GEOLOGIC ATLAS of max
 UNITED STATES

BESSEMER-VANDIVER FOLIO

ALABAMA

By

CHARLES BUTTS

GEOLOGIC ATLAS OF THE UNITED STATES.

dits of survey and or publication.

The Geological Survey is making a topographie and a geologic atlas of the United States. The topographic atlas will consist of maps called atlas sheets, and the geologic atlas will consist of parts called fulios. Each folio includes topographi and geologic maps of a certain four-sided area, called a quadrangle, or of more than one such area, and a text describing it topographic and geologie features. A quadrangle is limited by parallels and meridians, not by political boundary lines, such as those of States, counties, and townships. Each quadrangle is named from a town or a natural feature within it and at the sides and corners of each map are printed the names of adjacent quadrangles.

SCALES OF THE MAPS

On a map drawn to the scale of 1 inch to the mile a linear mile on the ground would be represented by a linear inch on the map, and each square mile of the ground would be repre sented by a square inch of the map. The scale may beexpressed also by a fraction, of which the numerator represents a unit of linear measure on the map and the denominator the corresponding number of like units on the ground. Thus, as there are 63,360 inches in a mile, the scale 1 inch to the mile is expressed by the fraction $\frac{1}{\text { sumow }}$, or the ratio $1: 63,360$.
The three scales most commonly used on the standard maps of the Geological Survey are $1: 31,680,1: 62,500$, and $1: 125,000,1$ inch on the map corresponding approximately to one-half mile, 1 mile, and 2 miles on the ground. On the scale of $1: 31,680$ a square inch of map surface represent about one-fourth of a square mile of earth surface; on the scale of $1: 62,500$, about 1 square mile; and on the scale of 1:125,000, about 4 square miles. In generat a standard map on the scale of $1: 125,000$ represents one-fourth of a "squar degree"-that is, one-fourth of an area mensuring 1 degree of latitude by 1 degree of longitude; one on the scale of $1: 62,500$ represents one-sixteenth of a "square degree"; and one on the scale of $1: 31,680$ represents one-sixty-fourth of a "squar degree." The arens of the corresponding quadrangles are about $1,000,250$, and 60 square miles, though they differ with the latitude, a "square degree" in the latitade of Bóston, for example, being only 3,525 square miles and one in the latinde of Galveston being 4,150 square miles.

FEATURES SHOWN ON THE TOROGRAPHO MAPS.
The features represented on the topographic maps comprise three general classes- (1) inequalities of surface, such as plains, plateaus, valleys, hills, and mountains, which collectively make up the relief of the area; (2) bodies of water, such tively make up the rechef of the area; (2) bodies of water, such as streams, lakes, swamps, tidal flats, and the sea, which collectively make up the drainage; (3) such works of man a roads, rair roads, buildings,
Relief-All altitudes are measured from mean sea level. The beighits of many points have been accurately determined The beights of many points have been accurately determined and those of some are given on the map in tigures. It is desirable, however, to show the altitude of all parts of the area
mapped, the form of the surface, and the grade of all slopes. mapped, the form of the surface, and the grade of all slopes This is done by contour lines, printed in brown, each repre senting a certain height above sea level. A contour on the ground passes through points that have the same altitude One who follows a contour will go neither uphill nor downhil but on a level. The manner in which contour lines expres altitude, form, and slope is shown in figure 1 .

Figurb 1.-Ideal view and corresponding contour wap.
The view represents a river valley between two hills. In the foreground is the sea, with a bay that is partly inclosed by a hooked sand bar. On each side of the valley is a terrace. The terrace on the right merges into a gentle upward slope that on the left merges into a steep slope that passes upward to a cliff, or scarp, which contrasts with the gradual slope back
from its crest. In the map each of these features is indicated, directly beneath its position in the view, by contour lines. This map does not include the distant part of the view.

As contours are continuous horizontal lines they wind smoothly about smooth surfaces, recede into ravines, and prosmoothly about smooth surfaces, recede into ravines, and project around spurs or prominences. The relations of contour the map and sketch. The contour lines show not only the the map and sketch. The contour lines show not only the of the hills and valleys but their altitude, as well as the
shape shape of the hills and valleys
steepuess or grade of all slopes.
The vertical distance represented by the space between two The vertical distance represented by the space between two
successive contour lines-the contour interval-is the same, successive contour lines-the contour interval-is the same, whether the contours lie along a ciiff or on a gentle slope; bu to reach a given height on a gentle slope one must go farther
than on a steep slope, and therefore contours are far apart on than on a steep slope, and therefore contours a
gentle slopes and near together on steep slopes.
gentle slopes and near together on steep slopes.
The contour interval is generally uniform
The contour interval is generally uniform throughout a
single map. The relief of a flat or gently andulating single map. The relief of a flat or gently undulating country can be adequately represented only by the use of a small con tour interval; that of a steep or mountainous country can generally be adequately represented on the same scale by the us of a larger interval. The smallest interval commonly used on the atlas sheets of the Geological Survey is 5 feet, which is used for regions like the Mississippi Delta and the Dismal Swamp. An interval of 1 foot has been used on some large scale maps of very flat areas. On maps of more rugged country contour intervals of $10,20,25,50$, and 100 feet are used and on maps of great mountain masses like those in Colorado the interval may be 250 feet.
In figure 1 the contour interval is 20 feet, and the contour lines therefore represent contours at $20,40,60$, and 80 feet, and $s 0$ on, above mean sea level. Along the contour at 200 feet lie all points that are 200 feet above the sea-that is, this contom would be the shore line if the sea were to rise 200 feet; alon the contour at 100 . feet are all points that are 100 feet above the sea; and so on. In the space between any two contomrs are ull points whose altitudes are above the lower and below the ligher contour. Thus the contour at 40 feet falls jus below the erge of the terrace, and that at 60 feet lies above the terrace; therefore all points on the terrace are shown to b more than 40 but less than 60 feet above the sea. In this illustration all the contour lines are numbered, but on most of the Geological Survey's maps only certain contour linessay every fifth one, which is made slightly heavier-are numbered, for the heights shown by the others may be learned by counting up or down from these. More exact altitudes for uany points are given in bulletins published by the Geological Survey

Drainaye.-Watercourses are indicated by blue lines. The line for a perennial streain is unbroken; that for an intermittent stream is dotted; and that for a stream which sinks mittent stream is dotted; and that for a stream which simk and reappears is broken. Lakes and other bodies of water and the several types of land land lines and other boundary lines, as well as all the lettering and the map projection, are printed in black.

featuris shown on the geologio maps

The maps representing the geology show, by colors and conventional signs printed on the topographic map as a base,
the distribution of rock masses on the surface of the land the distribution of rock masses on the surface of the land
and, by means of structure sections, their underground relaand, by means of structure sections, their underground
tions so far as known, in such detail as the scale permits.

KINDS OF ROCKS

Rocks are of many kinds. On the geologic map they are distinguished as igneous, sedimentary, and metamorphic

Igneous rocks.-Rocks that have cooled and consolidated from a state of fusion are known as igneous. Molten materia has from time to time been forced upward in fissures or chan nels of various shapes and sizes through rocks of all ages to
or nearly to the surface. Rocks formed by the consolidation or nearly to the surface. Rocks formed by the consolidation of molten material, or mayma, within these channels-that is, below the surface-are called intrusive. An intrusive mass that occupies a nearly vertical fissure which has approximately parallel walls is called a dike; one that fills a large and irregular conduit is termed a stock. Molten material that traverses stratified rocks may be intruded along bedding planes, forming masses called sills or sheets if they are relatively thin and laccoliths if they are large lenticular bodies. Molten materia that is inclosed by rock cools slowly, and its componen minerals crystallize when they solidify, so that intrusive rocks are generally crystalline: Molten material that is poured ou through channels that reach the surfice is called lava, and lava may build up volcanic mountains. Igneous rocks that have solidified at the surface are called extrusive or effusin Lavas generally cool more rapidly than intrusive rocks and contain, especially in their outer parts, more or less volcani glass, produced by rapid chilling. The outer parts of lava flows are also usually made porous by the expansion of the gases in the magma. Explosions due to these gases may accompany volcanic eruptions, causing the ejection of dust,
ash, lapill, and larger fragments. These materials, when consolidated, constitute breccias, agglomerates, and tuffs.
Sedimentary rocks.-Rocks composed of the transported fragments or particles of older rocks that have undergone disintegration, of volcanic material deposited in lakes and seas or of material deposited in such bodies of water by chemical precipitation or by organic action are termed sedimentary.

The chief agent in the transportation of rock debris is water in motion, including rain, streams, and the water of lakes and of the sea. The materials are in large part carried as solid particles, and the deposits they form are called mechanical Such deposits are gravel, sand, and clay, which are later consolidated into conglomerate, sandstone, and shale. Some of the materials are carried in solution, and deposits composed of these materials are called organic if formed with the aid of lif or chemical if formed without the aid of life. The more com mon rocks of chemical and organic origin are limestone, chert gypsum, salt, certain iron ores, peat, lignite, and coal. An gypsum, salt, certain iron ores, peat, lignite, and coal. Any
one of the kinds of deposits named may be formed separately, one of the kinds of deposits named may be formed separately, or the different materials may be intermingled in many ways producing a great variety of rocks
Another transporting agent is air in motion, or wind, and a third is ice in motion, or glaciers. The most characteristic of the wind-borne or eolian deposits is loess, a tine-grained earth the most characteristic of the glacial deposits is till, a hetero geneous mixture of boulders and pebbles with clay or sand.
Most sedimentary rocks are made up of layers or beds that can be easily separated. These layers are called strata, and rocks deposited in such layers are said to be stratified.
The surface of the earth is not immevable; over wide regions it very slowly rises or sinks with reference to the sea, and shore lines are thus changed. As a result of upward movement marine sedimentary rocks may become part of the land, and most of our land surface is in fact composed of rocks that were originally deposited as sediments in the seat.

