑜𝑡is an estimate of the total occupancy rate 
change from 2010 (or the first year of sampling for some species) to 2019 for each species 



110 
 

 

𝜆𝑡𝑜𝑡 =
1

𝐾
∑

�̂�𝑘
t=2019

�̂�𝑘
t=2010

𝐾

𝑘=1

 

𝜆𝑎𝑣𝑔 =
1

𝐾
∑

1

𝑇 − 1
∑ �̂�

𝒌
𝒕

𝑇−1

𝑡=1

𝐾

𝑘=1

 

For a more natural interpretation, we convert these trend indicators from ratio of change to 
proportional rates of change (total_change and avg_annual_change) by subtracting one from 
each, so that values of 0.05 corresponds to a 5% increase, and values of -0.05 correspond to at 
5% decrease. In the data release, these variables are called “deltas” instead of ‘lambdas”. For 
MYLU, MYSE, and PESU, we provide trend estimates over short-term (2016–2019, three years 
of change), medium-term (2012–2019, seven years of change) and long-term (2010–2019, nine 
years of change). For all other species, we only calculated short-term trends since occupancy 
models were fit to years 2016–2019. In rare cases, extremely uncertain (i.e., low confidence) 
regional trend estimates were dropped due to biologically unrealistic values in the 95% credible 
intervals (e.g., intervals that contained both positive and negative values, but with upper limits 
greater than +300%), which reflect either data limitation, model limitations, or extremely small 
values of starting occupancy (i.e., issues dividing by numbers close to zero). Otherwise, all 
regional estimates are provided in the results along with summaries of the sampling effort 
(total number of grid cells and proportion of each region sampled each year). 

 

Any use of trade, firm, or product names is for descriptive purposes only and does not imply 
endorsement by the U.S. Government. 

 

 

 

 

 

 

 

 

 

 

 

 



111 
 

 

References cited in Appendix A 
Balantic, C., and T. Donovan. 2019. “Dynamic Wildlife Occupancy Models Using Automated Acoustic 

Monitoring Data.” Ecological Applications 0 (0): 1–14.  

Banner, K. M., K. M. Irvine, T. J. Rodhouse, W. J. Wright, R. M. Rodriguez, and A. R. Litt. 2018. Improving 
Geographically Extensive Acoustic Survey Designs for Modeling Species Occurrence with 
Imperfect Detection and Misidentification. Ecology and Evolution 8 (12): 6144–56. 
https://doi.org/10.1002/ece3.4162. 

Barr, E. L., Silvis, A., Armstrong, M. P., & Ford, W. M. 2021. White‐nose Syndrome and Environmental 
Correlates to Landscape‐Scale Bat Presence. Wildlife Society Bulletin, 45(3), 410-421. 

Chambert, T., D. A. W. Miller, and J. D. Nichols. 2015. Modeling False Positive Detections in Species 
Occurrence Data Under Different Study Designs. Ecology 96 (2): 332–39. 
https://doi.org/10.1890/14- 1507.1.  

Chambert, T., Waddle, J.H., Miller, D.A., Walls, S.C. and Nichols, J.D., 2018. A new framework for 
analysing automated acoustic species detection data: Occupancy estimation and optimization of 
recordings post‐processing. Methods in Ecology and Evolution, 9(3), pp.560-570. 

Cheng, T., Frick, W., Reichert, B.E., Thogmartin, W.E., Udell, B.J., Wiens, A., Whitby, M., Reichard, J., 
Szymanski, J. 2021 B. In Support of the U.S. Fish and Wildlife Service 3-Bat Species Status 
Assessment: Winter Colony Count Analysis: U.S. Geological Survey data release, 
https://doi.org/10.5066/P9YG45TG. 

Gelman, A., and D. B. Rubin. 1992. “Inference from Iterative Simulation Using Multiple Sequences.” 
Statistical Science 7 (4): 457–511. 

Hanski, I., & Ovaskainen, O. 2000. The metapopulation capacity of a fragmented landscape. Nature, 
404(6779), 755-758. 

Hooten, M. B., & Hobbs, N. T. 2015. A guide to Bayesian model selection for ecologists. Ecological 
monographs, 85(1), pp.3-28. 

Irvine, K. M., T. J. Rodhouse, W. J. Wright, and T. R. Olsen. 2018. “Occupancy Modeling Species-
Environment Relationships with Non-Ignorable Survey Designs.” Ecological Applications 8 (12): 
6144–56. https://doi.org/10.1002/eap.1754. 

Kéry, M., and J. A. Royle. 2020. Applied Hierarchical Modeling in Ecology: Analysis of distribution, 
abundance and species richness in R and BUGS: Volume 2: Dynamic and Advanced Models. 
Academic Press. 

Loeb, S. C., T. J. Rodhouse, L. E. Ellison, C. L. Lausen, J. D. Reichard, K. M. Irvine, T. E. Ingersoll, et al. 
2015. “A plan for the North American Bat Monitoring Program (NABat).” U.S. Department of 
Agriculture Forest Service, Southern Research Station, Asheville, NC. 

MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Andrew Royle, J. and Langtimm, C.A. 2002. 
Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83(8), 
pp.2248-2255. 

MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey, and J. E. Hines. 2006. Occupancy 
Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. Burlington, 
MA: Elsevier: Academic Press.  

https://doi.org/10.1002/ece3.4162
https://doi.org/10.5066/P9YG45TG
https://doi.org/10.1002/eap.1754


112 
 

 

McDonald, T. L. 2003. “Review of Environmental Monitoring Methods: Survey Designs.” Environmental 
Monitoring and Assessment 85: 277–92.  

Miller, D. A., J. D. Nichols, B. T. McClintock, E. H. Campbell Grant, L. L. Bailey, and L. A. Weir. 2011. 
“Improving Occupancy Estimation When Two Types of Observational Error Occur: Non-
Detection and Species Misidentification.” Ecology 92 (7): 1422–8. 

Moilanen, A., Hanski, I., On the Use of Connectivity Measures in Spatial Ecology. 2001. Oikos Vol. 95, No. 
1, pp. 147-151 

Plummer, M., 2003, March. JAGS: A program for analysis of Bayesian graphical models using Gibbs 
sampling. In Proceedings of the 3rd international workshop on distributed statistical computing 
(Vol. 124, No. 125.10, pp. 1-10). 

 R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 

Rodhouse, T. J., Rodriguez, R. M., Banner, K. M., Ormsbee, P. C., Barnett, J., & Irvine, K. M. (2019). 
Evidence of region‐wide bat population decline from long‐term monitoring and Bayesian 
occupancy models with empirically informed priors. Ecology and evolution, 9(19), 11078-11088. 

Royle, J.A. and Link, W.A., 2006. Generalized site occupancy models allowing for false positive and false 
negative errors. Ecology, 87(4), pp.835-841. 

Stratton, C., and K.M. Irvine. 2022. Summertime Analysis Statistical Report for Little Brown, Northern 
Long-eared, and Tricolored Bat Species Status Assessment. Chapter B in Straw, B.R, J. A. Martin, 
J.D Reichard, and B.E Reichert, editors. Analytical Assessments in Support of the U.S. Fish and 
Wildlife Service 3-Bat Species Status Assessment. Cooperator Report prepared in cooperation 
with the U.S. Geological Survey, United States Fish and Wildlife Service and Bat Conservation 
International. https://doi.org/10.7944/P9B4RWEU 

Wood, S., 2012. mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation. 

Wood, S.N., 2016. Just another gibbs additive modeller: interfacing JAGS and mgcv. arXiv preprint 
arXiv:1602.02539. 

Wright, W.J., Irvine, K.M. and Rodhouse, T.J., 2016. A goodness‐of‐fit test for occupancy models with 
correlated within‐season revisits. Ecology and Evolution, 6(15), pp.5404-5415. 

Wright, W.J., Irvine, K.M. and Higgs, M.D., 2019. Identifying occupancy model inadequacies: can 
residuals separately assess detection and presence?. Ecology, 100(6), p.e02703. 

Wright, W. J., Irvine, K. M., Rodhouse, T. J., & Litt, A. R. (2021). Spatial Gaussian processes improve 
multi‐species occupancy models when range boundaries are uncertain and 
nonoverlapping. Ecology and Evolution. 

