FY1989 study#89-3-100

IN REPLY REFER TO

FWS/AES-EC

2 32 6

United States Department of the Interior

FISH AND WILDLIFE SERVICE

Bishop Henry Whipple Federal Building 1 Federal Drive Fort Snelling, MN 55111-4056

AUG 3 1 19941

Memorandum

To:

Superfund Project Coordinator, Marion (MISO)

From:

Chief, Division of Environmental Contaminants (EC)

Subject: Report of Analytical Results from Fish and Salvaged Eaglets: Study

ID 89-3-100

Attached please find the subject results. These results are for fish that were collected from Crab Orchard Lake and are cross-checks with Illinois EPA. This memorandum report also contains the results of chemistry from two eaglets that were salvaged as the result of them apparently falling from the nest located at Grassy Bay (a bay of Crab Orchard Lake).

First, the results from the fish indicate that fillets from three of ten exceed the FDA action level. Two of the others probably could not be statistically differentiated from the two parts per million concentration that is the FDA action level for PCBs in fish. Therefore, 50 percent of these fish meet or exceed the FDA action level and some type of consumption advisory is probably warranted on Crab Orchard Lake.

Second, the results for the eaglets is a little surprising in light of the fish concentrations. With a nest as close to Crab Orchard Lake as this one, I would expect to find quite high PCB concentrations, but that is not what the data indicate. These PCB concentrations are not much different than we see in inland populations that are supposedly removed from sources of high concentrations of PCBs. These concentrations are vastly lower than concentrations from the Great Lakes shoreline nests where Grat Lakes forage fish concentrations are lower than the fish concentrations in fish from Crab Orchard Lake.

This suggests to me that the adult eagles did not feed fish from Crab Orchard Lake to their young during this breeding season. If the adults were feeding fish from Crab Orchard Lake to their young, it is my opinion that the concentrations in these young birds would be much higher. The birds do show exposure to PCBs, but the exposure is relatively low. There is really nothing that can be done about this situation to assure that the birds don't start feeding Crab Orchard Lake fish to their young except to continue with the PCB cleanup as quickly as we can.

I hope you find this report useful. Please call if you have any questions.

Willer Miller

001,9it

Attachment

U. S. FISH AND WILDLIFE SERVICE PATUXENT ANALYTICAL CONTROL FACILITY

QUALITY ASSURANCE REPORT

RE: 5850

7.

REGION: 3

REGIONAL ID: 89-3-100A

THE ANALYSES ON THE ABOVE MENTIONED SAMPLES WERE PERFORMED AT:

TEXAS A & M RESEARCH FOUNDATION 10 SOUTH GRAHAM RD COLLEGE STATION, TX 77840

AFTER A THOROUGH REVIEW OF THIS REPORT, I REPORT THE FOLLOWING OBSERVATIONS AND CONCLUSIONS:

THE ACCURACY, AS MEASURED BY SPIKE RECOVERY ANALYSIS, WAS GENERALLY ACCEPTABLE. RECOVERIES OF ALPHA BHC, BETA BHC, DELTA BHC, AND HCB IN TISSUES HAVE AVERAGED LESS THAN 80 %. THE METHOD SHOULD NOT BE CONSIDERED QUANTITATIVE FOR THESE ANALYTES. THE ATTACHED TABLE CONTAINS THE AVERAGE SPIKE RECOVERIES FOR ORGANOCHLORINES IN TISSUES.

THE PRECISION, AS MEASURED BY DUPLICATE SAMPLE ANALYSIS, WAS ACCEPTABLE.

WE HAVE NOT RECEIVED SUFFICIENT DATA FROM THIS LABORATORY TO ESTIMATE CONFIDENCE INTERVALS.

QUALITY ASSURANCE OFFICER DATE

TABLE 1: AVERAGE RECOVERY OF SPIKED ANALYTE FROM TISSUES ANALYZED BY THE GEOCHEMICAL AND ENVIRONMENTAL RESEARCH GROUP TEXAS A&M UNIVERSITY

ANALYTE	AVERAGE	STANDARD DEVIATION	NUMBER
alpha BHC	74.6	21.3	42
HCB	59.7	25.5	21
beta BHC	79.3	21.9	42
delta BHC	41.5	36.1	42
Heptachlor	86.9	23.9	44
Aldrin	101.7	11.3	44
Heptachlor epoxide	106.9	13.2	44
gamma Chlordane	94.4	8.3	21
alpha Chlordane	110.1	22.3	21
trans Nonachlor	107.5	7.4	21
Dieldrin	101.3	13.5	44
Endrin	86.9	12.0	7
Mirex	102.9	9.6	18
o,p' DDE	-108.0	11.1	20
p,p' DDE	106.5	15.1	44
o,p' DDD	85.9	24.1	21
p,p' DDD	96.2	18.9	44
	106.7	8.7	21
1 . 1	95.2	21.8	44
Total PCB	103.6	18.7	52

ANALYTICAL REPORT INTEGRITY FORM

Catalog #: _	5850	Lab: TAM Region: 3
Initial	QA/QC Rev	riew Report Correct
DATE	INITIALS	PROBLEMS/ACTION
2990	80	Missing Kinder arochlor Quantification
2/16/90	Pom	received the page for Individ anocloss
2-16-90	CPR	Ofz -
	-	
•		
	e .	