Rocks exposed at the surface of the land are acted on by air water, ice, animals, and plants, especially the low organisms known as bacteria. They gradually disintegrate, and their more soluble parts are leached ont, the less soluble materis being left as a residual layer. Water washes this material down the slopes, and it is eventually carried by rivers to the ocean or other bodies of water. Usually its journey is not con tinuous, but it is temporarily built into river bars and flood plains, where it forms alluvizum. Alluvial deposits, placial plams, where it forms alluvazm. Alluvial deposits, glacial belong to the surficial class, and the residual layer isposit monly included with them. The upper parts of these deposits monly included with them. The upper parts or these deposit, subsoils, the soils being usually distinguished by a considerable subsois, the soils being usua
admixture of organic matter.
Metamorphic rocks.-In the course of time and by various processes rocks may become greatly changed in composition and texture. If the new characteristics are more pronounced than the old the rocks are called metamorphic. In the process of metamorphism the chemical constituents of a rock may enter into new combinations and certain substances may be los or new ones added. A complete gradation from the primary to the metamorphic form may exist within a single rock mas Such changes transform sandstone into quartzite and limeston into marble and modify other rocks in various ways.
From time to time during geologic ages rocks that have been deeply buried and have been subjected to enormous pressure to slow movemen, and ward raised and later exposed by erosion. In such rocks the original structural features may have been lost entirely and new ones substituted. A system of parallel planes along which the rock can be split most readily may have been developed. This acquired quality gives rise to clecuage, and the cleavag planes may cross the original bedding planes at any angle Rocks characterized by cleavage are called slates. Crystals of mica or other minerals may have grown in a rock in paralle arrangement, causing lamination or foliation and producin what is known as schistosity. Rocks that show schistosity are called schists

As a rule, the older rocks are most altered and the younger are least altered, but to this rule there are many exceptions, especially in regions of igneous activity and complex structure

geologie formations:

For purposes of geologic mapping the rocks of all the kinds above described are divided into formations. A sedimentary formation contains between its upper and lower limits eithe rocks of uniform character or rocks more or less uniforml varied in character, as, for example, an alternation of shale and limestone. If the passage from one kind of rocks to another is gradual it may be necessary to separate two contiguous formations by an arbitrary line, and the distinction between some such formations depends almost entirely on the fossils they contain. An igneous formation contains one or more bodies of one kind of rock of similar occurrence or of like origin. A metamorphic formation may consist of one kind of rock or ot several kinds of rock having common characteristics or origin

DESCRIPTION OF THE BESSEMER AND VANDIVER QUADRANGLES

By Charles Butts

Introduction
Location and extent of the area
The Bessemer and Vandiver quadrangles, which are called in this folio the Bessemer-Vandiver area, are in Jefferson and Shelhy counties in the north-central part of Alabama. (See fig. 1.) The area is bounded by parallels $33^{\circ} 15^{\prime}$ and 33°

30^{\prime} and meridians $86^{\circ} 30^{\prime}$ and 87°. It covers one-eighth of a square degree and has an area of 498 square miles. The area was surveyed in cooperation with the Geological Survey of Alabama.

the appalachian highlands

Northern Alabama is in the southern part of the Appalachian Highlands. ${ }^{1}$ This major physiographie division of the United States extends from the Atlantic Coastal Plain on the

Figurg 2.- Map of tho sonthern part of the Appalachian provinee, show-
ing its physiographic divisions and its relation to the Coastal Plain
east to the Interior Plains on the west and from Canada and Lake Erie on the northeast to Alabama and Georgia on the southwest. The boundaries of this major division and of its larger subdivisions are shown on the sketch map (fig. 2).

stibivisions

On the grounds of differences in topography, rocks, and geologic structure, the Appalachian Highlands can be divided into four parts called provinces. These provinces are from southeast to northwest the Piedmont, the Blue Ridge, the Appalachian Valley, and the Appalachian Plateaus. On
${ }^{1}$ Fenneman, N. M. Physiographic divisions of the United States: Annoc
the west of the Appalachian Plateaus are the Interior Low Plateaus, which are included in the Interior Plains by the United States Geological Survey but which in the opinion of some, including the writer, should be included in the Appalachian Highlands.
The boundary between the Piedmont and Blue Ridge provinces is the east foot of the Blue Ridge and the foot of the high but irregular eastern scarp of the mountains of western North Carolina and northern Georgia which form the southern extension of the Blue Ridge. The boundary between the Blue Ridge and Appalachian Valley provinces is the west foot of the Blue Ridge of Virginia and of the high mountains of eastern Tennessee. This boundary continues into northwestern Georgia to the point where it intersects the boundary between the Piedmont and Blue Ridge provinces, about 15 miles southeast of Dalton. The Blue Ridge province thus terminates in northwestern Georgia. Thence southwestward the Piedmont and Appalachian Valley provinces are contiguous, the indefinite boundary between them running southwestward through Sylacauga, Ala,, to the Coastal Plain in Chilton County, Ala. The boundary between the Appalachian Valley and the Appalachian Plateaus is, in Pennsylvania, the escarpment known as the Allegheny Front or Allegheny Mountain; in southwestern Virginia and through Tennessee, the Cumberland escarpment or Cumberland Mountain; and in Alabama, land escarpment or Cumberland Mountain; and in Alabama,
the eastern scarp of Lookout Mountain and the eastern boundthe eastern scarp of Lookout Mountain and the eastern bound-
ary of the Warrior coal field. The western boundary of ary of the Warrior coal field. The western boundary of
the Appalachian Plateaus through Tennessee, about midway the Appalachian Plateaus through Tennessee, about midway
between Knoxville and Nashville, is a broken escarpment 800 between Knoxville and Nashville, is a broken escarpment 800
to 1,000 feet high, separating the Cumberland Plateau from to 1,000 feet high, separating the Cumberland Plateau from
the Highland Rim. Northeastward the boundary, though not the Highland Rim. Northeastward the boundary, though not
sharply defined, is extended through central Ohio to the sharply defined, is ext
vicinity of Cleveland.

piedmont province

The Piedmont province is a rolling upland 1,100 feet above sea level at the east foot of the Blue Ridge and 500 feet or less above sea along the well-known "fall line," which extends from Washington, D. C., to Columbus, Ga., through-Richmond, Va., Raleigh, N. C., Columbia, S. C., and Augusta, Ga. Its generally flat surface has been deeply trenched by the streams that flow across it. It is underlain by very ancient and crumpled crystalline rocks, both igneous and metamorphic.

blee bidae rrovince

The Blue Ridge province, which is narrow at its northern end in Virginia, is over 60 miles wide in North Carolina. It is a rugged region of hills and ridges and of deep, narrow valleys. The altitude of the higher summits in Virginia is 3,000 to 5,700 feet, and in western North Carolina Mount Mitchell, 6,711 feet high, is the highest point east of Mississippi River. Throughout its extent this province stands conspicuously above the bordering provinces, from each of which it is separated by a steep, broken, rugged front 1,000 to 3,000 feet high.
The rocks of this province are closely folded quartzite, slate, schist, gneiss, granite, and greenstone.
appalachiax valiey provinee
genkial ybatenes
The Appalachian Valley province, in the south end of which the Bessemer-Vandiver area is situated, is a belt of country 50 to 80 miles wide, which extends from Canada into Alabama and which is on the whole lower than the Blue Ridge on the east and the Appalachian Plateaus on the west. In the vicinity of Big Stome Gap, Va., the crest of the Big Black Mountains is 3,000 feet above the valley on the northwest side, and in northern Tennessce Holston Mountain, near the northwest front of the Blue Ridge, rises to nearly 3,000 feet above the valley on the southeast side.

In other places, as in the Birmingham district, the valley is not so distinctly defined by high escarpments. Nevertheless the altitude of the limestone and shale valleys constituting the larger part of the Appalachian Valley province in the Birmingham district is considerably lower than that of the adjacent provinces.
The rocks and structural conditions that occur in the Bessemer-Vandiver area prevail throughout the length of the Appalachian Valley province. The rocks are not crystalline, like those of the Piedmont and Blue Ridge provinces, but sedi-
mentary, including limestone, dolomite, conglomerate, sandstone, and shale, which have been greatly disturbed by folding and faulting, as hereinafter described.

mbivisioxs is abame

Cahaba Ridges.-Although the province is in general a valley, there are within it many high ridges that extend parallel to its general direction, of which Red Mountain is a good example. These ridges are generally grouped along the west side of the valley from New York to Alabama. In Alabama the ridge section includes all the valley west of the east margin of the Coosa coal field and of a line in continuation of that margin southwest through the middle of the southern part of the Cahaba coal field. The north end of the ridge section curves eastward and narrows to a point a few miles southeast of Gadsden. It includes Blount and Chandler mountains. The name Cahaba Ridges is here proposed for this part of the valley in Alabama.
Birmingham Valley.-The belt of relatively low land within the Cahaba Ridges lying between Shades Mountain on the southeast and Sand Mountain on the northwest and extending the full length of the Cahaba coal field is commonly known and spoken of as Birmingham Valley. It includes Shades, Jones, and Opossum valleys and Red Mountain and Enon or Jones, and O
Flint Ridge.
Flint Ridge.
Coosa Valley.-East of the Cahaba Ridges is the Coosa Valley, which is the broad, generally flat, low country occupied by Coosa River and its tributaries and farther southwest by Cahaba River and its eastern tributaries.

appalachinan plateats provinge

The Appalachian Plateaus division of the Appalachian Highlands is relatively high, ranging from 500 feet above the sea, as in the Warrior coal field, to more than 4,500 feet in Pocahontas County, W. Va, and about 2,000 feet in western New York. In Tennessee it slopes somewhat westward from about 2,000 feet above sea level on the east to about 1,800 feet on the west, where it terminates in a steep scarp 800 to 1,000 feet high that descends to the Highland Rim of middle Tennessee. The original plateau has been dissected into parts or, in places, obliterated by the streams that cross it so that it is now spoken of as a dissected plateau. One of these parts is the Cumberland Plateau of Tennessee, which is the part of the province that now most nearly answers to the conception of a plateau. The high knobs of Madison and Jackson counties are outliers of the Cumberland Plateau.
The rocks of the Appalachian Plateaus comprise sandstone, conglomerate, shale, and coal. The province is in general coextensive with the Appalachian coal field. In contrast with the beds of the Appalachian Valley province the strata of the plateaus have been but slightly disturbed from their originally horizontal attitude.

TOPOGRAPHY OF THE AREA

aeneral featurbs

Nearly all of the Bessemer-Vandiver area is in the Appalachian Valley province, only a few square miles in the northwest corner of the Bessemer quadrangle being in the Appalachian Plateaus. The Appalachian Valley province in the Birmingham district has two natural subdivisions named the Cahaba Ridges and the Coosa Valley, which are defined and described above. The southenst third of the Vandiver quadrangle falls in the Coosa Valley; the rest of the area except the small part in the Appalachian Plateaus lies in the Cahaba Ridges.

The area is one of mature topography. The streams are approximately graded and reach all parts of it, so that no extensive undrained surface remains.

Relief

The altitude of the area ranges from 340 feet above sea level on Cahaba River at the south margin of the Bessemer quadrangle to 1,520 feet on Signal Mountain, in the Vandiver quadrangle. Throughout most of the area the relief ranges from 100 to 300 feet. The relief is notably greater, however, near Birmingham, where the summit of Red Mountain is 400 feet above the level of Jones Valley, and in the vicinity of Oxmoor, where the escarpment of Shades Mountain rises
abruptly to a height of 500 feet above Shades Valley. The greatest local relief, 500 to 1,000 feet, is along the belt of hig ridges traversing the Vandiver quadrangle diagonally from the vicinity of the southwest corner to the northeast corner.