 

 

https://doi.org/10.7944/P9B4RWEU


113 
 

 

Appendix B: State/Province/Territory Level Results  

B.1 Myotis lucifugus  
(A) 

 
(B)
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Figure B.1. Estimates of the average occupancy probability (�̂�𝑡) for Myotis lucifugus (MYLU) aggregated 
over all grid cells for each state, territory or province in the modeled species range each year. Means 
(points) and 95% credible intervals (bars) are depicted according to the percent of grid cells sampled 
(legend) are depicted according to the percent of grid cells sampled (legend) in the entire state, province 
or territory each year (A-E). U.S. states appear first in alphabetic order (A-E), followed by Canadian 
territories and provinces in alphabetic order (E).  
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Figure B.2. Average annual rates of change in mean occupancy probabilities (avg_annual_change = 

lambda_avg - 1) for Myotis lucifugus (MYLU) between years over the designated time period (three 

years: 2016-2019, seven years: 2012-2019, or nine years: 2010-2019) aggregated across a state, 

province, or territory within the modeled species range. For example, if avg_change_9yr = -0.05, the 

mean occupancy rate has declined on average by 5% each year over the nine years since 2010. Means 

(points) and 95% credible intervals (bars) are depicted based on the average percent of grid cells 

sampled (legend) across all years in the timeframe of interest for each state, province or territory (A-E). 

Note that when credible intervals do not overlap zero, we have at least 95% certainty that these trends 

in species occupancy are either negative or positive. When credible intervals overlap zero, we have less 

than 95% certainty that these trends are different than zero. U.S. states appear first in alphabetic order 

(A-E), followed by Canadian territories and provinces in alphabetic order (E). 
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Figure B.3. The total change rate in mean occupancy (total_change = lambda_tot - 1) for Myotis 

lucifugus (MYLU) given the mean occupancy estimate in last year of sampling (2019) and the mean 

occupancy estimates three years (2016), seven years (2012), and nine years (2010) prior aggregated 

across a state, province, or territory within the modeled species range. For example, if total_change_9yr 

= -0.25, the mean occupancy rate has declined by 25% over the nine years since 2010, while a value of 

0.25 would indicate an increase of 25%. Means (points) and 95% credible intervals (bars) are depicted 

based on the average percent of grid cells sampled (legend) in the first and last years of the timeframe 

of interest for each state, province or territory (A-E). Note that when credible intervals do not overlap 

zero, we have at least 95% certainty that these trends in species occupancy are either negative or 

positive. When credible intervals overlap zero, we have less than 95% certainty that these trends are 

different than zero. U.S. states appear first in alphabetic order (A-E), followed by Canadian territories 

and provinces in alphabetic order (E). 
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B.2 Myotis septentrionalis  
(A) 

 
(B) 
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(E) 

 
Figure B.4. Estimates of the average occupancy probability (ψ̂t) for Myotis septentrionalis (MYSE) 

aggregated over all grid cells for each state, territory or province in the modeled species range each 

year. Means (points) and 95% credible intervals (bars) are depicted according to the percent of grid cells 

sampled (legend) in the entire state, province or territory each year (A-E). U.S. states appear first in 

alphabetic order (A-D), followed by Canadian territories and provinces in alphabetic order (D-E). 
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Figure B.5. Average annual rates of change in mean occupancy probabilities (avg_annual_change = 

lambda_avg - 1) for Myotis septentrionalis (MYSE) between years over the designated time period (three 

years: 2016-2019, seven years: 2012-2019, or nine years: 2010-2019) aggregated across a state, 

province, or territory within the modeled species range. For example, if avg_change_9yr = -0.05, the 

mean occupancy rate has declined on average by 5% each year over the nine years since 2010. Means 

(points) and 95% credible intervals (bars) are depicted based on the average percent of grid cells 

sampled (legend) across all years in the timeframe of interest for each state, province or territory (A-E). 

Note that when credible intervals do not overlap zero, we have at least 95% certainty that these trends 

in species occupancy are either negative or positive. When credible intervals overlap zero, we have less 

than 95% certainty that these trends are different than zero. U.S. states appear first in alphabetic order 

(A-D), followed by Canadian territories and provinces in alphabetic order (D-E). 
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Figure B.6. The total change rate in mean occupancy (total_change = lambda_tot - 1) for Myotis 

septentrionalis (MYSE) given the mean occupancy estimate in last year of sampling (2019) and the mean 

occupancy estimates three years (2016), seven years (2012), and nine years (2010) prior aggregated 

across a state, province, or territory within the modeled species range. For example, if total_change_9yr 

= -0.25, the mean occupancy rate has declined by 25% over the nine years since 2010, while a value of 

0.25 would indicate an increase of 25%. Means (points) and 95% credible intervals (bars) are depicted 

based on the average percent of grid cells sampled (legend) in the first and last years of the timeframe 

of interest for each state, province or territory (A-E). Note that when credible intervals do not overlap 

zero, we have at least 95% certainty that these trends in species occupancy are either negative or 

positive. When credible intervals overlap zero, we have less than 95% certainty that these trends are 

different than zero. U.S. states appear first in alphabetic order (A-D), followed by Canadian territories 

and provinces in alphabetic order (D-E). 
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B.3 Perimyotis subflavus 
(A) 
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Figure B.7. Estimates of the average occupancy probability (�̂�𝑡) for Perimyotis subflavus (PESU) 
aggregated over all grid cells in the modeled species range for each state, territory or province and year. 
Means (points) and 95% credible intervals (bars) are depicted according to the percent of grid cells 
sampled (legend) in the entire state, province or territory each year (A-D). U.S. states appear first in 
alphabetic order (A-D), followed by Canadian territories and provinces in alphabetic order (D).  
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Figure B.8. Average annual rates of change in mean occupancy probabilities (avg_annual_change = 
lambda_avg - 1) for Perimyotis subflavus (PESU) between years over the designated time period (three 
years: 2016-2019, seven years: 2012-2019, or nine years: 2010-2019) aggregated across a state, 
province, or territory within the modeled species range. For example, if avg_change_9yr = -0.05, the 
mean occupancy rate has declined on average by 5% each year over the nine years since 2010. Means 
(points) and 95% credible intervals (bars) are depicted based on the average percent of grid cells 
sampled (legend) across all years in the timeframe of interest for each state, province or territory (A-D). 
Note that when credible intervals do not overlap zero, we have at least 95% certainty that these trends 
in species occupancy are either negative or positive. When credible intervals overlap zero, we have less 
than 95% certainty that these trends are different than zero. U.S. states appear first in alphabetic order 
(A-D), followed by Canadian territories and provinces in alphabetic order (D). 
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Figure B.9. The total change rate in mean occupancy (total_change = lambda_tot - 1) for Perimyotis 

subflavus (PESU) given the mean occupancy estimate in last year of sampling (2019) and the mean 

occupancy estimates three years (2016), seven years (2012), and nine (2010) prior aggregated across a 

state, province, or territory within the modeled species range. For example, if total_change_9yr = -0.25, 

the mean occupancy rate has declined by 25% over the nine years since 2010, while a value of 0.25 

would indicate an increase of 25%. Means (points) and 95% credible intervals (bars) are depicted based 

on the average percent of grid cells sampled (legend) in the first and last years of the timeframe of 

interest for each state, province or territory (A-D). Note that when credible intervals do not overlap 

zero, we have at least 95% certainty that these trends in species occupancy are either negative or 

positive. When credible intervals overlap zero, we have less than 95% certainty that these trends are 

different than zero. U.S. states appear first in alphabetic order (A-D), followed by Canadian territories 

and provinces in alphabetic order (D). 
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B.4 Myotis evotis  
(A) 

 
(B) 

 
Figure B.10. Estimates of the average occupancy probability (ψ̂t) for Myotis evotis (MYEV) aggregated 

over all grid cells for each state, territory or province in the modeled species range each year. Means 

(points) and 95% credible intervals (bars) are depicted according to the percent of grid cells sampled 