CATALOG #5850

SAMPLE ANALYSES RESULTS

for

U.S. Fish and Wildlife Service

Prepared by

Geochemical and Environmental Research Group Texas A&M University

FEBRUARY 8, 1990

FISH & WILDLIFE SERVICES - CATALOG # 5850
BULK PARAMETERS

FILE	FWS SAMPLE ID	SAMPLE TYPE S,F,B,W	COMMENTS/DESCRIPTION	SAMPLE WT. (gr)	% MOISTURE	LIPID
3012	DO 67764	F	largemouth bass	10.19	67.99	6.10
3013	DO 67765	F	carp	10.46	64.51	9.94
3014	DO 67766	F	largemouth bass	10.33	71.18	3.70
3015	DO 67769	F	channel catfish	10.16	64.85	11.77
3016	DO 67771	F	carp	10.37	60.91	15.15
3017	DO 67774	F	channel catfish	9.90	68.37	13.22
3018	DO 67775	F	carp	10.35	60.54	13.96
3019	DO 67784	F	channel catfish	9.97	78.61	3.16
3020	DO 67786	F	largemouth bass	10.30	70.32	5.66
3021	DO 67794	F	channel catfish	10.29	74.60	5.15

^{*} All data on a wet weight basis

FISM & WILDLIFE SERVICES - CATALOG # 5850

AROCLOR DISTRIBUTION

FILE	FWS	SAMPLE	COMMENTS/DESCRIPTION	SAMPLE	%	×
41	SAMPLE ID	TYPE		WT.	PCB 1254	PCB 1260
		S,F,B,W		(gr)		
F3012	DO 67764	F	largemouth bass	10.19	99	1
F3013	DO 67765	F	carp	10.46	98	2
F3014	DO 67766	F	largemouth bass	10.33	97	3
F3015	DO 67769	F	channel catfish	10.16	99	1
F3016	DO 67771	F	carp	10.37	98	2
F3017	DO 67774	F	channel catfish	9.90	98	2
F3018	DO 67775	F	carp	10.35	98	2
F3019	DO 67784	F	channel catfish	9.97	99	1
F3020	DO 67786	F	largemouth bass	10.30	99	1
F3021	DO 67794	F	channel catfish	10.29	98	2

^{*} All data on a wet weight basis

FISH & WILDLIFE SERVICES - CATALOG No 5850 - PESTICIDE & PCB ANALYSIS

RIF	PTOR	ALPHA- BHC	HCB	BETA- BHC	GAMMA - BHC	DEL-	TOTAL BHC'S	HEPTA- CHLOR	ALDRIN	HEPTA- EPOXIDE	OXY-	GAMMA - CHLORDANE	ALPHA- CHLORDANE	TRANS-
		(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
_									1					
677	764	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	0.01
677	765	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	<0.01	0.01	0.05	0.04	0.05
677	766	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
677	769	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	<0.01	<0.01	0.01	0.03	0.02
677	771	<0.01	<0.01	0.09	<0.01	<0.01	0.09	0.01	<0.01	<0.01	<0.01	0.01	0.01	0.02
677	774	<0.01	<0.01	0.02	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	0.01	<0.01	0.01	0.02
577	775	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	<0.01	<0.01	0.03	0.05	0.04
577	784	<0.01	<0.01	0.02	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	0.01
577	786	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
677	794	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	0.01

^{*} Confirmed by GC/MS

FISH & WILDLIFE SERVICES - CATALOG No 5850 - PESTICIDE & PCB ANALYSIS

RAW FILE#	DIELDRIN	ENDRIN	CIS- NONACHLOR	MIREX	2,4' DDE (0,P' DDE)	4,4' DDE (P,P' DDE)	2,4' DDD (O,P DDD)	4,4' DDD (P.P' DDD)	2,4' DDT (0,P' DDT)	4,4' DDT (P.P' DDT)	TOTAL PCB'S	TOXA -
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(bbw)	(ppm)	(ppm)	(ppm)
							-		!			8L
3012P LM	0.02	<0.01	0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	0.01	2.34	<0.10
3013P	0.03	<0.01	0.02	<0.01	<0.01	0.02	<0.01	0.01	0.01	0.01	*2.97	· <0.10
3014P 47	0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	0.48	<0.10
3015P (C	0.02	<0.01	0.02	<0.01	<0.01	0.04	<0.01	<0.01	0.01	<0.01	1.94	<0.10
3016P	0.02	<0.01	0.01	<0.01	<0.01	0.06	<0.01	0.01	0.01	0.02	1.92	<0.10
3017P (0.02	<0.01	0.02	<0.01	<0.01	0.06	<0.01	<0.01	<0.01	0.01	1.60	<0.10
3018P	0.03	<0.01	0.03	<0.01	<0.01	0.06	<0.01	0.01	0.02	<0.01	*3.72	· <0.10
3019P	0.01	<0.01	0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	0.01	1.02	<0.10
3020P LA	0.01	<0.01	0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.01	1.50	<0.10
3021P CC	0.01	<0.01	0.01	<0.01	<0.01	0.02	<0.01	0.01	<0.01	<0.01	0.45	<0.10

^{*} Confirmed by GC/MS

CATALOG # 5850

QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

for

U.S. Fish and Wildlife Service

Prepared by

Geochemical and Environmental Research Group Texas A&M University

FEBRUARY 8, 1990

FISH & WILDLIFE SERVICES - CATALOG # 5850 BULK PARAMETERS

FILE	FWS SAMPLE ID	SAMPLE TYPE S,F,B,W	COMMENTS/DESCRIPTION	SAMPLE WT. (gr)	% MOISTURE	LIPID
Replica	ates	T. T. S.		1		
F3021	DO 67794	F	channel catfish	10.29	74.60	5.15
	DO 67794	_	channel catfish	10.01	73.39	5.93

^{*} All data on a wet weight basis

FISH & WILDLIFE SERVICES - CATALOG No 5850 - PESTICIDE & PCB ANALYSIS

RAW FILE#	OIELDRIN (ppm)	ENDRIN	CIS- NONACHLOR (ppm)	MIREX	•	4,4' DDE (P,P' DDE) (ppm)		•			TOTAL PCB'S (ppm)	TOXA - PHENE (ppm)
F3021P F3022P	0.01	<0.01 <0.01	0.01	<0.01 <0.01	<0.01 <0.01	0.02	<0.01 <0.01	0.01 0.01	<0.01 <0.01	<0.01 <0.01	0.45 0.52	<0.10 <0.10