TOPOGRAPHIC TYPFS

There are in the area two distinct types of topographic eatures which may be designated the linear and diffuse types. The linear type is characterized by parallel ridges and valleys that trend northeast, and the diffuse type by an irregular arrangement of ridges and valleys. The diffuse type prevails in the part of the quadrangles lying in the Appalachian Plateaus province and in the Coosa Valley; the linear type distinguishes the Cahaba Ridges.
The two types of topography are the result of differences in the character and attitude of the strata, as is well exhibited in section $\mathrm{B}-\mathrm{B}^{\prime}$ on the structure-section map of the Besseme quadrangle. In the Cahaba Ridges the strata of unequally resistant rocks (limestone, sandstone, conglomerate, and shale) generally inclined at high angles and striking northeastward, have determined the position and trend of the valleys and ridges. The valleys coincide with the outcrops of the lime stone and shale, which are casily eroded, whereas the ridges coincide with the outcrops of the more resistant sandstone an conglomerate. The valleys are wide and flat. (See Pl. I. Especially noteworthy examples of the ridges are Oak, Double Oak, and Double mountains, which cross the Vandiver quad rangle. These are formed of the highly inclined basal sandstones ", (Coal Measures") of the Coosa coal field. Signal Mountain, the highest point in the quadrangles, is situated at the poin of a canoe-shaped syncrine of one of these basal sandstone strata. The rocks of the plateau region in the northwester part of the Bessemer quadrangle are all shale and sandstone which lie practically flat. On account of their llatness thei resistance to erosive forces has been equal in all lateral direc tions, so that the arrangement of the valleys and ridges is irregular. The ridges extend in all directions; they vary greatly in breadth from point to point, and no two are alike in length. They are generally separated by deep, crooked valleys and send off innumerable short, narrow spurs that are separated by narrow ravines. The one-third of the Vandiver quadrangle in Coosa Valley is characterized by low relief and irregularly arranged streams and ridges and spurs. Although the rocks in this area are steeply inclined and intensely plicated, they are in general fairly uniform in hardness and with out thick and persistent hard strata that would have a con trolling influence on the topography. The topographic features resulting from erosion are similar to those resulting from the erosion of flat rocks.

drainage

The Bessemer and Vandiver quadrangles lie in the Black Warrior, Cahaba, and Coosa drainage basins. About 70 square miles in the northwest corner of the Bessemer quadrangle is drained by Valley Creek, a tributary of Black Warrior River, which it joins about 15 miles west of Bessemer. An area of about 1 square mile in the southeast corner of the Bessemer quadrangle is drained by South Fork of Yellow quadrang, a tributary of Coosa River. The remainder of the area of about 80 square miles in the western and northwestern parts of the Vandiver cuadrangle is in the Cahaba River basin, and the remainder of it is in the Coosa River basin.
None of the streams are navigable. Some, like Valley Creek, Shades Creek, and Little Cahaba River, occupy limestone valleys and are fed by numerous copious springs. Cahaba River, though it flows through the coal field, receives the spring-fed streams of Cahaba Valley such as Little Cahaba and Buck creeks. Even during droughts these streams afford good supcreeks. Even during droughts these streams afford good sup-
plies for stock, small power plants, coal washing, and irrigation. The total fall of Cahaba River in the quadrangles in a disThe total fall of Cahaba River in the quadrangles in a dismile; the fall of Valley Creek is 100 feet in 12.7 miles, or mile; the fall of Valley Creek is 100 feet in 12.7 miles, or
nearly 8 feet to the mile; and the fall of Shades Creek is 365 nearly 8 feet to the mile; and the fall of Shades Creek is 365
feet in 36.5 miles, or practically 10 feet to the mile. The feet in 36.5 miles, or practically 10 feet to the mile. The
grade of these streams is representative of the streams of the grade of these str
region generally.

culture

The chief centers of population are Jones and Opossum valleys. Jones Valley contains Birmingham (population in 1920, 178,806), the southern outskirts of which are in the Bessemer quadrangle, and Bessemer (population, 18,674), 12 miles southwest of Birmingham. The part of Jones Valley between the two cities is thickly settled, but though mainly a residential section it is also the site of small manufacturing towns like Grasselli. In Opossum Valley, just north of Wylam, are the manufacturing towns of Ensley and Fairfield and several great manufacturing plants are located in the valley southeast of Wylam. The concentration of population in this district is due to geologic and topographic conditions.

The raw materials of iron making-iron ore, coal, and lime-stone-are most conveniently assembled here; the lay of the land is favorable for builamg and local intercommumication and the natural features of the surrounding country present favorable conditions for communication with the outside world Outside of the industrial distriet just described the population of these quadrangles is mainly rural, except for the smal towns of Helena, Pelham, and Keystone, in the southeastern part of the Bessemer quadrangle, and small mining towns such as Acton and Coalmont.

All the limestone valleys and the broad, gently undulating surface of Coosa Valley in the southeastern part of the Vandiver quadrangle are largely cleared and cultivated, as are also the gentler slopes of the ridges and the more level tracts within the coal fields. The rougher parts of the coal fields and the steep slopes and crests of the high ridges are wooded Excellent metaled roads radiate from Birmingham and Bessemer for considerable distances into the surrounding country The ordinary country roads are conveniently spaced and are kept in good condition, so that communication between different parts of the region is reasonably easy at all seasons.

DESCRIPTIVE GEOLOGY

The geology of this region has been described and mapped by the Alabama Geological Survey. In this folio many new formations and new members in the old formations are recog nized and mapped, and a number of formation names tha differ from those of the Alabama Survey reports are used in order to bring the nomenclature into harmony with the more general recent usage

GENERAL CHARACTER OF THE ROCKS

The rocks of the quadrangles are all of sedimentary origin and range in age from Cambrian to Carboniferous; all the Paleozoic systems but the Devonian are well represented The maximum thickness of rocks exposed is about 20,000 feet These rocks were originally deposited on the bottom of bodies of water in a nearly horizontal attitude. In small parts of the quadrangles this attitude has been fairly well preserved, bu generally the strata have been folded and faulted until thei original horizontal attitude and to a considerable extent their original relations have been destroyed. In addition to the consolidated rocks, there are local superficial deposits of Recent age, which are of little stratigraphic significance. The generalized columnar section in the back of the folio gives a condensed expression of the stratigraphy of the area.
In this region there are five dolomite formations which in view of the matters set forth below, are of especial interest These formations, in ascending order the Brierfield dolomite Ketona dolomite, Bibb dolomite, Copper Ridge dolomite, and Chepultepec dolomite, are in part the basis of a new geologic system proposed by E. O. Ulich and named by him ${ }^{2}$ the Ozarkian system. The name was taken from the Ozark region of Missouri, from a study of which the idea of a distinct system arose. Ulrich describes this proposed new system as follows:
Under the term Ozarkian I include all the formations of the Appalachian Valley that can be shown to be younger than (1) the nessee and (2) the top of the Conasauga shale in southeaster nessee and (2) the top of the Conasauga shale in southeaster
Tennessee, northwestern Georgia, and northeustern Alabama, and which are older than the base of the Stonehenge limestone of th Canadian system [Beekmantown group] in southern and central Pennsylvania.
Pending the presentation of all the evidence supporting the introduction of this new system, in a monograph now in preparation, by Mr. Ulrich, the United States Geological Survey will classify these formations as Cambrian or Ordovician The present writer, however, believes that the Ozarkian systen of Ulrich should be adopted for use in this folio, because in this part of Alabama it reaches its maximum known thicknes of about 5,000 feet

The succession and relations of the several formations of this great dolomite series are fully described in the MontevalloColumbiana folio
The table on the back of the columnar-section sheet show the position of the proposed system in the general stratigraphic succession, its relations to the Knox dolomite of earlier Ten nessee and Alabama reports, the general relations of the lower Paleozoic formations of Alabama to those of other regions, and the various classifications followed by the Alabama and United States Geological Surveys.

STRATIGRAPHY

shale of unknown age

In the southeast corner of the Vandiver quadrangle, on Fourmile Creek, occur several detached masses of red shale and of soft yellow, greenish, or grayish shale or rotten slate that have been thrust into their present position from an original source
2Ulrich. E. O., Revision of the Paleozoic systems: Geol. Soe, America
Bull., vol. 22, po 281-680, 1911. Bull., vol. 22, pp. 281-680, 1911.
:Idem, p. 627.
that apparently lay 15 miles or more to the southeast. These rocks are much older than the limestone which they overlie and their parent formations are supposed also to underlie the limestone at a great depth.
The red shale of these areas is almost certainly of Rome or Watauga age, as described in reports on northwestern Georgia and eastern Tennessee, but the age of the gray shale is uncertain. It is in contact with different formations on different sides-on the southwest with a heavy cherty formation supposed to be the Copper Ridge dolomite, on the north with Newala limestone, and on the east with the Rome ("Monte of this shale from its strations impossible to deterne have any fossils been found to reveal its age. Lithologically the shale resembles shale of the Conasauga formation, slates of the Talladega slate mass, and the shale of the Weisner formation of the Columbiana quadrangle, just south of the Vandiver As in the adjoining area in the northeast corner of the Columbiana quadrangle the shale lies geographically between the Rome " Montevallo") formaties geographia betw be the Copper Didge lolomite the gray shate in the Variver be the Copper Ridge dolomite, the gray shale in the Vandive quadrangle might with the greatest degree of probability b regarded as the Conasauga shale, which is normally between the Copper Ridge and Rome, if it were not for the fact that along Beeswax Creek 2 to 4 miles south of the area of gray shale the Conasauga, which there directly and normally fol lows the Rome, consists, so far as observed, of several hundred feet of limestone. In view of the uncertainty as to the age and relations of these rocks, it is believed to be most expedient not to assign any definite age to them.