(legend) in the entire state, province or territory each year (A and B). U.S. states appear first in 

alphabetic order (A and B), followed by Canadian territories and provinces in alphabetic order (B). 
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Figure B.11. Average annual rates of change in mean occupancy probabilities (avg_annual_change = 

lambda_avg - 1) for Myotis evotis (MYEV) between years over the three-year (2016-2019) time period 

aggregated across a state, province, or territory within the modeled species range. For example, if 

avg_change_3yr = -0.05, the mean occupancy rate has declined on average by 5% each year over the 

three years since 2016. Means (points) and 95% credible intervals (bars) are depicted based on the 

average percent of grid cells sampled (legend) across all years in the timeframe of interest for each 

state, province or territory (A and B). Note that when credible intervals do not overlap zero, we have at 

least 95% certainty that these trends in species occupancy are either negative or positive. When credible 

intervals overlap zero, we have less than 95% certainty that these trends are different than zero. U.S. 

states appear first in alphabetic order (A and B), followed by Canadian territories and provinces in 

alphabetic order (B). 
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Figure B.12. The total change rate in mean occupancy (total_change = lambda_tot - 1) for Myotis evotis 

(MYEV) given the mean occupancy estimate in last year of sampling (2019) and the mean occupancy 

estimates three years (2016) prior aggregated across a state, province, or territory within the modeled 

species range. For example, if total_change_3yr = -0.25, the mean occupancy rate has declined by 25% 

over the nine years since 2016, while a value of 0.25 would indicate an increase of 25%. Means (points) 

and 95% credible intervals (bars) are depicted based on the average percent of grid cells sampled 

(legend) in the first and last years of the timeframe of interest for each state, province or territory (A 

and B). Note that when credible intervals do not overlap zero, we have at least 95% certainty that these 

trends in species occupancy are either negative or positive. When credible intervals overlap zero, we 

have less than 95% certainty that these trends are different than zero. U.S. states appear first in 

alphabetic order (A and B), followed by Canadian territories and provinces in alphabetic order (B). 
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B.5 Myotis grisescens  
(A) 

 
(B) 

 
Figure B.13. Estimates of the average occupancy probability (�̂�𝑡) for Myotis grisescens (MYGR) 
aggregated over all grid cells for each state in the modeled species range each year. Means (points) and 
95% credible intervals (bars) are depicted according to the percent of grid cells sampled (legend) in the 
entire state each year (A and B). U.S. states appear in alphabetic order (A-B). 
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Figure B.14. Average annual rates of change in mean occupancy probabilities (avg_annual_change = 
lambda_avg - 1) for Myotis grisescens (MYGR) between years over the three-year (2016-2019) time 
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period aggregated across a state within the modeled species range. For example, avg_change_3yr = -
0.05, the mean occupancy rate has declined on average by 5% each year over the three years since 
2016. Means (points) and 95% credible intervals (bars) are depicted based on the average percent of 
grid cells sampled (legend) across all years in the timeframe of interest for each state. Note that when 
credible intervals do not overlap zero, we have at least 95% certainty that these trends in species 
occupancy are either negative or positive. When credible intervals overlap zero, we have less than 95% 
certainty that these trends are different than zero. U.S. states appear in alphabetic order (A-B). 
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Figure B.15. The total change rate in mean occupancy (total_change = lambda_tot - 1) for Myotis 
grisescens (MYGR) given the mean occupancy estimate in last year of sampling (2019) and the mean 
occupancy estimates three years (2016) prior aggregated across a state within the modeled species 
range. For example, if total_change_3yr = -0.25, the mean occupancy rate has declined by 25% over the 
nine years since 2016, while a value of 0.25 would indicate an increase of 25%. Means (points) and 95% 
credible intervals (bars) are depicted based on the average percent of grid cells sampled (legend) in the 
first and last years of the timeframe of interest for each state. Note that when credible intervals do not 
overlap zero, we have at least 95% certainty that these trends in species occupancy are either negative 
or positive. When credible intervals overlap zero, we have less than 95% certainty that these trends are 
different than zero. U.S. states appear in alphabetic order (A-B). 
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B.6 Myotis leibii  
(A) 

 
(B) 
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(C) 

 
Figure B.16. Estimates of the average occupancy probability (�̂�𝑡) for Myotis leibii (MYLE) aggregated 
over all grid cells for each state in the modeled species range each year. Means (points) and 95% 
credible intervals (bars) are depicted according to the percent of grid cells sampled (legend in the entire 
state each year (A-C). U.S. states appear first in alphabetic order (A-C), followed by Canadian territories 
and provinces in alphabetic order (C). 
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(C) 

 
Figure B.17. Average annual rates of change in mean occupancy probabilities (avg_annual_change = 
lambda_avg - 1) for Myotis leibii (MYLE) between years over the three-year (2016-2019) time period 
aggregated across a state within the modeled species range. For example, avg_change_3yr = -0.05, the 
mean occupancy rate has declined on average by 5% each year over the three years since 2016. Means 
(points) and 95% credible intervals (bars) are depicted based on the average percent of grid cells 
sampled (legend) across all years in the timeframe of interest for each state. Note that when credible 
intervals do not overlap zero, we have at least 95% certainty that these trends in species occupancy are 
either negative or positive. When credible intervals overlap zero, we have less than 95% certainty that 
these trends are different than zero (A-C). U.S. states appear first in alphabetic order (A-C), followed by 
Canadian territories and provinces in alphabetic order (C). 
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(C) 

 
Figure B.18. The total change rate in mean occupancy (total_change = lambda_tot - 1) for Myotis leibii 

(MYLE) given the mean occupancy estimate in last year of sampling (2019) and the mean occupancy 

estimates three years (2016) prior aggregated across a state within the modeled species range. For 

example, if total_change_3yr = -0.25, the mean occupancy rate has declined by 25% over the nine years 

since 2016, while a value of 0.25 would indicate an increase of 25%. Means (points) and 95% credible 

intervals (bars) are depicted based on the average percent of grid cells sampled (legend) in the first and 

last years of the timeframe of interest for each state. Note that when credible intervals do not overlap 

zero, we have at least 95% certainty that these trends in species occupancy are either negative or 

positive. When credible intervals overlap zero, we have less than 95% certainty that these trends are 

different than zero. U.S. states appear first in alphabetic order (A-C), followed by Canadian territories 

and provinces in alphabetic order (C).  
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B.7 Myotis thysanodes 
(A) 

 
(B) 

 
Figure B.19. Estimates of the average occupancy probability (psi_bar) for Myotis thysanodes (MYTH) 

aggregated over all grid cells for each state, territory or province in the modeled species range each 

year. Means (points) and 95% credible intervals (bars) are depicted according to the percent of grid cells 

sampled (legend) in the entire state, province or territory each year (A and B). U.S. states appear first in 

alphabetic order (A and B), followed by Canadian territories and provinces in alphabetic order (B). 
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Figure B.20. Average annual rates of change in mean occupancy probabilities (avg_annual_change = 

lambda_avg - 1) for Myotis thysanodes (MYTH) between years over the three-year time (2016-2019) 

period aggregated across a state, province, or territory within the modeled species range. For example, 

if avg_change_3yr = -0.05, the mean occupancy rate has declined on average by 5% each year over the 

three years since 2016. Means (points) and 95% credible intervals (bars) are depicted based on the 

average percent of grid cells sampled (legend) across all years in the timeframe of interest for each 

state, province or territory (A and B). Note that when credible intervals do not overlap zero, we have at 

least 95% certainty that these trends in species occupancy are either negative or positive. When credible 

intervals overlap zero, we have less than 95% certainty that these trends are different than zero. U.S. 

states appear first in alphabetic order (A-B), followed by Canadian territories and provinces in alphabetic 

order (B). 
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Figure B.21. The total change rate in mean occupancy (total_change = lambda_tot - 1) for Myotis 
thysanodes (MYTH) given the mean occupancy estimate in last year of sampling (2019) and the mean 
occupancy estimates three years (2016) prior aggregated across a state, province, or territory within the 
modeled species range. For example, if total_change_3yr = -0.25, the mean occupancy rate has declined 
by 25% over the nine years since 2016, while a value of 0.25 would indicate an increase of 25%. Means 
(points) and 95% credible intervals (bars) are depicted based on the average percent of grid cells 
sampled (legend) in the first and last years of the timeframe of interest for each state, province or 
territory (A and B). Note that when credible intervals do not overlap zero, we have at least 95% certainty 
that these trends in species occupancy are either negative or positive. When credible intervals overlap 
zero, we have less than 95% certainty that these trends are different than zero. U.S. states appear first 
in alphabetic order (A-B), followed by Canadian territories and provinces in alphabetic order (B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