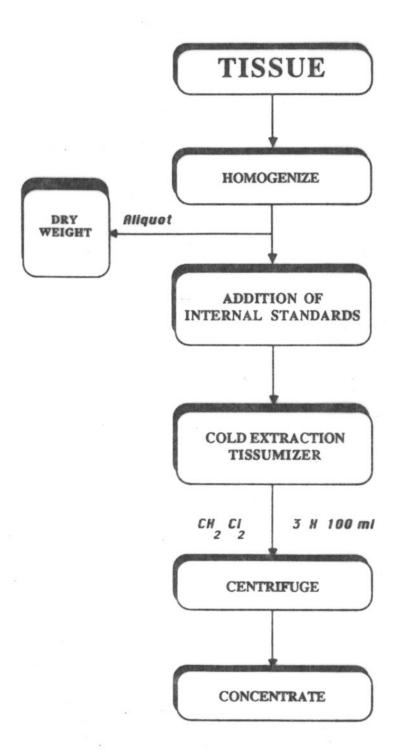
FISH & WILDLIFE SERVICES - CATALOG No 5850 - PESTICIDE & PCB ANALYSIS

RAW	DESCRIPTOR	ALPHA-	нсв	BETA-	GAMMA -	DEL-	TOTAL	HEPTA-	ALDRIN	HEPTA-	OXY-	GAMMA -	ALPHA-	TRANS-
FILE#		BHC		BHC	BHC	BHC	BHC'S	CHLOR		EPOXIDE	CHLORDANE	CHLORDANE	CHLORDANE	NONACHLOR
		(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
•														
F3021P	DO 67794	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	0.01
F3022P	DO 67794	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	<0.01	0.01	<0.01	0.01	0.01

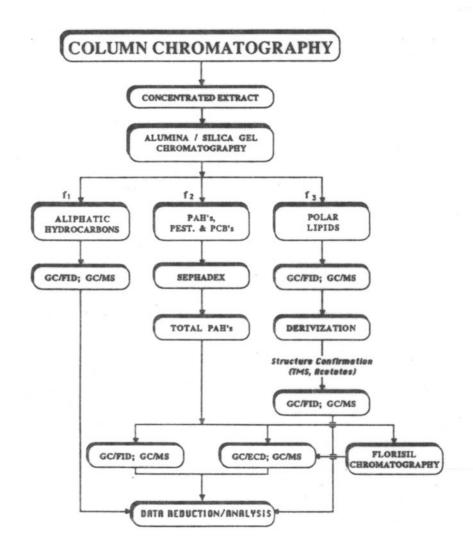
FISH & WILDLIFE SERVICES - CATALOG # 5850 QA/QC PESTICIDE AND PCB ANALYSES

FILE #	DESCRIPTION	(grams)	BHC BHC	(CL2)	BHC	LINDANE	BHC	HEPTA- CHLOR	ALDRIN	HEPTA	GAMMA - CHLORDANE	CHLORDANE	TRANS - NONACHLOR
SPIKED SA	MPLES SPIKED (ug)		2.1450	2.0450	2.2450	2.2700	2.1300	2.1050	2.3449	2.3100	2.0200	2.2050	2.215
F3022	ORIG SAMPLE	10.01	0.0000	0.0000	0.0000	0.0000 0.1323	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
97569P RECOVERED % RECOVER	SPK SAMP F3022 SPIKE (ug)	10.03	0.0559	0.0083 0.08 4	0.99	1.33	2.70	2.25	2.45	1.93	1.80	1.96	2.47

FISH & WILDLIFE SERVICES - CATALOG # 5850


QA/QC PESTICIDE AND PCB ANALYSES

DIELDRIN	ENDRIN	MIREX	2,4' DDE (O,P' DDE)	4,4' DDE (P,P' DDE)	2,4' DDD (0,P' DDD)	4,4' DDD (P,P' DDD)	2,4' DDT (0,P' DDT)	4,4' DDT (P,P' DDT)	AVERAGE % PCB'S
								1	
2.1550	2.1050	2.1050	2.2450	2.1150	2.1350	2.1700	2.1750	2.3150	2.1128
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0077
0.2534	0.2041	0.2596	0.1730	0.2414	0.2394	0.2583	0.1971	0.2446	0.2210
2.54	2.05	2.60	1.74	2.42	2.40	2.59	1.98	2.45	2.1386
118	97	124	77	114	112	119	91	106	101


The tissue samples were extracted by the NOAA Status and Trends Method (MacLeod et al. 1985) with minor revisions (Brooks et al., 1988; Wade et al., 1988). A flow diagram of the procedure is attached. Briefly, the tissue samples were homogenized with a Teckmar Tissumizer. A 1-gram sample (wet weight) was extracted with the Teckmar Tissumizer by adding internal standards, Na₂SO₄, and methylene chloride in a centrifuge tube. The tissue extracts were purified by silica/alumina column chromatography to isolate the aliphatic and PAH/pesticide/PCB fractions. The fraction containing the PAH/pesticides/PCB fractionation was further purified by Sephadex chromatography in order to remove interfering lipids. The quantitative analyses were performed by capillary gas chromatography (CGC) with a flame ionization detector for aliphatic hydrocarbons, CGC with electron capture detector for pesticides and PCB's, and a mass spectrometer detector in the SIM mode for aromatic hydrocarbons (Wade et al., 1988).

References

- Brooks, J.M., Wade, T.L., Atlas, E.L., Kennicutt II, M.C., Presley, B.J., Fay, R.R., Powell, E.N. and Wolff, G., (1987c). Analysis of bivalves and sediments for organic chemicals and trace elements. Annual Report for NOAA's National Status and Trends Program, Contract 50-DGNC-5-00262.
- MacLeod, W.D., Brown, D.W., Friedman, A.J., Burrow, D.G., Mayes, O., Pearce, R.W., Wigren, C.A. and Bogar, R.G. (1985). Standard Analytical Procedures of the NOAA National Analytical Facility 1985-1986. Extractable Toxic Organic Compounds, 2nd Ed. U.S. Department of Commerce, NOAA/NMFS. NOAA Tech. Memo. NMFS F/NWC-92.
- Wade, T.L., Atlas, E.L., Brooks, J.M., Kennicutt, M.C. II, Fox, R.G., Sericano, J., Garcia, B. and DeFreitas, D. (1988). NOAA Gulf of Mexico Status and Trends Program: Trace organic contaminant distribution in sediments and oysters. Estuaries, 11, 171-179.