cambrian system

The Cambrian formations that crop out in these quadrangles are the Rome ("Montevallo") formation and the Conasauga ("Coosa") limestone

rome ("monthyalio") formation

Name and limits.-The name Rome formation, from Rome, Ga., was introduced by Hayes in 1890. The name "Choceoloceo or Montevallo shales" was introduced by E. A. Smith, at about the same time, for rocks in central Alabama now known to be equivalent, in whole or in part, to the Rome formation. The equivalency of the Rome and "Montevallo" was not satisfactorily established, however, until 1908. In the meantim the name Rome had been given wide currency by use in eleven folios of the Geologic Atlas of the United States, and it seemed best to retain it, although the name "Montevallo" has slight priority in publication.
The base of the Rome formation is nowhere exposed in these quadrangles, but it is exposed in the southwestern part of the Rome quadrangle in Georgia and Alabama, and is there underlain by the Shady ("Beaver") limestone, which probably underlies the Rome in the Bessemer-Vandiver area also, as it is exposed beneath the Rome on Beeswax Creek, in the northeastern part of the Columbiana quadrangle. The top of the Rome is fixed at the upper limit of red shale and of the peculiar hard siliceous limestone that weathers to a rusty sandstone characteristic of the Rome. This lithologic boundary is definite and ensily recognized. Above it everywhere lie the olive-colored shale or blue oolitic limestone of the Cona sauga or equivalent formations.
Distribution.-The Rome formation crops out in a narrow band along the southeast margin of the Cahaba coal field. Helena is situated upon it, and the best exposure of the formation in this area is in that town and its vicinity. It is much better displayed to the north and west of Montevallo, 15 miles south of Helena.
The west boundary of the strip of the Rome is a fault, along which the formation has been thrust westward and upward into contact with the Carboniferous rocks west of the fault. The vertical movement along this fault can not have been much if any less than 12,000 feet. Small areas of the formation occu also in the southeastern part of the Vandiver quadrangle These are remnants of an overthrust mass that has been nearly removed by erosion

Character:-The Rome formation is composed predominantly of stiff greenish shale, yellow flaky shale, and red shale, but i includes thin layers of impure limestone, thin cherty layers, thin layers of brown rotten sandstone, which is normally cal careous, thin bands of quartzite, and beds of fine-grained cal careous sandstone as much as 20 or 30 feet thick. It is decidedly variegated in color. Dividing Ridge, which extends both north and south of Helena for several miles, is made by a bed of sandstone 30 feet thick composed of about equal proportions of silica and lime carbonate

Thickness.-As the bottom of the Rome formation does not crop out, its full thickness in this region can not be determined. At Helena about 1,000 feet appears to be exposed, and it is not unlikely that the formation reaches a considerably greater thickness.

Age and correlation.-Small collections of fossils have been obtained from the Rome formation in the Bessemer quadrangle,
from which the following forms have been identified by C. D. Walcott except the Olenellus, which was identified by the writer.

Mieromitra Walcott. (Paterina) major Mieromitra Walcott.
 Walcott. Micromitra (Iphidella) pannula White.
 Obolus smithi Walcott. Olenellas thompsonis Hall. Paedeuminas trassititans W Wamneria halli Walcot

The fossils in this list, except the Olenellus, were obtained from two localities, one a quarter of a mile north of Helena and the other 4 miles south of Helena, from a bed that seems to be about 500 feet below the top of the Rome. In the vicinity of Montevallo, about 200 feet below the top of the Rome as delimited in that locality, Olenellus thompsoni is abundant. Of the fossils in the list Micromitra (Paterina) williardi, Obolus smithi, and Wimanella shelbyensis are known only from the Rome of Cahaba Valley. The Mieromitra (Paterina) pannula is recorded by Walcott from Lower, Middle, and Upper Cambrian rocks, but the greater number of occurrences are Middle Cambrian. The Paedeumias and the Wanneria are in some regions, as York County, Pa., associated with Olenellus, which is accepted as a Lower Cambrian genus. The paleontologic evidence, as generally interpreted, indicates the Lower Cambrian age of all but the upper 200 feet more or less of the Rome in this region, which may be Middle Cambrian.
On the basis of continuity and lithology as well as on rather meager fossil evidence, the Rome formation has been correlated with the upper part at least of the Watauga shale of eastern Tennessee, the Russell formation of Virginia, and the Waynesboro formation of Pennsylvania. However, fossils collected from the Russell formation in the summer of 1926, throw considerable doubt upon the supposed equivalency of the Rome and Russell formations.

conasauga ("coosa") hambstonk

Name.-The name Conasauga, from Conasauga River, in northwestern Georgia, was introduced by Hayes in December, 1890, and appeared in print in February, 1891. The name Coosa, from Coosa Valley, was introduced by Smith in January, 1891, for the same rocks. For the reasons stated in connection with the name of the Rome formation, the name Conasauga is used in this folio.
Distribution.-The Conasauga limestone underlies much of the width of Opossum Valley from Bessemer to Wylam. It is bounded on the west side by a fault along which it is in contact with the Pottsville. It crops out extensively in Jones Valley, occupying a belt about a mile wide the whole length of the valley within the Bessemer quadrangle. As the Conasauga is absent in the Bessemer quadrangle in Cahaba Valley, it must thin out somewhere underneath the Cahaba coal field.
The gray and yellowish shale of the formation was seen at a number of places in the vicinity of Bessemer. There is also a good exposure of the shale, containing limestone layers, on Eleventh Street in Birmingham, opposite the street-car barn. The limestone is particularly well exposed in the western part of Bessemer and just to the northwest and at many places in Jones Valley between Bessemer and Birmingham.
Topographically the Conasauga forms low, flat, damp valleys known as Flatwoods.
Character.-The Conasauga is made up mostly of rather thin bedded dark-gray finely crystalline limestone, interbedded with more or less soft, fissile, and probably calcareous shale, with more or less soft,
which weathers gray or yellowish.
Chemically the Conasauga limestone is, so far as analyses at hand show, high in calcium carbonate and low in magnesium hand show, high in calclum carbonate and low in magnesium
carbonate, with still smaller amounts of silica, iron, and alumina.

In places, especially in the vicinity of Bessemer and at old Jonesboro, layers of waxy-looking chert not over half an inch thick occur in the shale. This material is dark within but rusty on the weathered surface. At localities where this chert occurs many small prismatic pieces of it may be scattered on the surface. The interbedded chert and shale are well displayed on Twenty-fourth Street in Bessemer. (See Birmingham folio, No. 175, Pl. I.) The continuous beds of limestone where the formation is best exposed in Jones Valley might suggest that the shale does not exceed one-tenth of the mass and that it occurs for the most part as comparatively thin partings in the limestone. Possibly, however, the proportion of limestone and shale varies much along the strike, and there may be much more shale in some places than in others not far removed. In some localities, as 1 to 3 miles northeast of Montevallo, about 30 miles south of Birmingham, the thick layers of the Conasauga are, on the weathered surface, striped with alternating gray and bluish bands half an inch to 2 inches broad. Such banding is highly developed in the equivalent Rutledge and Maryville limestones of Tennessee. In the vicinity of Bessemer and elsewhere in Jones Valley some of the limestone is shot through by a network of calcite veins.

Thickness.-The thickness of the Conasauga is 1,900 feet, as calculated from the width of the outcrop and the angle of the dip, with the assumption that there are no irregularities in structure to vitiate the result. These figures are comparable to those given by Hayes for the thickness of the Conasauga in northeastern Alabama- 1,600 to 2,000 feet. If the bottom of the formation is not brought to the surface along the fault the thickness is still greater by an unknown amount.
Age and correlation.-Fossils are fairly plentiful in the Conasauga, although it appears to be unfossiliferous because the fossils are so firmly inclosed in the rock that they do not appear on weathered or broken surfaces. By close examination, however, numerous sections of trilobites and brachiopods appear on a broken surface of some layers. Fragments of trilobites also are revealed on the weathered surface of a layer here and there. Many layers are full of a branching form that may be of organic origin. Fossils collected from the Conasauga limestone in Jones and Opossum valleys in the Bessemer and Birmingham quadrangles are listed below as determined by C. D. Walcott.

The species of trilobites listed are now regarded by both Walcott ${ }^{4}$ and Ulrich as characteristic of the Upper Cambrian, but according to Walcott some of the brachiopods range down into the Middle and Lower Cambrian. It is agreed, however, that at least that part of the Conasauga which carries the fauna listed is of Upper Cambrian age. No exclusively Middle Cambrian fossils are yet known from the Conasauga of BirmingCambrian fossils are yet known from the Conasauga of Birming-
ham Valley. But the Conasauga of the areas southeast of the Cahaba coal field in Alabama carries Middle Cambrian fossils and may be all Middle Cambrian. Through the fossils the and may be all Middle Cambrian. Through the fossils the
Conasauga has been correlated with the Rutledge limestone, Conasauga has been correlated with the Rutledge limestone, Rogersville shale, Maryville limestone, and Nolichucky shale of Tennessee, the Honaker limestone of eastern Tennessee and southwestern Virginia, and the Warrior limestone of Pennsylvania. This correlation, however, is correct only for the Conasauga of the State as a whole. The Conasauga of Birmingham Valley, so far as known, is more nearly equivalent to the Nolichucky shale and perhaps the Maryville limestone also. ${ }^{5}$

cambrian or ordoyictan system

subdivistons

Pending a decision as to the adoption of Ulrich's proposed Ozarkian system, five formations are classitied by the United States Geological Survey as of either Cambrian or Ordovician age. They are, in ascending order, the Brierfield, Ketona, Bibb, Copper Ridge, and Chepultepec dolomites. They compose the Knox dolomite of earlier reports on this region. The Brierfield and Bibb do not extend into the Bessemer-Vandiver area, but the entire series is developed in the Montevallo quadrangle, and is fully described in the Montevallo-Columbiana folio. Their relations are also shown in the table on the back of the columnar-section sheet. In the writer's opinion there are no grounds for assigning these rocks to either the Cambrian or the Ordovician system, but there are cogent reasons for the conclusion that they constitute a natural system intermediate between the Cambrian and Ordovician and coordinate in time value with those systems.

```
Sk of the kBT
``` In Birmingham Valley the Ketona dolomite succeeds the
Conasauga limestone, the Brierfield dolomite, which in the Conasauga limestone, the Brierfield dolomite, which in the
Montevallo quadrangle lies between the two formations, being Montevallo quadrangle lies between the two formations, being
absent. In Cahaba Valley the Conasauga limestone and absent. In Cahaba Valley the Conasauga limestone and
Brierfield dolomite are both absent, and the Ketona lies upon Brierfield dolomite are both absent, and the Ketona lies upon
the Rome formation. Furthermore, the Ketona itself is almost the Rome formation. Furthermore, the Ketona itself is almost
certainly absent for some distance north and south of Bessemer, certainly absent for some distance north and south of Bessemer,
where the Copper Ridge dolomite and Conasauga limestone are where the Copper Ridge dolomite and Conasauga limestone are
in contact. The stratigraphic gap in the part of Jones Valley in contact. The stratigraphic gap in the part of Jones Valley
where the Ketona is present is measured by the thickness of where the Ketona is present is measured by the thickness of
the Brierfield dolomite (1,200 to 1,500 feet); the gap in the Brierfield dolomite (1,200 to 1,500 feet); the gap in
Cahaba Valley, by the thickness of the Conasauga and BrierCahaba Valley, by the thickness of the Conasauga and Brier-
field formations as developed elsewhere, amounting to 3,000 field formations as developed elsewhere, amounting to 3,000 leet; and the gap between the Conasauga and Copper Kidge
in the vicinity of Bessemer, where the Brierfield, Ketona, and Bibb are absent, amounts to about 2,500 feet.
ketona poLontre

Name.-The Ketona dolomite was named by Butts from Ketona, 5 miles north of Birmingham, where a large quarry has been opened in the formation.
© Walkott, C. D., Cambrian trilobites: Smithsonian Misc Coll, vol. 64,
No. . 1916 . No. 3. 1926 .
isor furt
For further discussion of this subjeet and for figures of sowe of the
fossis listed here and elsewhere in this folio see Butts. Charles, and others Geology of Alabama: Alabama Geol. Survey Specinl Pub. 14, 1926.