160 
 

 

B.8 Myotis volans  
(A) 

 
(B) 

 
Figure B.22. Estimates of the average occupancy probability (ψ̂t) for Myotis volans (MYVO) aggregated 

over all grid cells for each state, territory or province in the modeled species range each year. Means 

(points) and 95% credible intervals (bars) are depicted according to the percent of grid cells sampled 

(legend) in the entire state, province or territory each year (A and B). U.S. states appear first in 

alphabetic order (A and B), followed by Canadian territories and provinces in alphabetic order (B). 
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Figure B.23. Average annual rates of change in mean occupancy probabilities (avg_annual_change = 
lambda_avg - 1) for Myotis volans (MYVO) between years over the three-year (2016-2019) time period 
aggregated across a state, province, or territory within the modeled species range. For example, if 
avg_change_3yr = -0.05, the mean occupancy rate has declined on average by 5% each year over the 
three years since 2016. Means (points) and 95% credible intervals (bars) are depicted based on the 
average percent of grid cells sampled (legend) across all years in the timeframe of interest for each 
state, province or territory (A and B). Note that when credible intervals do not overlap zero, we have at 
least 95% certainty that these trends in species occupancy are either negative or positive. When credible 
intervals overlap zero, we have less than 95% certainty that these trends are different than zero. U.S. 
states appear first in alphabetic order (A-B), followed by Canadian territories and provinces in alphabetic 
order (B). 
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Figure B.24. The total change rate in mean occupancy (total_change = lambda_tot - 1) for Myotis volans 
(MYVO) given the mean occupancy estimate in last year of sampling (2019) and the mean occupancy 
estimates three years (2016) prior aggregated across a state, province, or territory within the modeled 
species range. For example, if total_change_3yr = -0.25, the mean occupancy rate has declined by 25% 
over the nine years since 2016, while a value of 0.25 would indicate an increase of 25%. Means (points) 
and 95% credible intervals (bars) are depicted based on the average percent of grid cells sampled 
(legend) in the first and last years of the timeframe of interest for each state, province or territory (A 
and B). Note that when credible intervals do not overlap zero, we have at least 95% certainty that these 
trends in species occupancy are either negative or positive. When credible intervals overlap zero, we 
have less than 95% certainty that these trends are different than zero. U.S. states appear first in 
alphabetic order (A-B), followed by Canadian territories and provinces in alphabetic order (B). 
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B.9 Myotis yumanensis  
(A) 

 
(B) 

 
Figure B.25. Estimates of the average occupancy probability (ψ̂t) for Myotis yumanensis (MYYU) 

aggregated over all grid cells for each state, territory or province in the modeled species range each 

year. Means (points) and 95% credible intervals (bars) are depicted according to the percent of grid cells 

sampled (legend) in the entire state, province or territory each year (A and B). U.S. states appear first in 

alphabetic order (A and B), followed by Canadian territories and provinces in alphabetic order (B). 
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Figure B.26. Average annual rates of change in mean occupancy probabilities (avg_annual_change = 

lambda_avg - 1) for Myotis yumanensis (MYYU) between years over the three-year (2016-2019) time 

period aggregated across a state, province, or territory within the modeled species range. For example, 

if avg_change_3yr = -0.05, the mean occupancy rate has declined on average by 5% each year over the 

three years since 2016. Means (points) and 95% credible intervals (bars) are depicted based on the 

average percent of grid cells sampled (legend) across all years in the timeframe of interest for each 

state, province or territory (A and B). Note that when credible intervals do not overlap zero, we have at 

least 95% certainty that these trends in species occupancy are either negative or positive. When credible 

intervals overlap zero, we have less than 95% certainty that these trends are different than zero. U.S. 

states appear first in alphabetic order (A-B), followed by Canadian territories and provinces in alphabetic 

order (B). 
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Figure B.27. The total change rate in mean occupancy (total_change = lambda_tot - 1) for Myotis 

yumanensis (MYYU) given the mean occupancy estimate in last year of sampling (2019) and the mean 

occupancy estimates three years (2016) prior aggregated across a state, province, or territory within the 

modeled species range. For example, if total_change_3yr = -0.25, the mean occupancy rate has declined 

by 25% over the nine years since 2016, while a value of 0.25 would indicate an increase of 25%. Means 

(points) and 95% credible intervals (bars) are depicted based on the average percent of grid cells 

sampled (legend) in the first and last years of the timeframe of interest for each state, province or 

territory (A and B). Note that when credible intervals do not overlap zero, we have at least 95% certainty 

that these trends in species occupancy are either negative or positive. When credible intervals overlap 

zero, we have less than 95% certainty that these trends are different than zero. U.S. states appear first 

in alphabetic order (A-B), followed by Canadian territories and provinces in alphabetic order (B). 
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B.10 Eptesicus fuscus  
(A) 

 
(B) 
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(D) 

 
Figure B.28. Estimates of the average occupancy probability (ψ̂t) for Eptesicus fuscus (EPFU) average 

occupancy probability aggregated over all grid cells for each state in the modeled species range each 

year. Means (points) and 95% credible intervals (bars) are depicted according to the percent of grid cells 

sampled (legend) in the entire state, province or territory each year (A-D). U.S. states appear in 

alphabetic order (A-D. Note the results for EPFU were inconclusive due issues reported in section 3.12. 
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Figure B.29. Average annual rates of change in mean occupancy probabilities (avg_annual_change = 
lambda_avg - 1) for Eptesicus fuscus (EPFU) between years over the three-year (2016-2019) time period 
aggregated across a state, province, or territory within the modeled species range. For example, if 
avg_change_3yr = -0.05, the mean occupancy rate has declined on average by 5% each year over the 
three years since 2016. Means (points) and 95% credible intervals (bars) are depicted based on the 
average percent of grid cells sampled (legend) across all years in the timeframe of interest for each state 
(A-D). Note that when credible intervals do not overlap zero, we have at least 95% certainty that these 
trends in species occupancy are either negative or positive. When credible intervals overlap zero, we 
have less than 95% certainty that these trends are different than zero. U.S. states appear in alphabetic 
order (A-D). Note the results for EPFU were inconclusive due issues reported in section 3.12.  
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Figure B.30. The total change rate in mean occupancy (total_change = lambda_tot - 1) for Eptesicus 
fuscus (EPFU) given the mean occupancy estimate in last year of sampling (2019) and the mean 
occupancy estimates three years (2016) prior aggregated across each state within the modeled species 
range. For example, if total_change_3yr = -0.25, the mean occupancy rate has declined by 25% over the 
nine years since 2016, while a value of 0.25 would indicate an increase of 25%. Means (points) and 95% 
credible intervals (bars) are depicted based on the average percent of grid cells sampled (legend) in the 
first and last years of the timeframe of interest for each state, province or territory (A-D). Note that 
when credible intervals do not overlap zero, we have at least 95% certainty that these trends in species 
occupancy are either negative or positive. When credible intervals overlap zero, we have less than 95% 
certainty that these trends are different than zero. U.S. states appear in alphabetic order (A-D). Note the 
results for EPFU were inconclusive due issues reported in section 3.12. 
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B.11 Lasionycteris noctivagans 
(A) 

 
(B) 
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Figure B.31. Estimates of the average occupancy probability (ψ̂t) for Lasionycteris noctivagans (LANO) 

aggregated over all grid cells for each state in the modeled species range each year. Means (points) and 