009.99

NO. 6065 ATCH NO. 89-3-100C ORDER NO. 85800-89-

MISSISSIPPI STATE, MS 39762 REPORT FORM USDI/FWS

ORGANOCHLOR I NES

DATE RECEIVED 05/31/90

08272			IGANOCIIEOII		0.		
		ARTS PER M	ILLION AS	RECEIVED (WET WT)	1	
FWS *	COEG-1	COEG-2	COEG-3	COEG-4	COEG-5	COEG-6	Blank
LAB #	784333	784334	784335	784336	784337	784338	784339
MATRIX	B. Eagle Brain	B. Eagle Liver	B. Eagle Brain	B. Eagle Liver	B. Eagle Liver	B. Eagle Carcass	Reagent
COMPOUND							
HCB	ND*	ND	ND	ND	ND	ND	ND
α−ВНС	ND	ND	ND	ND	ND	ND	ND
-BHC	ND	ND	ND	ND	ND	ND	ND
BHC	ND	ND	ND	ND	ND	ND	ND
§-BHC	ND	ND	ND	ND	ND	ND	ND
Oxychlordane	ND	ND	ND	ND	ND	ND	ND
Hept. Epox.	ND	ND	ND	ND	ND	ND	ND
r-Chlordane	ND	ND	ND	ND	ND	0.01	ND
t-Nonach Ior	ND	ND	ND	ND	ND	0.03	ND
Toxaphene	ND	ND	ND	ND	ND	ND	ND
Arochior 1242	ND	ND	ND	ND	ND	ND	ND
Arochior 1248	ND	ND	ND	ND	ND	ND	ND
Arochior 1254	ND	0.32	ND	0.36	0.45	1.3#\$	ND
Arochlor 1260	ND	0.11	ND	0.22	0.27	0.79#\$	ND
o, p'-DDE	ND	ND	ND	ND	ND	ND	ND
α-Chlordane	ND	ND	ND	ND	ND	0.03	ND
p, p'-DDE	0.02	0.04	0.01	0.05	0.06	0.18#	ND
Dieldrin	ND	ND	ND	ND	ND	0.03	ND
o, p'-DDD	ND	ND	ND	ND	ND	ND	ND
Endrin	ND	ND	ND	ND	ND	ND	ND
cis-nonachlor	ND	ND	ND	ND	ND	ND	ND
o, p'-DDT	ND	ND	ND	ND	ND	ND	ND
p, p'-DDD	ND	ND	ND	ND	ND	ND	ND
p, p'-DDT	ND	ND	ND	ND	ND	ND	ND
Mirex	ND	ND	ND	ND	ND	ND	ND
WEIGHT (g)	8.90	49.5	10.1	65.2	45.0	670	-
MOISTURE (%)	83.5	74.0	84.2	73.5	73.5	72.0	-
LIPID (%)	3.00	3.20	6.10	3.70	4.80	5.42	-

Lower Level of Detection = 0.01 ppm for Tissue, Soil, Etc. 0.05 for Toxaphene and PCBs. For Water, LLD= 0.005 ppm for OCs, Tox, PCBs.; *ND = None Detected; **Spike = ppm for ; # = Confirmed by GC/Mass Spectrometry ***NS = Not Spiked **Spike Both Arochlors Preclude Distinguishing Between Congeners.

010.gif

20

NO. 6065 ATCH NO. 89-3-100C ORDER NO. 85800-89-08272

BOX CR MISSISSIPPI STATE, MS 39762 REPORT FORM USDI/FWS

ORGANOCHLOR I NES

DATE RECEIVED 05/31/90

P/	RTS PER MI	LLION AS F	ECEIVED ((WET WT)		
Matrix Blank,	Spike**	% Recovery				
for	784340					
Liver	Liver					
ND*	0.070	70				
ND	NS***					
ND	0.090	90				
ND	0.10	100				
ND	NS					
ND	0.091	,91				
ND	0.10	100				
ND	NS	ND				
ND	0.10	100				
ND	NS					
ND	NS					
ND	NS					
ND	1.0	100				
ND	1.1	110				
ND	0.10	100				
ND	0.097	97				
ND	0.095	95				
ND	0.091	91				
ND	NS					
ND	0.10	100				
ND	0.097	97				
ND	0.095	95				
ND	0.098	98				
ND	0.095	95				
ND	0.095	95				
_	_					
75.2	73.0					
5.32	6.40					
	Matrix Blank for Liver ND* ND ND ND ND ND ND ND ND N	Matrix Blank Spike** for 784340 Liver Liver ND* 0.070 ND NS**** ND 0.090 ND 0.10 ND NS ND 0.10 ND NS ND NS ND NS ND NS ND NS ND 1.0 ND NS ND 0.10 ND 0.097 ND 0.095 ND 0.095	Matrix Blank Spike** Recovery for 784340	Matrix Spike** Recovery	No	Matrix Spike** Recovery

Lower Level of Detection = 0.01 ppm for Tissue, Soil, Etc. 0.05 for Toxaphene and PCBs.