Distribution.-The Ketona apparently underlies most of Opossum Valley north of Woodward and crops out in a narrow strip on the east side of Flint Ridge northward to Walnut Grove. It crops out around the north end and on both sides of the Salem Hills, southwest of Bessemer. It shows at a few points in the southeast quarter of Birmingham, and a gray apparently pure dolomite referred to the Ketona was thrown out from a well in the vicinity of Cleveland. No trace of it was seen along the east base of Red Mountain south of Cleveland, and it is almost certainly absent, as shown by the fact hat the Conasauga limestone is exposed in the vicinity of Jonesboro in practical contact with the Copper Ridge dolomite. In Cahaba Valley the Ketona crops out along the bottom of the narrow valley between New Hope Mountain and the Cahaba coal field. For most of the distance it is separated from the Carboniferous rocks by a narrow strip of the Rome formation.
Character.-The Ketona is almost all thick-bedded lightgray rather coarsely crystalline dolomite, and, unlike the Copper Ridge and Chepultepec dolomites, it is nearly free from silica. Locally, as at the quarry of the Republic Iron \& Steel Co. near Thomas, in Opossum Valley, the Ketona has the appearance of a crush breccia through a considerable thickuess, as shown in Plate II. The character of the bedding is illustrated elsewhere. \({ }^{\circ}\) Chemically this rock is nearly pure dolomite, as shown by the following average of a number of analyses:

Analyses of Ketona dolomit
\begin{tabular}{|c|c|c|c|}
\hline & 1 & 2 & 3 \\
\hline \(\mathrm{SiO}^{2}\) & & 1.31 & 0.70 \\
\hline \(\mathrm{Al}_{2} \mathrm{O}\), & & . 96 & \({ }^{638}\) \\
\hline 1 nsoluble matter. & 0. 64 & & \\
\hline \(\mathrm{CaCO}_{2}\) & 54. 80 & \({ }^{55} .08\) & 56.041 \\
\hline \(\mathrm{MgCO}_{3}\) & 43.82 & 42.47 & 43.091 \\
\hline
\end{tabular}
1. Average of partial analyses of six samples collected by the author
from the Freeman farm, in the \(\mathrm{SW} .+\mathrm{NE} .+\) secc \(33, \mathrm{~T} .21 \mathrm{~S}\). R. 8 W ., files north of Aontevallo. Samples taken every 40 feet through a thick heess of about 200 feet. Analyses ty the U. S. Geel. Survey. 2. Average annlyses of rock taken out during four mon
quarry. Analyses by Tennesee Cal. Iron \& Railroad Co.
3. Average of ten analyses of carload sowples, 3. Average of ten analaysessoe coalloand asmpless, froud North Birmingham
gnarry, aggregating so carloads and extending over a period of more than quarry aggregating so carloads and extending over a period of more than
three years. Analyses by Sloss Sheffleld Iron \& Steel Co.
These analyses show a very pure carbonate rock. The ratio of calcium and magnesium carbonates is nearly that of the mineral dolomite, which is composed of 45.6 per cent mag nesium carbonate and 54.4 per cent calcium carbonate.
The rock is used extensively for flux in the furnaces of the Birmingham district.
Thickness.-The thickness of the Ketona dolomite in Birmingham Valley and in Cahaba Valley north of Helena is 400 to 600 feet. It may be thicker in Opossum Valley and in Cahaba Valley south of Helena, where the outcrop is wider The greater width of outcrop, however, may with equal prob bility be due to lower dip or to wavy folding. Exposures are lacking to reveal the facts.
Age.-No fossils of any kind have ever been found in the formation; its age is determined by its stratigraphic position and structural relation to other formations. It is younger than any rocks known from their fossils to be of Upper Cambrian age.
-
The Bibb dolomite, which overlies the Ketona in the Montevallo region, is absent in the Bessemer-Vandiver area and the Ketona is therefore followed unconformably by the Copper Ridge dolomite, described below. The thickness of the absent formation is 275 to 500 feet.

\section*{copper ridge dolomits}

Name.-The name Copper Ridge, under the form Copper Ridge chert, was introduced by Ulrich \({ }^{7}\) from a conspicuous ridge 8 miles northwest of Knoxville, Tenn., which is made by the formation. The term was subsequently modified \({ }^{8}\) by the inclusion of the "Lower Knox" of Tennessee. As now defined the Copper Ridge in Alabama is conformably overlain by the Chepultepec dolomite and conformably underlain by the Bibb dolomite. The formation in Alabama is identified with that in Tennessee on the grounds of sequence, lithology, and the presence of the same species of Cryptozoon in both areas, and also because the outcrop is probably continuous from the type locality into Alabama.
Distribution.-The Copper Ridge dolomite is one of the most widespread formations in northeastern Alabama. I was probably deposited over the entire area and is absent now only on the crests of the anticlines from which it has been eroded. There is a small faulted area of Copper Ridge near

\footnotetext{

175), pl. 2, 1910.
FUlie., E. O.. Revision of the Paleozoic systems: Geol. Soc. America

"Ulich, E. O. Tennessee Dept. Education Div, Geology Bull. 28, p. 34
1924; Bull. 31, p. 16. 1924.
}

Pleasant Ridge Church, northwest of Bessemer. It crops out in the Salem Hills, in Flint Ridge, along the west base of Red Mountain, and in New Hope Mountain in Cahaba Valley. It is almost certainly present under the coal fields and under all that part of the Bessemer-Vandiver area east of New Hope Ridge.

Character. - As the Copper Ridge dolomite is not well exposed in the central Alabama region but little knowledge of its real character can be gained through direct observation. Here and there an isolated exposure of dolomite appears in wide expanse of territory, the surface of which is deepl covered with red, tawny, or gray soil, full of chunks and boulders of chert, which are also strewn abundantly over the surface. Fortunately, however, exposures on Alligator Creek about 10 miles south of the southwest corner of the Bessemer quadrangle, have revealed the real nature of the Copper Ridg and Chepultepec dolomites. The section of these dolomite on Alligator Creek is followed upward in regular sequence b a gion ereek is fllowed upward in regular sequence hy tones along Little Cahaba River half a mile east of Alligato Creek and within the Montevallo quadrangle. A compilation Creek and within the Montevallo
of the two sections is given below.
Section along Alligator Creek and Littl Cahaba River in secs. 6 and 12

Foet
\(1,000 \pm\)
Chepult \(\qquad\) Dolomite, dark gray, coarsely crystalline, layer
6 inches to 1 foot thick 19. Not exposed 18. Dolonitit with chert
16. D
crestone. pearl-gray, very finely or not visibly
cryse; a few gastropods show in section on the weathered surface of a layer or two _._ 350

\section*{Ctona dolomite:} Dolomite, light gray, coarse, some slightly mag.
nesian limestone, no chert; exposed to fault. \(250 \pm\)
The dolomite that constitutes the main mass of the Copper Ridge is prevailingly a thick-bedded dark-gray and rather coarse grained rock. On Alligator Creek, as shown in the section above (No. 2), the lower part is very finely crystalline and light gray. The appearance of the rock indicates calcium carbonate and magnesium carbonate nearly in the dolomite ratio. No analyses that are surely of Copper Ridge dolomite are known to the writer
The surfaces underlain by Copper Ridge are thickly strewn with chert ranging from small pieces up to masses several fee with chert ranging from small pieces up to masses several feet in diameter. The larger masses of this chert are especially a few miles south of Montevallo, where the creek cuts through a few miles south of Montevallo, where the creek cuts through
the chert ridge 1 to 2 miles east of Brierfield. Notwithstanding the great quantities of chert on the surface little standing the great quantities of chert on the surface little
appears in the freshly exposed beds in creek sections and appears in the freshly exposed beds in creek sections an other places. The chert is evidently a secondary product or limestone at creek level may be followed to their outcrop or limestone at creek level may be followed to their outcrop
higher up on the banks and be found to change entirely to higher up on
massive chert.
The chert has been shown by Washburne through microscopic examination to be crystalline quartz. It is very dense and tough, weathers with jagged surfaces, and breaks dow into small angular fragments, very little of it being mealy o chalky, like much of the chert of the other cherty formation of the region. A typical specimen is shown in Plate III The prevailing colors are white, yellowish, and pink.
Topographically the Copper Ridge dolomite generally expresses itself as a ridge, on account of the protecting mantl of chert which has accumulated on the surface. Flint Ridge and the Salem Hills, in Birmingham Valley, and New Hope Mountain, in Cahaba Valley, are examples.

Thickness.-The thickness of the Copper Ridge in the Alligator Creek section is 1,750 feet, which may be assume as the thickness throughout the Bessemer-Vandiver area.