95% credible intervals (bars) are depicted according to the percent of grid cells sampled (legend) in the 

entire state each year (A-D). U.S. states appear in alphabetic order (A-D). Note the results for LANO were 

inconclusive due issues reported in section 3.12. 
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Figure B.32. Average annual rates of change in mean occupancy probabilities (avg_annual_change = 
lambda_avg - 1) for Lasionycteris noctivagans (LANO) between years over the three-year (2016-2019) 
time period aggregated across a state within the modeled species range. For example, if 
avg_change_3yr = -0.05, the mean occupancy rate has declined on average by 5% each year over the 
three years since 2016. Means (points) and 95% credible intervals (bars) are depicted based on the 
average percent of grid cells sampled (legend) across all years in the timeframe of interest for each state 
(A-D). Note that when credible intervals do not overlap zero, we have at least 95% certainty that these 
trends in species occupancy are either negative or positive. When credible intervals overlap zero, we 
have less than 95% certainty that these trends are different than zero. U.S. states appear in alphabetic 
order (A-D). Note the results for LANO were inconclusive due issues reported in section 3.12. 
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Figure B.33. The total change rate in mean occupancy (total_change = lambda_tot - 1) for Lasionycteris 
noctivagans (LANO) given the mean occupancy estimate in last year of sampling (2019) and the mean 
occupancy estimates three years (2016) prior aggregated across a state within the modeled species 
range. For example, if total_change_3yr = -0.25, the mean occupancy rate has declined by 25% over the 
nine years since 2016, while a value of 0.25 would indicate an increase of 25%. Means (points) and 95% 
credible intervals (bars) are depicted based on the average percent of grid cells sampled (legend) in the 
first and last years of the timeframe of interest for each state (A-D). Note that when credible intervals 
do not overlap zero, we have at least 95% certainty that these trends in species occupancy are either 
negative or positive. When credible intervals overlap zero, we have less than 95% certainty that these 
trends are different than zero. U.S. states appear in alphabetic order (A-D). Note the results for LANO 
were inconclusive due issues reported in section 3.12. 
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B.12 Lasiurus cinereus  
(A) 

 
(B) 
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Figure B.34. Estimates of the average occupancy probability (ψ̂t) for Lasiurus cinereus (LACI) aggregated 

over all grid cells for each state in the modeled species range each year. Means (points) and 95% 

credible intervals (bars) are depicted according to the percent of grid cells sampled (legend) in the entire 

state, province or territory each year (A-D). U.S. states appear in alphabetic order (A-D). Note the results 

for LACI were inconclusive due issues reported in section 3.12. 
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Figure B.35. Average annual rates of change in mean occupancy probabilities (avg_annual_change = 

lambda_avg - 1) for Lasiurus cinereus (LACI) between years over the three-year (2016-2019) time period 

aggregated across a state within the modeled species range. For example, avg_change_3yr = -0.05, the 

mean occupancy rate has declined on average by 5% each year over the three years since 2016. Means 

(points) and 95% credible intervals (bars) are depicted based on the average percent of grid cells 

sampled (legend) across all years in the timeframe of interest for each state (A-D). Note that when 

credible intervals do not overlap zero, we have at least 95% certainty that these trends in species 

occupancy are either negative or positive. When credible intervals overlap zero, we have less than 95% 

certainty that these trends are different than zero. U.S. states appear in alphabetic order (A-D). Note the 

results for LACI were inconclusive due issues reported in section 3.12. 
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Figure B.36. The total change rate in mean occupancy (total_change = lambda_tot - 1) for Lasiurus 

cinereus (LACI) given the mean occupancy estimate in last year of sampling (2019) and the mean 

occupancy estimates three years (2016) prior aggregated across a state within the modeled species 

range. For example, if total_change_3yr = -0.25, the mean occupancy rate has declined by 25% over the 

nine years since 2016, while a value of 0.25 would indicate an increase of 25%. Means (points) and 95% 

credible intervals (bars) are depicted based on the average percent of grid cells sampled (legend) in the 

first and last years of the timeframe of interest for each state (A-D). Note that when credible intervals 

do not overlap zero, we have at least 95% certainty that these trends in species occupancy are either 

negative or positive. When credible intervals overlap zero, we have less than 95% certainty that these 

trends are different than zero. U.S. states appear in alphabetic order (A-D). Note the results for LACI 

were inconclusive due issues reported in section 3.12. 
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Appendix C: Occupancy Modeling Covariate Effects  

C.1 Myotis lucifugus  

Model occupancy covariates 

For Myotis lucifugus (MYLU), the occupancy probability in each grid cell and year was modeled 
using a logit link. The intercept (mean occupancy) was modeled using hierarchical ecoregion 
effects to account for spatial and temporal autocorrelation (See Appendix A, Section A.2.3 and 
Table A.1 for more details and equations). Note, the variances of the spatial effects were 
constrained to be relatively small so that they did not overpower the site-level covariate 
effects. 
Grid cell level covariates: 
Max elevation (quadratic effects allow for downward bending curves or upward bending 
curves) 
Average temperature (climatological mean not yearly differences, quadratic effects) 
Average physiographic diversity 
Average precipitation (climatological mean not yearly differences) 
Percent forest cover 
Percent wetlands 
Karst in the east (east of the 100 degree W longitude) as an indicator variable 
Distance to the nearest mines in the east (east of the 100 degree W longitude) 
Winter-to-summer connectivity (a value in each grid cell and year) 
 
A winter-to-summer connectivity metric was used to link the modeled winter count at each 
hibernaculum each year (Cheng et al. 2021b) to each grid cell based on the species-specific 
average winter to summer migration distance. This parameter influences summertime 
occupancy in both space and time (for example, capturing the effects of spatial proximity to 
large hibernacula, and the effects of declining abundances over time due to WNS, Section 2.2.3, 
Figure 1). Note, this connectivity metric models the effects of known hibernacula counts on the 
summer distribution; however, there are large portions of MYLU’s summer range for which 
colony counts at hibernacula are quite rare despite the known presence of MYLU. Thus, this 
metric is most relevant for portions of the range with known colony counts. To remove the 
effect of connectivity in these regions for which the covariate was unrepresentative (largely in 
the western United States and Canada), we set the effect of this covariate to zero for all 
Ecoregion level-3’s where the mean connectivity value across all sampled points in the 
ecoregion was less was than -2.5, which on a logit scale corresponds to a value of 0.076. 
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Figure C.1. Estimates of covariate effects on grid cell occupancy for Myotis lucifugus (MYLU), excluding 
intercept estimates which varied by ecoregions and year. 

Model detection covariates 

The intercept for p11 (detectability), p10 (false-positive rate), and b (confirmation rates) were 
modeled as random effects by Ecoregion level-3 and year. Additional observation level 
covariates were modeled on p11 including: day length, water vapor pressure, precipitation 
indicator, effort (length of the detection history aggregated across for each observation period), 
the day of year. Effort was also included as an additional covariate on the false positive rate 
p10. No additional covariates were fitted on the confirmation rate, b. Note that all three 
observation parameter types (p11, p10, and b) are rates corresponding with observation events 
aggregated over 7-day periods, and are not the same as nightly rates.  
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Figure C.2. Estimates of observation covariates on the detection rate for Myotis lucifugus (MYLU). 

 

C.2 Myotis septentrionalis  

Model occupancy covariates 

For Myotis septentrionalis (MYSE), the occupancy probability in each grid cell and year was 
modeled using a logit link with the following assumptions: 1) the intercept (mean occupancy) 
with a random effect by year from a multivariate normal autoregressive (AR1) time process and 
2) a time varying effect of karst (different each year) given a multivariate normal AR1 time 
process. 

Other grid cell-level covariates: 

• Max elevation (quadratic effects allow for downward bending curves or upward bending 
curves) 

• Average temperature (climatological mean not yearly differences, quadratic effects) 

• Average physiographic diversity 

• Average precipitation (climatological mean not yearly differences) 

• Percent forest cover 

• Percent wetlands 

• Distance to the nearest mines in the east (east of the 100 degree W longitude) 

• Winter-to-summer connectivity (a value in each grid cell and year) 

A winter-to-summer connectivity metric was used to link the modeled winter count at each 
hibernacula each year (Cheng et al. 2021b) to each grid cell based on the species-specific 



197 
 

 

average winter to summer migration distance. This parameter influences summertime 
occupancy in both space and time (for example, capturing the effects of spatial proximity to 
large hibernacula, and the effects of declining abundances over time due to WNS, Section 2.2.3, 
Figure 1). The addition of time varying karst effects and distance to mine effects were included 
based on conversations with species experts, and recent empirical study in the literature (Barr 
et al. 2021). Note that percent forest (of any kind) has a strong and positive correlation with 
physiographic diversity and winter-to-summer connectivity, thus forest effects are soaked up 
between strong positive effects of physiography diversity and winter to summer connectivity. 
Thus, caution should be used when interpreting individual covariate effects in isolation of 
correlated predictor effects.  