For Water, LLD= 0.005 ppm for OCs, Tox, PCBs

**Spike = 0.10 ppm for Liver except Arochlor e 1.0 ppm.

= Confirmed by GC/Mass Spectrometry

*ND = None Detected

***NS = Not Spiked

Signature

Signature

Animal Tissue - 10^{2} Results in $\mu g/g$ (dry weight)

	Sample Number						
Element	COEG-6						
Al	<8.00						
Sb	<15.0						
Ba	2.61						
Ве	<0.200						
В	<2.50						
Cđ	<0.500						
Co	<3.00						
Cr	<3.00						
Cu	3.38						
Fe	168						
Pb	<5.00						
Mg	1370						
Mn	3.76						
Мо	<5.00						
Ni	<4.00		19				
Ag	<10.0						
Sr	30.3						
Sn	<15.0						
V	<2.00						
Zn	1116				1		

Sample Analyses Animal Tissue - AA

Results in $\mu g/g$ (dry weight)

	Sample Number						
Element	COEG-1	COEG-2	COEG-3	COEG-4	COEG-5	COEG-6	
As		<0.3		<0.3	<0.3	<0.3	
Hg(CV)	0.343	0.658	0.213	0.496	0.601	0.212	
Se		4.34		3.82	4.69	1.40	
% Mois.	81.0	70.2	80.6	71,.1	70.4	70.7	

JJ Pop

Fish & Wildlife Manuals

gif ID Numbers

rpt#	gif#	page #
RAT 00147, AIM	<00147,001, gif> <00147,002, gif> <00147,003, gif> <00147,004, gif>	14000
	(00/47,002.gif)	Pest Me Analysis for 2
	(00/47,003,gif)	11 /2 8
	(00/47,004,g;A)	fage 1 9
	(00147,005, git)	12
	(00/47,006 igit)	/3
	(00/47,005, git) (00/47,006, git) (00/47,007, git) (00/47,008, git)	14
	<00147.008 gif>	17
	(00147,009, g.F)	18
	<00147,009, g. f>	19
	<00147.011g1+>	20
		an a
-		
		/

P:\WP\DOCS\F&W\GIFLOG

IN REPLY REFER TO:

FWS/AES-EC

This is raw data, Report FY1988 Study IO# 88-3-116 Was 52. Find + Attach 88300121

United States Department of the Interior AMERICA

FISH AND WILDLIFE SERVICE

Bishop Henry Whipple Federal Building 1 Federal Drive Fort Snelling, MN 55111-4056

August 31, 1994

Memorandum

To:

Superfund Project Coordinator, Marion (MISO)

Chief, Division of Environmental Contaminants

Subject: Report of Analytical Results from Fish: Study ID 88-3-110

Attached please find the subject results. These results are for fish that were collected from Crab Orchard Lake and are cross-checks with the laboratory used by O'Brien and Gere.

The results from the fish tissue analyses confirm that the composite results exceed the FDA action level. The results for mercury indicate elevated concentrations but do not exceed the FDA action level in this composite. The analyses confirm that lead concentrations are quite elevated, but there are presently no guidances for regulation of lead in fish tissue.

I hope you find this report useful. Please call if you have any questions.

T.J. Miller

Attachment

Marian IL FO FFSH 89-3-100 Contaminant Studies Crab Grahard DECTD# 1989 30007

U S. Fish and Wildlife Service

Patument Wildlife Research Center

Patument Analytical Control Facility

Laurel . Maryland 20708

REPORT

Date: 88/02/07

TAT # . 5469

RESIGNAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: Mercury

Submitter ID	Matrix	UG/G (WET)	UG/G (DRY)	135 *
34-29	tish	NOT DETERMINED		5145
34-30	fish	NOT DETERMINED		5.00
34-27	fish	9 - 58	2.5	5.37
17-71	fish	NOT DETERMINED		5.53

U. 5 Fish and Wildlife Service Patument Wildlife Research Center Patument Analytical Control Facility

Laurel. Maryland 20708

REPORT

Date: 88/02/09

CAT #: 5469

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: Mercury / Quality Assurance

Procedural Blanks

SAMPLE #

Total Ug (0.050

ACCEPTABLE

** is invalid spike

Recoveries

Recoveries from fortified chicken livers averaged 99 %. Residues were not adjusted on the basis of this datum.

Detection Limit

The nominal lower limit of reportable residue is .05 ppm wet weight, based on a i.0 g sample.

These analyses were performed at the Patuxent Analytical Control Facility in accordance with our Quality Assurance Program. We are confident that the data reported here are accurate.

ANALYST

CHIEF CHEMIST

Kec 2/23/83

QUALITY ASSURANCE REVIEW FORM

CATALOG: 5-469	D	ATE: 2/19	188
ANALYTES: Send			
Mark or substitute while		and the markets at a green	- All the Control of the
I certify that these	e analyses were p	erformed according	g to the
Environmental Contaminant	s Branch Quality	Assurance Program	n.
There were no deviations	from the plan	L/.	
Deviations from the plan			explanation.
	<u> An</u>	Laporatory Super	rsor
These data have been	reviewed and are	cleared for relea	ase to submitter.
2-19-35 Date		Ouality Assurance	Officer

U S Tish and Wildlife Service

Patument Wildlife Research Center

Paturent Analytical Control Facility

Laurel, Maryland 20703

REPORT

Date: 38/02/18

CAT #: 5469 RIGIONAL ID 003-83-R3

DESCRIPTION : Crab Orchard

Anslyte: Lead

Submitter ID	Matrix	UG/G (WET)	UG/G (DRY)	Lab #
34-27	fish	NOT DETERMINED		5135
34-30	fish	NOT DETERMINED		5100
34-27	fish	NOT DETERMINED		\$107
17-71	fish	16	69	5168

U S Fish and Wildlife Bervice

Paturent Wildlife Research Center

Patuzent Analytical Control Facility

Laure: Maryland 20708

REFORT

Date: 83/33/15

CAT #: 5489 REGIONAL ID 003-38-R3

DESCRIPTION : Crab Grahard

Analyte: Lead / Quality Assurance

Procedural Dianks

SAMPLE #

Total Uc

ACCEPTABLE

** = Invalid spike

Lecoveries

Recoveries from fortified chicken livers averaged 70 %. Residues were not adjusted on the basis of this datum.