Age and correlation.-No fossils have been found in the Copper Ridge dolomite in either the Bessemer or the Vandiver quadrangle. Two types of Cryptozoon in the chert have been observed in the Montevallo-Columbiana region to the south, and a few specimens of gastropods in chert were collected in the southeastern part of the Columbiana quadrangle. A collection obtained half a mile west of Chalkville in the Birmingham quadrangle and another within a mile west of Springville, still farther northwest, are the best that have been obtained from the Copper Ridge in the Appalachian region.
Of the Copper Ridge fossils Ulrich says:?
Recognizable fossils are as a rule exceedingly rare in the Copper Ridge, and those found are almost without exception only silicified molds in the chert residue. Masses of a compound cryptozoon resening Common in the lower and middle parts of the Copper Ridge With these oecur some of "brainlike" appearance. The rounded masses of another species, \(C\). proliferum? (Pl. V), seem to be confined to the upper half of the Copper Ridge. The other fossils consist chiefly of gastropods, with one or two each of cephalopods and trilobites, all of undescribed species.
The collection from Chalkville seems to come from a higher position in the formation than the Springville lot. It contains four species of Sinuopea, a species of a new genus (Rhachopea Ulrich)
combining characters of Sinuopea and Euconia, and one species of new genus of compressed conical limpets (Lopheconus Ulrich) that seems to be characteristic of the Ozarkian fama.
The Springville collection occurs in a cellular, rather mealy chert observed at a few places beneath the midale of the formation. Except the limpet, which is somewhat doubtfolly common to both, the fossils in this lower zone are quite different from those found near
Chalkville. In the Springville collection we note a new limpet allied to Trubbidium, a very tall species of Scenclla, two species of Hupselo. conus, three species of Scaecogyra-one related to S. sweesyi and another to S. obliqua-and a small curved rapidly tapering cephalopod of the genus Levisoceras Foerste. With the probable exception of the last all these indicate a lower Ozarkian horizon.
Compared with Ozarkian faunas found in Missouri the fossils of the Chalkville collection prove to be most closely related to those that mark the Proctor dolomite and an undescribed unit above 1
Those of the Springville collection, on the other hand, are very Those of the Springvile collection, on the other hand, are very
similar and in part indistinguishable from characteristic fossils of the Eminence dolomite. The evidence in hand, therefore, indicates that the beds referred to the Copper Ridge in Alabama include represent atives of the Missouri formations mentioned. Moreover, as those Missouri formations are separated from each other and from the pre ceding Potosi dolomite and the succeeding Gasconade dolomite by is greatly inferior to the maximum thickness of the Copper Pidye, it seems reasonable to infer that the Copper Ridge includes also bed that fall into the hiatuses known to occur between the mentioned formations of the middle Ozarkian sequence of deposits in Missouri. Investigations made since the publication of the Birmingham folio have shown that the beds in which were found the first three of the fossils listed in that folio as middle Knox are really much younge than Copper Ridge. Their horizon in fact corresponds to the Lon view limestone of this folio.
chepuitrepe dolomitr
Name.-The Chepultepec dolomite was established as a formation by Ulrich \({ }^{11}\) and named by him from the town of Chepultepec, in Murphrees Valley, 30 miles northeast of Birit ham, near which the formation is well developed fossils of its characterited the most species and best-pre in Alabama As now defined it rests conformably on the Copper Ridge dolomite in both Tennessee and Alabama
Distribution.-In these quadrangles the Chepultepec occurs only in Cababa Valley, where it crops out in a belt along the east flank of Newhope Mountain. A narrow strip, which is thrust up by the Cahaba Valley fault, oecurs along the middle of the northern part of the valley in the Vandiver quadrangle. At the north margin of the quadrangle this fault lies along the crest of a low ridge just east of Hebron Church, and the Chepultepec, which crops out on the east side of the ridge, has Chepultepec, which crops out on the east side of the ridge, has
been faulted into contact with the Fort Payne chert, which been faulted into contact
crops out on the west side

Character.-As shown in the section on Alligator Creek the Chepultepec consists of limestone in its lower part and dolomite in its upper part. The dolomite appears to be some what thinner bedded than the Copper Ridge but of the same gray color and coarsely granular texture. The limestone at the bottom is light gray or pearl-gray and very finely crystal line or in part without visible crystalline texture. This lime stone is possibly present at Chepultepec, where there is valley, probably eroded upon it, between the Copper Ridge and Chepultepec formations, as noted by Ulrich in his origina description. The Chepultepec differs from the Copper Ridge mainly in its limestone, its chert, and its fossils. Its chert unlike that of the Copper Ridge, described above, is predominantly mealy, weathering to a chalky texture, much of it full of irregular cavities as if worm-eaten and but little of it sufficiently dense and resistant to form large boulders. Its character is shown in Plate VI. As a result of the character
- Ulich. E. O., personal communication.
10 U. S. Geol. Survey Geol. Atlas, Birmingham folio (No. 175), p. 4 (folio edition); p. 33 (octavo odition), 1910
of the chert, the areas underlain by the Chepultepec have little other than fine débris scattered over the surface, and usually it is easy to distinguish in the field the areas of Copper Ridge and Chepultepec. However, as their contact is practically nowhere exposed, and as the two kinds of chert become mixed along the boundary line on the slopes, precise location of the boundary is generally impossible, and therefore the areas of the two are not separated by a line on the map.

Thickness.-In the section on Alligator Creek the Chepul-Inickness.-In the section on Alligator Creek the Chepul-
tepec as delimited is about 1,100 feet thick. Its thickness may tepec as delimited is about 1,100 feet thick. Its thickness may
be different elsewhere, but under the conditions of exposure no reliable determination can be made.
Age and correlation.-The Chepultepec has yielded a considerable fauna, mainly gastropods, which generally occur in the cavernous mealy chert. The fossils are fairly common in the chert wherever the formation crops out in the region, but the most abundant and best fossils have been collected at the type locality near Chepultepec, in the Birmingham quadrangle. The following list, identified by Ulrich, comprises all the determinable species so far found in the typical exposures of the formation in the vicinity of Chepultepec, Ala., and at Jasper, Tenn. Most of the listed species are common to the two localities, and at both places the collections were made from layers of porous chert lying approximately 200 feet beneath the top of the formation:

Some of these fossils have been found also in the Chepultepec of the Bessemer-Vandiver area
Ulrich states that 17 of these 31 species occur in Missouri in the chert of the Gasconade dolomite, about the same number in the Oneota dolomite in Wisconsin and Iowa, at least 3 in the small fauna found in the chert bed at the top of the Little Falls dolomite at Little Falls, N. Y., and 3 others in the same formation near Whitehall, N. Y. Evidently the deposits of this age transgressed very widely in northeasterly and northwesterly directions from central Alabama.

\section*{ordoviclan system}

The formations definitely assigned to the Ordovician system, named in ascending order, comprise in Cahaba Valley the Longview limestone, Newala limestone, Odenville limestone, Mosheim limestone, Lenoir limestone, Athens shale, and Little Oak limestone and in Birmingham Valley the partly contemporaneous Chickamauga limestone. All these formations, with the exception of the Longview limestone, were included Alabama Geological Survey under the name "Pelham stone. In subdividing this predominantly. Pelham could not be applied to any of the units without causing confusion, so new names were adopted, exeept Lenoir and thens, which have long been in use in Tennessee. The table on the back of the columnar-section sheet shows the equivalence of the "Pelham limestone" to the units here adopted.
cafaba valhes
In Cahaba Valley there is an unconformity between the Chepultepec dolomite and the Longview limestone, owing to the absence of rocks equivalent to the Stonehenge limestone 700 feet thick, of central Pennsylvania, which underlies the equivalent of the Longview and is above the horizon of the Chepultepec dolomite.

\section*{Longinew himestone}

Name. - The Longview limestone was named from Longview, in the Montevallo quadrangle, which is situated on the outcrop of the formation.
Lack of exposures prevents observations of the contact of the Longview and Chepultepec, but in places the two are exposed within a short distance of each other, so that the boundary between them is located within narrow limits. At the top the Longview appears to merge into the Newala limestone, which has little or no chert. At Longview the lower and upper boundaries of the limestone have not been precisely located, but in the Buck Creek section west of Pelham, in the

Bessemer quadrangle, the bottom of the Longview is abont 400 feet southeast of the ford across Buck Creek on the old road from Pelham to Helena, and the top is about 1,500 feet southeast of the ford
Distribution.- The Longriew limestone has been recognized only in Cahaba Valley, where it crops out in a strip a quarter of a mile wide along the west side of the valley. In the Vandiver quadrangle the outcrop is repeated by the fault along the middle of Cahaba Valley north of Newhope Church. It has not been recognized in the southeast corner of the Vandive quadrangle.

Character. -The formation is made up of alternating bluish gray fine-grained limestone and light-gray coarse-grained dolo mite or magnesian limestone. It contains a greater proportion of dolomite than the next overlying (Newala) limestone and less dolomite than the underlying Chepultepee dolomite. It yields a compact but brittle chert that breaks down into smal fragments. Most of it is gray; a little is black. So far as seen in the limestone layers it occurs in plates, there being no cavernous chert like that of the Chepultepec.

Thickncss.-The thickness of the Longview limestone west of Pelham, where its boundaries can be most nearly located, is about 400 feet.

Ago and correlation, -The Longview is sparingly fossiliferous, but the few species of fossils are widely and apparently uniformly distributed, so that search seldom fails to be rewarded by a few specimens. Fossils have been found from the latitude of Montevallo northward to the north boundary of the Vandiver quadrangle. The characteristic and most common fossil is the gastropod Lecanospira (Ophileta) compacto This is one of the most reliable guide fossils, being known at this general horizon, to which it is confined, all along the Appalachian Valley from Alabama to Canada. It is chami teristic of the Nittany dolomite of central Pennsylvania and of the lower part of division D of the typical Beekmantown of New York, with which the Longview limestone is correlated The Lerk, whe Lor.有, Roubidouria slso show that the Longiew limestone to be correlated with the Roubidoux formation of Missouri.

Name.-The Newala limestone was named from Newala, a Name.- The Newala limestone was named from Newala,
post office on the Southern Railway between Montevallo and post office on the Southern Railway between Montevallo and Calera, in the Montevallo quadrangle. It is best exposed, however, near Pelham, in the Bessemer quadrangle. The
boundary between the Newala and Longview crosses the boundary between the Newala and Longview crosses the
Pelham-Helena road about half a mile northwest of Pelham. Pelham-Helena road about half a mile northwest of Pelhan The boundary between the Newala and the overlying Lenoi limestone lies near the east side of the Louisville \& Nashvill Railroad station at Pelham, The Newala and Longview seen to grade into each other, but the upper boundary of th Newala is, locally at least, a conglomeratic limestone formin the bottom of the Lenoir limestone. (See PI. VII.)
Distribution.-The Newala limestone is present in Cahaba
Valley and throughout the region east of the valley, a Valley and throughout the region east of the valley. A belt about half a mile wide lies along Cahaba Valley in the Bessemer quadrangle, and two belts, each about half a mile wide, separated by a narrow strip of Chepultepec dolomite and Longview limestone extend along the valley across the Vandiver quadrangle. The eastern of these two belts has been brought up by the Cahaba Valley fault. There are also two small areas in the southeast quarter of the Vandiver quadrangle.
The Newala is best displayed in the section on Buck Creek immediately northwest of Pelham, in the Bessemer quadrangle It is also well exposed in the quarries at Keystone, Newala, and Longview and in the adjacent ground in that part of it area that lies in a general way north of Varnons, in the Montevallo quadrangle
Character.-The Newala is predominantly a limestone Comparatively thick bedding is the rule. Layers of dolomite a few feet thick occur here and there throughout the mass, more commonly in the lower part, but compose a small pro portion of the whole. Some of the layers are mottled ame of blue limestone and in part of gray and coarse tribution. The layers of dolomise ance the ont side, so that they are called sandstone by the quarrymen. The composition of some of these magnesian layers is siven in the table of analyses (\(\mathrm{p}-21\)). Some of the layers of limestone ane dark ray fol fine prined; ohers are dovecolored and fine dark gray and line grained; others are dove-colored and fin grained or amorphous; and still others have a peculiar pear gray color, with nongrane or alorplous lexte, are very brittle, and have a splintery or glassy fracture. Except fo specks of clear calcite the material has much the appearance of lithographic stone. Such limestone is very characteristic of the formation from its type locality in Alabama to Tennessee. A fossiliferous layer of this kind at Meciure Ford, in the sonth west corner of the Montevallo quadrangle, is sprinkled full o small rounded grains of clear glassy quartz. The upper par of the formation is of high purity and is extensively quarrie
for lime at a number of points between Keystone and Calera (See table of analyses, p. 21.)