 

 
Figure C.3. Estimates of occupancy and detection covariates for Myotis septentrionalis (MYSE). 

Model detection covariates 

The intercept for p11 (detectability), p10 (false-positive rate), and b (confirmation rates) were 
modeled as random effects by Ecoregion level-3 and year. Additional observation level 
covariates were modeled on p11 including: day length, minimum temperature, water vapor 
pressure, precipitation indicator (0/1), effort (length of the detection history aggregated across 
for each observation period), the day of year. Effort was also included as an additional covariate 
on the false positive rate p10. No additional covariates were fitted on the confirmation rate, b. 
Note that all three observation parameter types (p11, p10, and b) are rates corresponding with 
observation events aggregated over 7-day periods, and are not the same as nightly rates.  
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Figure C.4. Estimates of occupancy and detection covariates Myotis septentrionalis (MYSE). 

C.3 Perimyotis subflavus  

Model occupancy covariates 

For Perimyotis subflavus (PESU), the occupancy probability in each grid cell and year was 
modeled using a logit link. The intercept (mean occupancy) was modeled using hierarchical 
ecoregion effects to account for spatial and temporal autocorrelation (See Appendix A, Section 
A.2.3 and Table A.1 for more details and equations). Note, the variances of the spatial effects 
were constrained to be relatively small (i.e., SD < 0.5 at each level in most cases) so that they 
did not overpower the site-level covariate effects. 

Grid cell level covariates: 

• Max elevation (quadratic effects allow for downward bending curves or upward bending 
curves) 

• Average temperature (climatological mean not yearly differences, quadratic effects) 

• Average physiographic diversity 

• Average precipitation (climatological mean not yearly differences) 

• Percent forest cover 

• Percent wetlands 

• Karst  

• Distance to the nearest mines  

• Winter-to-summer connectivity (a value in each grid cell and year) 
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A winter-to-summer connectivity metric was used to link the modeled winter count at each 
hibernacula each year (Cheng et al. 2021b) to each grid cell based on the species-specific 
average winter to summer migration distance. This parameter influences summertime 
occupancy in both space and time (for example, capturing the effects of spatial proximity to 
large hibernacula, and the effects of declining abundances over time due to WNS, Section 2.2.3, 
Figure 1). 

 

 
Figure C.5. Estimates of occupancy and detection covariates for Perimyotis subflavus (PESU). 

Model detection covariates 

The intercept for p11 (detectability), p10 (false-positive rate), and b (confirmation rates) were 
modeled as random effects by Ecoregion level-3 and year. Additional observation level 
covariates were modeled on p11 including: day length, water vapor pressure, precipitation 
indicator, effort (length of the detection history aggregated across for each observation period), 
the day of year. Effort was also included as an additional covariate on the false positive rate 
p10. No additional covariates were fitted on the confirmation rate, b. Note that all three 
observation parameter types (p11, p10, and b) are rates corresponding with observation events 
aggregated over 7-day periods, and are not the same as nightly rates.  
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Figure C.6. Estimates of occupancy and detection covariates for Perimyotis subflavus (PESU). 

 

 

C.4 Myotis evotis 

Model occupancy covariates 

For Myotis evotis (MYEV), the occupancy probability in each grid cell and year was modeled 
using a logit link.  The intercept (mean occupancy) was modeled using hierarchical ecoregion 
effects to account for spatial and temporal autocorrelation (See Appendix A, Section A.2.3 and 
Table A.1 for more details and equations). Note, the variances of the spatial effects were 
constrained to be relatively small (i.e., SD < 0.5 at each level in most cases) so that they did not 
overpower the site-level covariate effects. 

Other grid cell-level covariates: 

• Max elevation (quadratic effects allow for downward bending curves or upward bending 
curves) 

• Average temperature (climatological mean not yearly differences, quadratic effects) 

• Average physiographic diversity 

• Average precipitation (climatological mean not yearly differences) 

• Percent forest cover 

• Percent wetlands 
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Figure C.7. Estimates of occupancy and detection covariates for Myotis evotis (MYEV). 

Model detection covariates 

The intercept for p11, p10, and b were modeled as random effects by Ecoregion level-3 and 
year. Additional observation level covariates were modeled on p11 including: day length, 
minimum temperature, water vapor pressure, precipitation indicator, effort (number of total 
rows of data aggregated across for each observation periods, e.g., detector nights for 
stationary), and the day of year. Effort was also included as an additional covariate on the false 
positive rate p10. No additional covariates were fitted on the confirmation rate, b. 
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Figure C.8. Estimates of occupancy and detection covariates for Myotis evotis (MYEV). 

 

C.5 Myotis grisescens  

Model occupancy covariates 

For Myotis grisescens (MYGR), the occupancy probability in each grid cell and year was modeled 
using a logit link with the following assumptions: 1) the intercept (mean occupancy) with a 
random effect by year from a multivariate normal AR1 time process, 2) a time varying effect of 
karst (different each year) given a multivariate normal AR1 time process, and 3) a time varying 
effect of river/shoreline presence in each grid cell given a multivariate normal AR1 time 
process. 

Other grid cell-level covariates: 

• Max elevation (quadratic effects allow for downward bending curves or upward bending 
curves) 

• Average temperature (climatological mean not yearly differences, quadratic effects) 

• Average physiographic diversity  

• Average precipitation (climatological mean not yearly differences)  

• Percent forest cover  

• Percent wetlands 

Note that physiographic diversity and percent forest have a very strong positive correlation, 
thus forest effects are soaked up between strong positive effects of physiography diversity and 
Ecoregion spatial effects. Despite a negative marginal effect of percent forest, occupancy values 
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given all other variables show strong positive relationships when regressing only percent forest 
against occupancy. 

 
Figure C.9. Estimates of occupancy and detection covariates for Myotis grisescens (MYGR). 

Model detection covariates 

The intercept for p11, p10, and b were modeled as random effects by Ecoregion level-3 and 
year. Additional observation level covariates were modeled on p11 including: day length, 
minimum temperature, water vapor pressure, precipitation indicator, effort (number of total 
rows of data aggregated across for each observation periods, e.g., detector nights for 
stationary), and the day of year. Effort was also included as an additional covariate on the false 
positive rate p10. No additional covariates were fitted on the confirmation rate, b. 
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Figure C.10. Estimates of occupancy and detection covariates for Myotis grisescens (MYGR). 

 

C.6 Myotis leibii  

Model occupancy covariates 

For Myotis leibeii (MYLE), the occupancy probability in each grid cell and year was modeled 
using a logit link. The intercept (mean occupancy) was modeled using hierarchical ecoregion 
effects to account for spatial and temporal autocorrelation (See Appendix A, Section A.2.3 and 
Table A.1 for more details and equations). 

Other grid cell-level covariates:Max elevation (quadratic effects allow for downward bending 
curves or upward bending curves) 

• Average temperature (climatological mean not yearly differences, quadratic effects) 

• Average physiographic diversity 

• Average precipitation (climatological mean not yearly differences) 

• Percent forest cover 

• Percent wetlands 

Note that physiographic diversity and percent forest have a very strong positive correlation, 
thus forest effects are soaked up between strong positive effects of physiography diversity and 
Ecoregion spatial effects. Despite a negative marginal effect of percent forest, occupancy values 
given all other variables show strong positive relationships when regressing only percent forest 
against occupancy. 
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Figure C.11. Estimates of occupancy and detection covariates for Myotis leibii (MYLE). 