Detection Limit

The nominal lower limit of reportable residue is .05 ppm wet weight, based on a i.0 g. sample.

These analyses were performed at the Patuxent Analytical Control Facility in accordance with our Guality Assurance Program. We are confident that the data reported here are accurate.

ANALYST

CHIEF CHEMIST

QUALITY ASSURANCE REVIEW FORM

CATALOG: 5469 DATE: 2/19/88
ANALYTES: OC Pertuetes and OCB's
I certify that these analyses were performed according to the
Environmental Contaminants Branch Quality Assurance Program.
There were no deviations from the plan
Deviations from the plan were necessary Attach explanation.
Laboratory Supervisor
These data have been reviewed and are cleared for release to submitter.
Date Date And Mary Quality Assurance Officer

Fish and Wildlife Service Patuzent Wildlife Research Center Patument Analytical Control Facility

Laurel, Maryland 20708

REPORT

CAT #: 5469 REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: Moisture

Submitter	ID	Matrix	Result	Ur	nits	Lab #
34-29		fish	75.82	PER	CENT	5165
34-30		fish	73.76	PER	CINT	5166
34-27		fish	77.93	PER	CENT	5157
17-71		fish	76.77	PER	CENT	5158

U. S. Fish and Wildlife Service

Patuxent Wildlife Research Center

Patuxent Analytical Control Facility

Laurel, Maryland 20708

REPORT

Date: 98/02/08

CAT #: 5469 R

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: Lipid

Submitter ID	Matrix	Result	Units	Lab #
34-29	fish	2.19	PER CENT	5165
34-30	fish	5.83	PER CENT	5166
34-27	fish	NOT DETE	RMINED	5157
17-71	fish	NOT DETE	RMINED	5165

Tish and Wildlife Service

Patuxent Wildlife Research Center

Paturent Analytical Control Tacility

Laurei, Maryland 20708

REFORT

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: Estimated PCB-1254 /OC SCAN CAS# 11097-69-1

Submitter ID	Matrix	UG/G (WET)	UG/G (DRY)	Lab #
34-29	fish	3.9	16.	5165
34-30	fish	4.4	17.	5166 XE
34-27	fish	NOT DETERMINED		5157
i7-7 i	fish	NOT DETERMINED		5166

U. S. Fish and Wildlife Service Faturent Wildlife Research Center Paturent Analytical Control Facility

Laurel, Haryland 20708

REPORT

Date: 88/02/09

CAT #: 5467

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: Estimated FCE-1254 / OC SCAN / Quality Assurance

CAS # 11097-69-1

Procedural Blanks

SAMPLE # 5164

Total Ug (0.100 ACCEPTABLE

** .. Recovery Invalid

Recoveries

Recoveries from fortified tissues averaged %i %. Residues were not adjusted on the basis of this datum.

Detection Limit

The nominal lower limit of reportable residue is .1 ppm wet weight, based on a 10.0 g. sample.

.2

U. S. Fish and Wildlife Service

Patuxent Wildlife Research Center

Paturent Analytical Control Facility

Laurel, Haryland 20708

REFORT

Date: 88/02/09

AT #: 5469

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: Oxychiordane /OC SCAN

CAS# 27304-13-8

Submitter ID	Flatrix	UG/G (WET)		UG/G (DRY)	Lab #
34-29	fish	(0.0099	<	0.041	5165
34-30	fish	(0.0099	(0.038	5166
34-27	fish	NOT DETERMINED			5167
17-71	fish	NOT DETERMINED			5168

5

U. S. Fish and Wildlife Service

Patument Wildlife Research Center

Patuzent Analytical Control Facility

Laurel, Maryland 20708

REPORT

Date: 88/02/09

CAT #: 5469

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: Oxychlordane / OC SCAN / Quality Assurance

CAS # 27304-13-8

Procedural Bianks

SAMPLE #

Total Ug

ACCEPTABLE

** - Recovery invalid

Recoveries

Recoveries from fortified tissues averaged 84 %. Residues were not adjusted on the basis of this datum.

Detection Limit

The nominal lower limit of reportable residue is .01 ppm wet weight, based on a 10.0 g. sample.

Patuxent Wildlife Research Center

Patuxent Analytical Control Facility

Laurel, Maryland 20708

REPORT

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: Heptachlor Epoxide /OC SCAN CAS# 1024-57-3

Submitter II	Matrix	UG/G (W	ET)	UG/G (DRY)	Lab #
34-29	fish	< 0.009	9 (0.041	5165
34-30	fish	< 0.009	9 (0.038	5166
34-27	fish	NOT DETERM	INED		5157
17-71	fish	NOT DETERM	INED		5168

Patuxent Wildlife Research Center

Patuxent Analytical Control Facility

Laurei, Maryland 20708

REPORT

Date: 88/03/09

CAT #: 5469

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: Reptachior Epoxide / OC SCAN / Quality Assurance

CAS # 1024-57-3

Procedural Blanks

SAMPLE # 5164

Total Ug (0.010 ACCEPTABLE

* - Recovery Invalid

Recoveries

Recoveries from fortified tissues averaged 85 %. Residues were not adjusted on the basis of this datum.

Detection Limit

The nominal lower limit of reportable residue is .01 ppm wet weight, based on a 10.0 g. sample.

Patument Wildlife Research Center

Patuxent Analytical Control Facility

Laurei, Maryland 20708

REPORT

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: trans-Nonachlor /OC SCAN CAS# 39765-80-5

Submitter ID	Matrix	UG/G (WET) UG/G (DR	Y) Lab #
34-29	fish	. (0.0099 (0.041	5165
34-30	fish	0.068 0.26	5166 *
34-27	fish	NOT DETERMINED	5167
17-71	fish	NOT DETERMINED	5 i 68

Patuxent Wildlife Research Center

Patuxent Analytical Control Facility

Laurei, Maryland 20708

REPORT

Date: 88/02/09

CAT #: 5469

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: trans-Nonachior / OC SCAN / Quality Assurance

CAS # 39765-80-5

Procedural Blanks

SAMPLE #

Total Ug <0.010 ACCEPTABLE

** - Recovery Invalid

Recoveries

Recoveries from fortified tissues averaged 89%. Residues were not adjusted on the basis of this datum.