Thickness.-The thickness of the Newala in Cahaba Valley is 800 to 1,000 feet. The thickness in the southeastern part of the Vandiver quadrangle seems to be much greater than in Cahaba Valley, but owing to uncertainty as to the geologic structure no estimate of the thickness is made.

Age and correlation.-Fossils are not abundant but are generally distributed through the Newala limestone of Cahaba Valley and are confined to only a few species. The following forms from that region have been identified:

> Daltatretn (Ulirich) nlistriat
Batte. n. gen. and ap.
Undescribed syntrophoid bria
> deseribed syntrophoid brachiopod.
> posed opercoltum of An sup. known gaatropod. Unknown outside of this general zone

In addition to the fossils listed above there are a bryozoan identified by Ulrich as a Nicholsonella and two species of cephalopods, one a form like Orlhoceras, and the other a slightly curved form. The species of the list are geographically wide-ranging forms and, according to Ulrich, are restricted to limestone and dolomite formations somewhat
younger than the Beekmantown at Beekmantown, N. Y.
The Newala may be compared with the reef deposits at Fort Cassin, in Addison County, western Vermont, and with the overlying division E of the Beekmantown of Champlain Valley; it is older than the St. Peter sandstone of Mississippi Valley and the lowest beds of the Chazy group of New York.

\section*{odexymlez hankstosk}

Name.-The name Odenville limestone has been given to beds lying between the Newala limestone below and the base of the Mosheim limestone, the basal formation of Chazy age. Whether the Odenville succeeds the Newala without a break is unknown.
Distribution and character.-The Odenville limestone is exposed only in a cut or borrow pit on the north side of the Seaboard Air Line Railway about one-third of a mile east of Odenville, St. Clair County. It is an impure argillaceous and siliceous dark fine-grained cherty limestone about 50 feet thick. No other exposure of this limestone is known, but its fossils have been found at the same horizon-just above the Newala limestone-at several places in Cahaba Valley between Leeds and Saginaw, in Shelby County.

Age and correlation.-This bed is of great interest on Age and correlation.-This bed is of great interest on
account of its fossils, all of which appear to be undescribed account of its fossils, all of which appear to be undesclosely
species. A unique form is a species of Chiton or of a closer species. A unique form is a species of Chiton or of a closely
related genus, The most abundant form is an operculum related genus, The most abundant form is an opercull
of some unknown but rather large gastropod, probably a of some unknown but rather large gastropod, probably a
Maclurea. There are two forms of orthoceroids and at least Maclurea. There are two forms of orthoceroids and at east
one species each of two new genera of brachiopods, for which one species each of two new genera of brachiopods, for which
Ulrich (unpublished manuscript) has proposed the names Ulrich (unpublished manuscript) has proposed the nailo
Deltatreta and Tafia. There are two or three genera of triloDeltatreta and Tađia. There are two or three genera of trilo-
bites represented by one species each, a Goniurus, a Cybele, bites represented by one species each, a Goniurus, a Cybele,
and possibly a Hystricurus cf. \(H\). comicus \(=\) Bathyrus conicus (Billings). There is a good-sized species of Maclurea with its operculum and one or two species of sponges. Further
description of this fauna is contained in the publication cited description of this fauna is contained in the publication cited in footnote \(5(\mathrm{p} .3)\).

According to Ulrich and Foerste most of the forms mentioned except Maclurea are of types not known above the Beekmantown elsewhere. The Goniurus is a Beekmantown form occurring in Canada, and the brachiopods occur in the upper part of the Arbuckle limestone of Oklahoma in beds assigned by Ulrich to the Beekmantown. The orthoceroids have features not known in such forms of an age younger than Beekmantown, and the same is true of the sponges. The Odenville is therefore regarded as of late Beekmantown age.
encompormity hetwery odenville and moshem himentonks
As shown in the preceding paragraphs, the Odenville limestone carries fossils by which it is correlated with the upper part of the Arbuckle limestone of Oklahoma. Locally in massive limestones of the Arbuckle formation 500 to 1,000 feet of shale that carries graptolites of pre-Chazyan age. This of shale that carries graptolites of pre-Chazyan age. This shate is followed above by the simpson formation, which in addition to beds of older and younger age, also includes beds coeds the Odenville limestone. In Alabama, however, there is ceeds the Odenville limestone. In Alabama, however, there is
no shale corresponding to that above the massive limestonee of no shale corresponding to that above the massive limestone of
the Arbuckle in Oklahoma, mentioned above, and further the well-known still younger St. Peter sandstone of the Mississippi well-known still younger St. Peter sandstone of the Mississippi
Valley and the associated beds are absent in Alabama. If Valley and the associated beds are absent in Alabsma. If
present in Alabama these beds would also lie between the present in Alabama these beds would also lie between the
Odenville and Mosheim limestones, so that there is an unconOdenvile and Mostheim lomestones, so that there is an uncon-
formity between the two which would be measured by the thickness of the absent strata amounting to 1,000 feet or more.

Name and definition.-Throughout the Appalachian Valley in Tennessee and much of Virginia the limestone of Beekmanown age that corresponds in part at least, to the Newala limetone and that forms the upper part of the Knox dolomite is verlain by the Mosheim limestone, named by Ulrich from Mosheim, on the Southern Railway, about 6 miles west of Greeneville, Tenn. This limestone is lithologically and faunally a well-defined unit, which in Tennessee is separated from he overlying Lenoir limestone by an erosional unconformity.
Distribution.-In Alabama the Mosheim has been certainly recognized in the vicinity of Odenville, in Cahaba Valley about 18 miles northeast of the north margin of the Vandiver quadrangle, where it is exposed in a borrow pit on the Seaboard Air Line Railway, half a mile east of the town. Here the Mosheim is directly overlain by 400 to 500 feet of Lenoir limestone and is underlain by the Odenville limestone. The Mosheim is also exposed in the west side of the quarry of the cement plant at Leeds and at Newhope Church in Cahaba Valley 7 miles northeast of Petham. As it is also present 4 miles southeast of Shelby in the Columbiana quadrangle south of this area, it is probably present throughout this region.
Chavacter.-The Mosheim is a pure thick-bedded blue or dove-colored limestone that has conchoidal fracture. It forms a white chalky crust on weathering. In places it is highly ossiliferous. It differs from the Lenoir limestone, which is dark, finely crystalline, and argillaceous and which, in places, in large part has crumbled to small fragments.
Thickness,-At Odenville the thickness of the Mosheim limestone is about 50 feet.
Age and corrclation.-The Mosheim is in places full of gastropods of Ordovician types, large high-spired Lophospiras being prominent. At Odenville individuals are numerous, entirely or mostly undescribed, but it is clearly of early Chazy age. Until, however, the fossils have been identified and compared it is not possible to make definite correlations with recognized formations in other parts of the country.

\section*{Laxom hnikstosk}

Name.-The Lenoir limestone was named by Safford and Killebrew in 1876, from Lenoir City, Tenn., which is situated on the outcrop of the formation. It unconformably overlies he Mosheim limestone, which, however, together with the Odenville limestone, is rarely exposed, so that the next lower ormation seen is the Newala limestone, from which the Lenoir is sharply distinguished by a conglomerate locally and by a change in lithology and fossils. In Cahaba Valley south of Pelbam the Lenoir is limited above by the easily recognized lack Athens shale
Distribution.-The Lenoir crops out in a band 500 to 1,200 feet wide along the west base of Little Oak Ridge for the full length of Cahaba Valley in these quadrangles, and in the Vandiver quadrangle north of Newhope Church a fault has made two belts of outcrop separated by a ridge of Longview limestone and Chepultepec dolomite. The base of the Lenoir can be traced by the conglomerate along the east side of the Louisville \& Nashville Railroad the entire distance from Pelham to the south margin of the Bessemer quadrangle.
Character.-The Lenoir is predominantly dark, thickbedded, rather finely crystalline limestone, but dove-colored compact layers occur. A peculiarity is the network of narrow, veinlike gray bands of about 1 inch mesh on weathered suraces of the layers. These bands are apparently formed by layey impuritics that have been segregated into intersecting hin layers in the calcareous mutter which makes up most of he layer. Between Pelham and Alabaster the lower beds of the Lenoir are conglomeratic, with subangular and wellounded chert, quartzite, and limestone pebbles the largest of which are half an inch in diameter. These pebbles are largest and most numerous and occur through the greatest thickness of rock at the south margin of the Bessemer quadrangle, where he photograph shown in Plate VII was taken. At the ame locality there is, possibly 100 feet below the limestone conclomerate, a mass of course conglomerate of unknown but probably small extent, which is composed of quartzite pebbles much as 3 inches in diumeter, with just enough fine material for cement Southward und northead from this locality the mumber und size of pebbles in the basal Lenoir decresse and just north of Pelham only a few small angular fragments, apparently of chert, occur in a 2 -foot layer of limestone. The ppare the lark irregular inclusions of chert occur throughout the mase i. ricit of Pell K Keystorer appers to he vicinity of Pelham and Keystone but appears to be as wuch as 700 or 800 fan uadrangle
Age and correlation.-Maclurea magna is a common fossil hroughout the Lenoir limestone in these quadrangles. This

to be confined to the part of the Chazy group now known as the Crown Point limestone. This evidence seems sufficient ground for the correlation of the Lenoir with the middle Chazy. It is also correlated with the Pierce and Ridley limestones of the Stones River group of the Nashville basin, Tenn., Maclured magna liaving been found in the Ridley, according to Safford and Ulrich.

\section*{onconyobalty at tor of henotr himbsto}

Cahaba Valley appears to contain no representative of the Lebanon limestone of the Stones River group of Tennessee, which overlies the Ridley limestone, nor of the Holston marble, both of which, in a complete section, would intervene between the Lenoir and the Athens shale. There is, therefore, between the Lenoir and Athens in Alabama a gap represented by 700 feet or more of limestone that occurs in parts of TenFurthermore the Athens shale is absent at Pelham and northward, so that the gap between the Lenoir and Little Oak limestones is equivalent to 1,200 feet of shale and limestone or, if the maximum thickness of the Athens in Tennessee \(-3,000\) feet-is regarded, the gap represents a much nessee- \(-3,000\) feet-is regarded, the gap represents a
greater thickness of rocks and a greater length of time.