Model detection covariates 

The intercept for p11, p10, and b were modeled as random effects by Ecoregion level-3 and 
year. Additional observation level covariates were modeled on p11 including: day length, 
minimum temperature, water vapor pressure, precipitation indicator, effort (number of total 
rows of data aggregated across for each observation periods, e.g., detector nights for 
stationary), and the day of year. Effort was also included as an additional covariate on the false 
positive rate p10. No additional covariates were fitted on the confirmation rate, b. 
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Figure C.12. Estimates of occupancy and detection covariates for Myotis leibii (MYLE). 

 

C.7 Myotis thysanodes  

Model occupancy covariates 

For Myotis thysanodes (MYTH), the occupancy probability in each grid cell and year was 
modeled using a logit link. The intercept (mean occupancy) was modeled using hierarchical 
ecoregion effects to account for spatial and temporal autocorrelation (See Appendix A, Section 
A.2.3 and Table A.1 for more details and equations). Note, the variances of the spatial effects 
were constrained to be relatively small (i.e., SD < 0.5 at each level in most cases) so that they 
did not overpower the site-level covariate effects. 

Other grid cell-level covariates: 

• Max elevation (quadratic effects allow for downward bending curves or upward bending 
curves) 

• Average temperature (climatological mean not yearly differences, quadratic effects) 

• Average physiographic diversity 

• Average precipitation (climatological mean not yearly differences) 

• Percent forest cover 

• Percent wetlands 
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Figure C.13. Estimates of occupancy and detection covariates for Myotis thysanodes (MYTH). 

Model detection covariates 

The intercept for p11, p10, and b were modeled as random effects by Ecoregion level-3 and 
year. Additional observation level covariates were modeled on p11 including: day length, 
minimum temperature, water vapor pressure, precipitation indicator, effort (number of total 
rows of data aggregated across for each observation periods, e.g., detector nights for 
stationary), and the day of year. Effort was also included as an additional covariate on the false 
positive rate p10. No additional covariates were fitted on the confirmation rate, b. 
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Figure C.14. Estimates of occupancy and detection covariates for Myotis thysanodes (MYTH). 

 

C.8 Myotis volans  

Model occupancy covariates 

For Myotis volans (MYVO), the occupancy probability in each grid cell and year was modeled 
using a logit link. The intercept (mean occupancy) was modeled using hierarchical ecoregion 
effects to account for spatial and temporal autocorrelation (See Appendix A, Section A.2.3 and 
Table A.1 for more details and equations). Note, the variances of the spatial effects were 
constrained to be relatively small (i.e., SD < 0.5 at each level in most cases) so that they did not 
overpower the site-level covariate effects. 

Other grid cell-level covariates: 

• Max elevation (quadratic effects allow for downward bending curves or upward bending 
curves) 

• Average temperature (climatological mean not yearly differences, quadratic effects) 

• Average physiographic diversity 

• Average precipitation (climatological mean not yearly differences) 

• Percent forest cover 

• Percent wetlands 

 

A grid cell level, multivariate Gaussian spatial smooth was implemented as a tensor product 
interaction with 25 knots (five in each dimension) to capture large-scale spatial autocorrelation. 
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This effect was included after discussions with species experts, after finding it greatly improved 
predictions in Colorado based on expected elevational effects compared to models without the 
spatial smooth. 

 

 
Figure C.15. Estimates of occupancy and detection covariates for Myotis volans (MYVO). 

Model detection covariates 

The intercept for p11, p10, and b were modeled as random effects by Ecoregion level-3 and 
year. Additional observation level covariates were modeled on p11 including: day length, 
minimum temperature, water vapor pressure, precipitation indicator, effort (number of total 
rows of data aggregated across for each observation periods, e.g., detector nights for 
stationary), and the day of year. Effort was also included as an additional covariate on the false 
positive rate p10. No additional covariates were fitted on the confirmation rate, b. 
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Figure C.16. Estimates of occupancy and detection covariates Myotis volans (MYVO). 

 

C.9 Myotis yumanensis  

Model occupancy covariates 

For Myotis yumanensis (MYYU), the occupancy probability in each grid cell and year was 
modeled using a logit link. The intercept (mean occupancy) was modeled using hierarchical 
ecoregion effects to account for spatial and temporal autocorrelation (See Appendix A, Section 
A.2.3 and Table A.1 for more details and equations). Note, the variances of the spatial effects 
were constrained to be relatively small (i.e., SD < 0.5 at each level in most cases) so that they 
did not overpower the site-level covariate effects. 

Other grid cell-level covariates: 

• Max elevation (quadratic effects allow for downward bending curves or upward bending 
curves) 

• Average temperature (climatological mean not yearly differences, quadratic effects) 

• Average physiographic diversity 

• Average precipitation (climatological mean not yearly differences) 

• Percent forest cover 

• Percent wetlands 

 

A grid cell level, multivariate Gaussian spatial smooth was implemented as a tensor product 
interaction with 25 knots (5 in each dimension) to capture large-scale spatial autocorrelation.  
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Figure C.17. Estimates of occupancy and detection covariates for Myotis yumanensis (MYYU). 

Model detection covariates 

The intercept for p11, p10, and b were modeled as random effects by Ecoregion level-3 and 
year. Additional observation level covariates were modeled on p11 including: day length, 
minimum temperature, water vapor pressure, precipitation indicator, effort (number of total 
rows of data aggregated across for each observation periods, e.g., detector nights for 
stationary), and the day of year. Effort was also included as an additional covariate on the false 
positive rate p10. No additional covariates were fitted on the confirmation rate, b. 
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Figure C.18. Estimates of occupancy and detection covariates Myotis yumanensis (MYYU). 

 

C.10 Eptesicus fuscus  

Model occupancy covariates 

For Eptesicus fuscus (EPFU), the occupancy probability in each grid cell and year was modeled 
using a logit link. The intercept (mean occupancy) was modeled using hierarchical ecoregion 
effects to account for spatial and temporal autocorrelation (See Appendix A, Section A.2.3 and 
Table A.1 for more details and equations). Note, the variances of the spatial effects were 
constrained to be relatively small (i.e., SD < 0.5 at each level in most cases) so that they did not 
overpower the site-level covariate effects. 

Other grid cell-level covariates: 

• Max elevation (quadratic effects allow for downward bending curves or upward bending 
curves) 

• Average temperature (climatological mean not yearly differences, quadratic effects) 

• Average physiographic diversity 

• Average precipitation (climatological mean not yearly differences) 

• Percent forest cover 

• Percent wetlands 
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Figure C.19. Estimates of occupancy and detection covariates for Eptesicus fuscus (EPFU). 

Model detection covariates 

The intercept for p11, p10, and b were modeled as random effects by Ecoregion level-3 and 
year. Additional observation level covariates were modeled on p11 including: day length, 
minimum temperature, water vapor pressure, precipitation indicator, effort (number of total 
rows of data aggregated across for each observation periods, e.g., detector nights for 
stationary), and the day of year. Effort was also included as an additional covariate on the false 
positive rate p10. No additional covariates were fitted on the confirmation rate, b. 
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Figure C.20. Estimates of occupancy and detection covariates for Eptesicus fuscus (EPFU). 

 

C.11 Lasionycteris noctivagans 

Model occupancy covariates 

For Lasionycteris noctivagans (LANO), the occupancy probability in each grid cell and year was 
modeled using a logit link. The intercept (mean occupancy) was modeled using hierarchical 
ecoregion effects to account for spatial and temporal autocorrelation (See Appendix A, Section 
A.2.3 and Table A.1 for more details and equations). Note, the variances of the spatial effects 
were constrained to be relatively small (i.e., SD < 0.5 at each level in most cases) so that they 
did not overpower the site-level covariate effects. 

Other grid cell-level covariates: 

• Max elevation (quadratic effects allow for downward bending curves or upward bending 
curves) 

• Average temperature (climatological mean not yearly differences, quadratic effects) 

• Average physiographic diversity 

• Average precipitation (climatological mean not yearly differences) 

• Percent forest cover 

• Percent wetlands 
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Figure C.21. Estimates of occupancy and detection covariates for Lasionycteris noctivagans (LANO). 