Detection Limit

The nominal lower limit of reportable residue is .01 ppm wet weight, based on a 10.0 g. sample.

Patuxent Wildlife Research Center

Patuxent Analytical Control Tacility

Laurel, Maryland 20708

REPORT

Date: 88/02/09

AT #: 5469

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

analyte: trans-Chlordane /OC SCAN

CAS# 5103-74-2

Submitter ID	Matrix	UG/G (WET)		UG/G (DRY)	Lab #
34-29	fish	(0.0099	<	0 041	5165
34-30	fish	0.049		0.19	5166*
34-27	fish	NOT DETERMINED			5157
17-71	fish	NOT DETERMINED			5168

Patument Wildlife Research Center

Paturent Analytical Control Facility

Laurel, Maryland 20708

REPORT

Date: 88/02/09

CAT #: 5469

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: trans-Chiordane / OC SCAN / Quality Assurance

CAS # 5103-74-2

Procedural Bianks

SAMPLE #

Total Ug (0.010 ACCEPTABLE

** - Recovery Invalid

Recoveries

Recoveries from fortified tissues averaged 90%. Residues were not adjusted on the basis of this datum.

Detection Limit

The nominal lower limit of reportable residue is $.01\,$ ppm wet weight, based on a $10.0\,$ g. sample.

Patuxent Wildlife Research Center

Patuxent Analytical Control Facility

Laurel, Maryland 20708

REPORT

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: cis-Chlordane /OC SCAN CAS# 5103-71-9

Cubalithaa ID	M - 4 - 4 -	110.10	116 (6 (88))	
Submitter ID	Matrix	UG/G (WET)	UG/G (DRY)	Lab #
34-29	fish	< 0.0099	(0.041	5165
34-30	fish	0.072	0.27	5166 米
34-27	fish	NOT DETERMINED		5167
17-71	fish	NOT DETERMINED		5168

U. S. Fish and Wildlife Service Patuxent Wildlife Research Center Patuxent Analytical Control Facility

Laurel, Maryland 20708

REPORT

Date: 88/02/09

CAT #: 5469 REGIONAL ID 003-88-R3

DESCRIPTION : Crab Crchard

Analyte: cis-Chlordane / OC SCAN / Quality Assurance CAS # 5

CAS # 5103-71-9

Procedural Blanks

SAMPLE #

Total Ug (0.010 ACCEPTABLE

** = Recovery Invalid

Recoveries

Recoveries from fortified tissues averaged 88 %. Residues were not adjusted on the basis of this datum.

Detection Limit

The nominal lower limit of reportable residue is $.01\,$ ppm wet weight, based on a $10.0\,$ g. sample.

U. S. Fish and Wildlife Service Fatuxent Wildlife Research Center Patuxent Analytical Control Facility

Laurel, Haryland 20708

REFORT

Date: 88/02/09

CAT #: 5469

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: Dieldrin /OC SCAN CAS# 60-57-1

Submitter ID	Matrix	UG/G (WET)	UG/G (DRY)	Lab #
34-29	fish	(0.0099	(0.041	5165
34-30	fish	0.029	0.11	5166 ×
34-27	fish	NOT DETERMINED		5167
17-71	fish	NOT DETERMINED		5168

Patuxent Wildlife Research Center

Patument Analytical Control Facility

Laurel, Haryland 20708

REPORT

Date: 88/02/09

CAT #: 5469

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: Dieldrin / OC SCAN / Quality Assurance CAS # 60-57-1

Procedural Blanks

SAMPLE # 5164

Total Ug (0.010

ACCEPTABLE

** = Recovery Invalid

Recoveries

Recoveries from fortified tissues averaged 95 %. Residues were not adjusted on the basis of this datum.

Detection Limit

The nominal lower limit of reportable residue is .01 ppm wet weight, based on a 10.0 g. sample.

Patuxent Wildlife Research Center

Patuxent Analytical Control Facility

Laurei, Maryland 20708

REPORT

Date: 88/02/09

CAT # . 5469 REGIONAL

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: p,p'-DDE /OC SCAN CAS# 72-55-9

Submitter	ID	Matrix		UG/G (WET)	UG/G (DRY)	Lab #
34-29		fish		0.72	3.0	5165
34-30		fish		0.75	2 . 9	5166 *
34-27		fish		NOT DETERMINED		5167
17-7 i		fish		NOT DETERMINED		5168

0

Patuxent Wildlife Research Center

Patuxent Analytical Control Facility

Laurel, Maryland 20708

REPORT

Date: 88/02/09

CAT #: 5469

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: p,p'-DDE / OC SCAN / Quality Assurance CAS # 72-55-9

Procedural Blanks

SAMPLE * 5164

Total Ug (0.0i0

ACCEPTABLE

** - Recovery invalid

Recoveries

Recoveries from fortified tissues averaged 96 %. Residues were not adjusted on the basis of this datum.

Detection Limit

The nominal lower limit of reportable residue is .01 ppm wet weight, based on a 10.0 g. sample.

Patuxent Wildlife Research Center

Patuxent Analytical Control Facility

Laurel, Maryland 20708

REPORT

Date: 88/02/09

CAT #: 5469

REGIONAL ID 003-88-R3

OESCRIPTION : Crab Orchard

Analyte: Endrin /OC SCAN CAS# 72-20-8

Submitter ID	Matrix	UG/G (WET)	UG/G (DRY)	Lab #
34-29	fish	< 0.0099	(0.041	5165
34-30	fish	(0.0099	(0.038	5166
34-27	fish	NOT DETERMINED		5167
17-7 i	fish	NOT DETERMINED		5168

Patuxent Wildlife Research Center

Paturent Analytical Control Facility

Laurel, Maryland 20708

REPORT

Date: 88/02/09

CAT #: 5469

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: Endrin / OC SCAN / Quality Assurance

CAS # 72-20-8

Procedural Bianks

SAMPLE # 5164

Total Ug (0.010

ACCEPTABLE

** = Recovery Invalid

Recoveries

Recoveries from fortified tissues averaged 113 %. Residues were not adjusted on the basis of this datum.