Model detection covariates 

The intercept for p11, p10, and b were modeled as random effects by Ecoregion level-3 and 
year. Additional observation level covariates were modeled on p11 including: day length, 
minimum temperature, water vapor pressure, precipitation indicator, effort (number of total 
rows of data aggregated across for each observation periods, e.g., detector nights for 
stationary), and the day of year. Effort was also included as an additional covariate on the false 
positive rate p10. No additional covariates were fitted on the confirmation rate, b. 
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Figure C.22. Estimates of occupancy and detection covariates Lasionycteris noctivagans (LANO). 

 

C.12 Lasiurus cinereus  

Model occupancy covariates 

For Lasiurus cinereus (LACI), the occupancy probability in each grid cell and year was modeled 
using a logit link. The intercept (mean occupancy) was modeled using hierarchical ecoregion 
effects to account for spatial and temporal autocorrelation (See Appendix A, Section A.2.3 and 
Table A.1 for more details and equations). Note, the variances of the spatial effects were 
constrained to be relatively small (i.e., SD < 0.5 at each level in most cases) so that they did not 
overpower the site-level covariate effects. 

Other grid cell-level covariates: 

• Max elevation (quadratic effects allow for downward bending curves or upward bending 
curves) 

• Average temperature (climatological mean not yearly differences, quadratic effects) 

• Average physiographic diversity 

• Average precipitation (climatological mean not yearly differences) 

• Percent forest cover 

• Percent wetlands 
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Figure C.23. Estimates of occupancy and detection covariates for Lasiurus cinereus (LACI). 

Model detection covariates 

The intercept for p11, p10, and b were modeled as random effects by Ecoregion level-3 and 
year. Additional observation level covariates were modeled on p11 including: day length, 
precipitation indicator, effort (number of total rows of data aggregated across for each 
observation periods, e.g., detector nights for stationary), and the day of year. Effort was also 
included as an additional covariate on the false positive rate p10. No additional covariates were 
fitted on the confirmation rate, b. 
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Figure C.24. Estimates of occupancy and detection covariates for Lasiurus cinereus (LACI). 
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Appendix D: Comparing predicted occupancy probabilities to monitoring 
data 

In this section, we provide figures comparing the predicted occupancy probabilities of each grid 
cell to the highest level of species detection observed each year in monitored locations. This 
serves as an informal means of model assessment. It is informal because truth is only known for 
the grid cells and years with unambiguous detections (e.g., manually vetted acoustic records or 
capture data), while non-detections and ambiguous detections could result from either the 
presence or absence of a species. For example, it is possible to get ‘no-detections’ from true 
species absence, or from species presence but lack of detection. Ambiguous detections can 
occur from true species’ detections and from false positives. Model sensitivity (i.e., the 
probability of correctly predicting species presence) can be evaluated based on the distribution 
of predicted occupancy probabilities corresponding with unambiguous detections, where we 
expect to see a high concentration of values near one with high sensitivity. However, model 
specificity (i.e., the probability of correctly predicting species absence) cannot be evaluated 
from the monitoring data alone.  

In general, the distribution of predicted occupancy probability values that correspond with 
unambiguous detections should be higher than those corresponding with non-detections and 
ambiguous detections. Similarly, occupancy probabilities in grid cells with ambiguous 
detections should generally be higher than those with no detections, especially since we 
assume in the analyses that the true positive rate is higher than the false positive rate. In some 
cases, predicted occupancy probabilities of grid cells can be high in locations with no 
detections, especially if grid cell level occupancy covariates and observation level covariates 
suggest it is more likely the species was present but not detected. In general, we expect this 
more for species that are wide-spread (i.e., with high baseline occupancy probabilities) and/or 
have low-detectability. Similarly, some predicted occupancy probabilities corresponding with 
ambiguous detections can be quite low if occupancy covariates or observation covariates 
suggest the species is more likely absent and detected in error (false positives). Finally, if there 
is little difference in the occupancy probability distributions between no-detections and 
ambiguous detections, this suggests that the ambiguous detections provide relatively little 
information to the species occupancy process due to the model’s poor ability to distinguish 
between false positives and true positives. 
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D.1 Myotis lucifugus  

 
Figure D.1. Violin plots depict predicted occupancy probabilities for Myotis lucifugus (MYLU) compared 
to the highest level of species detection observed for each grid cell and year. The distributions of 
predicted occupancy probabilities (y-axis) are plotted against the highest level of detection observed in 
each grid cell and year (x-axis).  
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D.2 Myotis septentrionalis  

 
Figure D.2. Violin plots depict predicted occupancy probabilities for Myotis septentrionalis (MYSE) 
compared to the highest level of species detection observed for each grid cell and year. The distributions 
of predicted occupancy probabilities (y-axis) are plotted against the highest level of detection observed 
in each grid cell and year (x-axis).  
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D.3 Perimyotis subflavus 

 
Figure D.3. Violin plots depict predicted occupancy probabilities for Perimyotis subflavus (PESU) 
compared to the highest level of species detection observed for each grid cell and year. The distributions 
of predicted occupancy probabilities (y-axis) are plotted against the highest level of detection observed 
in each grid cell and year (x-axis).  
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D.4 Myotis evotis  

 
Figure D.4. Violin plots depict predicted occupancy probabilities for Myotis evotis (MYEV) compared to 
the highest level of species detection observed for each grid cell and year. The distributions of predicted 
occupancy probabilities (y-axis) are plotted against the highest level of detection observed in each grid 
cell and year (x-axis).  
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D.5 Myotis grisescens  

 
Figure D.5. Violin plots depict predicted occupancy probabilities for Myotis grisescens (MYGR) compared 
to the highest level of species detection observed for each grid cell and year. The distributions of 
predicted occupancy probabilities (y-axis) are plotted against the highest level of detection observed in 
each grid cell and year (x-axis).  
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D.6 Myotis leibii  

 
Figure D.6. Violin plots depict predicted occupancy probabilities for Myotis leibii (MYLE) compared to 
the highest level of species detection observed for each grid cell and year. The distributions of predicted 
occupancy probabilities (y-axis) are plotted against the highest level of detection observed in each grid 
cell and year (x-axis).  
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D.7 Myotis thysanodes  

 

Figure D.7. Violin plots depict predicted occupancy probabilities for Myotis thysanodes (MYTH) 
compared to the highest level of species detection observed for each grid cell and year. The distributions 
of predicted occupancy probabilities (y-axis) are plotted against the highest level of detection observed 
in each grid cell and year (x-axis).  
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D.8 Myotis volans 

 
Figure D.8. Violin plots depict predicted occupancy probabilities for Myotis volans (MYVO) compared to 
the highest level of species detection observed for each grid cell and year. The distributions of predicted 
occupancy probabilities (y-axis) are plotted against the highest level of detection observed in each grid 
cell and year (x-axis).  
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D.9 Myotis yumanensis 

 
Figure D.9. Violin plots depict predicted occupancy probabilities for Myotis yumanensis (MYYU) 
compared to the highest level of species detection observed for each grid cell and year. The distributions 
of predicted occupancy probabilities (y-axis) are plotted against the highest level of detection observed 
in each grid cell and year (x-axis).  
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D.10 Eptesicus fuscus  

 
Figure D.10. Violin plots depict predicted occupancy probabilities for Eptesicus fuscus (EPFU) compared 
to the highest level of species detection observed for each grid cell and year. The distributions of 
predicted occupancy probabilities (y-axis) are plotted against the highest level of detection observed in 
each grid cell and year (x-axis).  
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D.11 Lasionycteris noctivagans  

 
Figure D.11. Violin plots depict predicted occupancy probabilities for Lasionycteris noctivagans (LANO) 
compared to the highest level of species detection observed for each grid cell and year. The distributions 
of predicted occupancy probabilities (y-axis) are plotted against the highest level of detection observed 
in each grid cell and year (x-axis).  
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D.12 Lasiurus cinereus  

 
Figure D.12. Violin plots depict predicted occupancy probabilities for Lasiurus cinereus (LACI) compared 
to the highest level of species detection observed for each grid cell and year. The distributions of 
predicted occupancy probabilities (y-axis) are plotted against the highest level of detection observed in 
each grid cell and year (x-axis).  

 

 

 