Detection Limit

The nominal lower limit of reportable residue is .01 ppm wet weight, based on a 10.0 g. sample.

Tish and Wildlife Service

Patuxent Wildlife Research Center

Patuxent Analytical Control Facility

Laurei, Maryland 20708

REFORT

Date: 88/02/09

RECIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: cis-Nonachior /OC SCAN

CAS#

Submitter ID	Matrix	UG/G (WET)	UG/G (DRY)	Lab #
34-7.9	fish	< 0.0099	0.041	5165
34-30	fish	0.021	0.08i	5166 ¥
34-27	fish	NOT DETERMINED		5167
17-71	fish	NOT DETERMINED		5168

Fish and Wildlife Service

Patuzent Wildlife Research Center

Patuxent Analytical Control Facility

Laurei, Maryland 20708

REPORT

Date: 88/02/09

CAT #: 5469

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: cis-Nonachlor / OC SCAN / Quality Assurance

Procedural Blanks

SAMPLE # 5164

Total Ug (0.0i0

ACCEPTABLE

** = Recovery Invalid

Recoveries

Recoveries from fortified tissues averaged 95 %. Residues were not adjusted on the basis of this datum.

Detection Limit

The nominal lower limit of reportable residue is .01 ppm wet weight, based on a 10.0 g. sample.

Patuxent Wildlife Research Center

Patument Analytical Control Facility

Laurel, Maryland 20708

REPORT

CAT #: 5467 REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Submitter ID	Matrix	UG/G (WET)	UG/G (DRY)	Lab #
34-29	fish	< 0.0099	(0.041	5165
34-30	fish	(0 0077	(0.038	5166
34-27	fish	NOT DETERMINED		5157
17-71	fish	NOT DETERMINED		5168

Patuxent Wildlife Research Center

Patuzent Analytical Control Facility

Laurei, Haryland 20708

REPORT

Date: 88/02/09

CAT #: 5469

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: p.p:-DDD / OC SCAN / Quality Assurance CAS # 72-54-8

Procedural Blanks

SAMPLE # 5164

Total Ug (0.010

ACCEPTABLE

** : Recovery Invalid

Recoveries

Recoveries from fortified tissues averaged 106 %. Residues were not adiusted on the basis of this datum.

Detection Limit

The nominal lower limit of reportable residue is .01 ppm wet weight, based on a i0.0 g. sample.

Patuxent Wildlife Research Center

Fatuxent Analytical Control Escility

Laurei, Maryland 20708

REPORT

Date: 88/02/07

CAT #: 5469

REGIONAL ID 003-88-R3

DESCRIPTION - Crab Orchard

Submittet 10	Platrix	UG/G (WET)		UG/G (DRY)	Lab #
34-29	fish	(0.0099	<	0.041	5155
34-30	fish	< 0 0099	<	0.038	5156
34-27	fish	NOT DETERMINED			5 . 5 .
17-71	fish	NOT DETERMINED			5168

Patuxent Wildlife Research Center

Patuxent Analytical Control Facility

Laurel, Haryland 20708

REPORT

Date: 98/02/09

CAT #: 3469

REGIONAL ID 003-88-R3

DESCRIPTION : Grab Orchard

Analyta: p,p'-DDT / OC SCAN / Quality Assurance CAS # 50-29-3

Procedurai Bianks

SAMPLE # 5154

Total Ug (0.015

** - Recovery Invalid

Recoveries

Recoveries from fortified tissues averaged 114 %. Residues were not adjusted on the basis of this datum.

Detection Limit

The nominal lower limit of reportable residue is .01 ppm wet weight, based on a i0.0 g. sample.

Patuxent Wildlife Research Center

Patument Analytical Control Facility

Laurel, Maryland 20708

REPORT

Date: 83/02/09

CAT #: 5469

REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte Ustimated Toxaphene /OC SCAN CAS# 8001-35-2

Submirter ID	Matrix	UG/G (WET) UG/G (DRY) Lab #
34-39	fish	(0.50 (2.i	5165
34-30	fish	0 49 (1 9	5165
34-27	fish	NOT DETERMINED	5157
17-71	fish	MOT DETERMINED	5158

Patuxent Wildlife Research Center

Fatuxent Analytical Control Facility

Laurei, Marviand 20708

REPORT

Date: 98/02/09

CAT #: 5457

REGIONAL ID 003-38-RS

DESCRIPTION : Crab Orchard

Analyte Estimated Toxaphene / OC SCAN / Quality Assurance CAS # 8001-35-1

Procedural Blanks

SAMPLE # 5164

Total Ug < 0 500

st = Recovery Invalid

Recoveries

Recoveries from fortified tissues averaged. Residues were not adjusted on the basis of this datum.

Detection Limit

The nominal lower limit of reportable residue is .5 ppm wet weight, based on a i0 0 g. sample.

U. S. Tish and Wildlife Service Patuxent Wildlife Research Center Patuxent Analytical Control Facility Laurel, Haryland 20708

REPORT

Date: 88/02/09

LOT #: 5469 . REGIONAL ID 003-88-R3

DESCRIPTION : Crab Orchard

Analyte: OC Scan /Ouslity Assurance

These analyses were performed at the Patuxent Analytical Control Facility in accordance with our Guality Assurance Frogram. We are confident that the data reported here are accurate.

Compound identification of * values were confirmed by mass spectrometry.

Mand Fertings

ANALYST