\section*{athens shalik}

Name.-The Athens shale was named by Hayes \({ }^{12}\) from Athens, Tean., where it is strongly developed.
Distribution.-There are but two small areas of the Athens in the quadrangles-one along the west base of Little Oak Ridge from Keystone to the south margin of the Bessemer quadrangle and one on the Page Spring anticline in the southeast corner of the Vandiver quadrangle. The Athens does not extend far north of Keystone, for at Pelham the Little Oak limestone, overlying the Athens, is in contact with the Lenoir limestone.
The only exposure of the Athens seen in this area is at the west base of the Fort Payne chert ridge in the road half a mile southeast of Keystone, in the Bessemer quadrangle. In the Montevallo quadrangle, to the south, it is exposed at a number of places, the nearest to this area being on the Birmingham road about a quarter of a mile south of Alabaster. Just south of the Louisville \& Nash ville Railroad, about a quarter of a mile south of Siluria, 100 feet or more of dark shale and thin limestone was once exposed but has been covered up in grading the road. Character.-The Athens shale is mostly black or dark from carbonaceous matter and probably is calcareous. It includes thin layers of dark limestone. Some layers are sufficiently ferruginous to weather brown, and locally there is at the top a layer of green shale a foot or two thick. A very the lop a layer of green shate a foot or two thick. A very lites (listed below) that represent a considerable range of species. Thiclness-A1 the outcrops just noted a thickness of several Thickness-At the outcrops just noted a thickness of several mondred eotrugle of miles northweat of Calera, whe Montevallo quadrangle, \(2 \frac{1}{2}\) miles northwest of Calera, where the opportunities for measurement are best, the Athens is 300 to
500 feet thick. 00 feet thick.
Age and correlation,-Considerable collections of graptolites have been made from the Athens shale of this region. Although these collections have not been thoroughly studied, the following species have been identified by Ruedemann and Ulrich:

All these species occur in the Normanskill shale of New York, which proves that formation to be of the same age as the Athens shale. The five species prefixed by an asterisk (\({ }^{*}\)) occur also in the Womble shale in Arkansas, with which the Athens is accordingly correlated.
Some of the species listed are of world-wide distribution, being found in the northwestern part of the United States, in England, in Scotland, and in Australia, thus proving that in Athens time these remote parts of the earth were connected by water under conditions favorable to the propagation and migration of graptolites.
Besides graptolites the Athens has yielded a considerable number of species of brachiopods and trilobites, which have undescribed.
scospormity at bask of hittle oak hmestosk
As shown in the description of the Athens shale, the Little Oak limestone is unconformable upon the Lenoir limestone in the northern part of Cahaba Valley. The true extent of this Wishaer, C. W., U. S. Geol. Survey Geol. Athas, Kingston folio (No. 4). 150.
anconformity is unknown. It depends upon the age of the Little Oak. If it is older than the Tellico sandstone the unconformity is measured by the Holston marble and Athens shale. If it is younger than the Sevier shale the unconformity is measored by the Holaton marble, Athens shale, Tellico sandstone, and Sevier shale, which have a combined thickness of 7,000 feet or more.
```

lithle oak lumgtons

```

Name.-The Little Oak limestone was named from Little Oak Ridge, a prominent feature of Cahaba Valley north of Pelham, in the Bessemer quadrangle. The limestone crops out on the west side of the ridge and extends to the crest.
Distribution.-The Little Oak limestone is persistent along the west escarpment of Little Oak Ridge from Pelham to the north margin of the Vandiver quadrangle. Immediately north of Pelham its outcrop is repeated by faults, so that there are three long, narrow areas of it. The best exposure is on the point of a prominent synclinal spur \(1 \frac{1}{2}\) miles southwest the point of a prominent synclinal spur \(1 \frac{1}{2}\) miles southwest
of Newhope church, just on the west side of the Vandiver quadrangle. It is also well exposed in the Atlanta, Birmingquadrangle. It is also well exposed in the Atlanta, Birming-
ham \& Atlantic Railvay cut and adjacent thereto just east ham \& Atlantic Railway cut and adjacent thereto just east
of Pelham. The limestone is prominently exposed and apparof Pelham. The limestone is prominently exposed and appar-
ently of full thickness in the high knobs south of Peavine ently of full thickness in the high knobs south of Peavine
Creek, half a mile southeast of Pelham. It thins out southCreek, half a mile southenst of Pelham. It them Pelham by loss of beds from the top, so that at the northern margin of the Montevallo quadrangle, to the south, only the bottom 100 feet or so remains, and farther sonth, about 1 mile sontheast of Siluria, it wedges out, the Frog Mountain sandstone, overlying the Little Oak to the north, being in contact with the Athens shale. Evidently the Little Oak in the area just outlined was beveled off by erosion in the long interval that preceded the deposition of the Frog Mountain sandstone. In the Page Spring anticlinal area, in the southeastern part of the Vandiver quadrangle, chert with Ordovician fossils (Plectambonites, Orthis tricenaria?, and Plerygometopus), mingled with chert with Mississippian fossils Platycrinus), indicates the presence of limestone regarded as probably Little Oak.
Character.-The Little Oak limestone is composed of dark fine-grained thick-bedded cherty and earthy limestone. The chert occurs as irregular plates or nodules, arranged in definite planes. A very characteristic feature is the pattern taken by the earthy impurities on weathering, the exposed surfaces of the limestone beds being covered by a network of gray earthy ridges an inch or two wide, inclosing in their depressed meshes patches of clear blue limestone the largest of which are the size of the hand. (See Pl. XVI.) This character is especially prominent at the top of the limestone, just below the Fort Payne chert, from Pelham northward for: miles or more.

Along the west side of the Fort Payne chert ridge south of Pelham and into the Montevallo quadrangle the lower part of the Little Oak is partly made up of highly argillaceous layers, which tend to break up into shaly débris on weathering. It probably also includes layers of shale. Some of the argillaeoons limestone is banded with pinkish layers. The character fion frower part of the Little Oak saggests condsous deposiion from the Athens, but as the Tellico sandstone of Tennessee, the stratigraphic position of which is probably between
the Athens shale and the Little. Oak limestone is not reprethe Athens shale and the Little Oak limestone, is not represented in the region, the appearance is deceptive.
Thickness.-The greatest thickness of the Little Oak limestone probably does not exceed 400 feet, which it appears to reach in the northern part of the Vandiver quadrangle. At \(\rightarrow\) Pelham its thickness is not over 250 feet.
\(\rightarrow\) Ago and corrclation. - The Little Oak limestone has yielded a considerable number of fossils, and the general character of the fauna is indicated by the subjoined list.
The basal part of the formation is, locally at least, very fossiliferous, and the fossils occur in chert, which is derived perhaps from highly argillaceous or siliceous layers of limestone. The following fossils have been identified:

Niduliten sp. 8
Recoptaculiter on

\section*{Christatimilia near \\ Ruedemann
Christimia.}

Christimian, lamellose sp., proba-
bly now,
bly now
Orthis crassicosta Butts. Resembles o ppanderiman AHall and
Clarke) \(=0\) orthamboutcos Clarke)
Bilifings.
Dilingse faseloulata Buts
Three gevera of ortholde kug-
Thiree genera of ortholde kug-
gooting Dalmunella, Hobertel.
gooting Dalmanella, Hobertel-
Lund Pinodema,
Plectambonitez near P. pisum

> Rafinesquina sp.
Strophomena n. sp.
> Strophomena n. sp.
Ambonychia sp.?
> Macluryctises sp.?
Tetranota ef. T. obsoleta.
> Wenty or more especies of gastro
pode. including species of Bu-
canila nad Troeb cania and Trochonema
> Lllacenus
> Pterygoraptopus sp.?
> Sphaerocoryphe sp.
Leperditia ovalis Butt.

The fauna of the Little Oak limestone is unique and as yet has yielded but little information beyond the fact that it is probably of latest Lower Ordovician age. So far it has failed to reveal a single species that is certainly identical with any described form. The Cliristiania and Plectambonites near \(P\). pisum closely resemble C. Irentonensis and \(P\). pisum, respec-
fively, from the Rysedorph conglomerate near Albany, N. Y., but until the Alabama specimens are critically compared with the type specimens and found to be the same it is unsafe to identify them with the species named. Both species have been identified by Ulrich from the Chambersburg limestone of Pennsylvania, but he is not certain that they are really those species or the same as the Alabama species. Orthis those species or the same as with the figure and description of the form described by Billings under the name Orthis orlhamboniles (\(=0\). panderiana Hall and Clarke), a Beekmantown species. A few of these fossils are figured in "Gieology of Alabama," recently published by the Alabama Geological of Alab
The Little Oak limestone has been traced northeastward nto northwestern Calhoun County, half a mile south of Reads where it is overlain by red shale known from its fossils to be of Lowville age. This occurrence, in connection with its relations to the Lenoir limestone and Athens shale, definitely fixes its age as upper Chazy and younger than the typical Chazy of New York. As it lies within the same stratigraphic limits as the Tellico sandstone and Sevier shale of the Knoxville region, Tennessee, it is regarded as equivalent to some part of those formations, probably to part of the Sevier.
mbatingham vahlex
(ficospormity at nask of checkamavaa lamestone
In Birmingham Valley the Chepultepec dolomite and the Longview and Newala limestones are absent, so that the Chickamnuga limestone, including locally the Attalla conglomerate member at the base, was deposited upon the eroded surface of he Copper Ridge dolomite.

\section*{chekamajan anisstosk}

Name.-The name Chickamauga limestone was introduced by Hayes \({ }^{13}\) from Chickamauga Creek, east of Chattanooga, Tenn., along which the limestone is typically developed.
Subdivisions.- In the Chickamauga of this area are included liree members- the Attalla conglomerate, locally developed at the base; next a shate, also local ; followed by the limestone hat composes the main mass of the formation. On Red Mountain, at a few points between Birmingham and Bessemer, labs of a soft ferruginous and calcareous, highly fossiliferous andstone were collected at the top of the Chickamauga limetone. No exposures of this rock were seen, but there can be only a small thickness and small patches of it, for in some exposed sections it is not present. The fossils collected from his sandstone are of Lorraine age. In northern Alabama the Chickamauga limestone includes still younger beds, of Sequat hie (Richmond) are but those beds are absent in the Pessemer and Vandiver quadrangles.
Distribution.-The main area of the Chickamauga is the belt extending along the whole length of the west escarpment of Red Mountain. There is a small wedge-shaped area on West End Mountrin, west of Bessemer, and a small area of the basal red and purple beds, both shale and limestone, at Interurban Heights on the electric railroad about midway Hetween Birmingham and Bessemer. A single small exposure vas seen at the base of one of the small outliers of the Red Iountain formation on Flint Ridge half a mile north of Walnut Grove, in the SE. \(\frac{1}{4}\) see. 14, T. 18 S., R. 4 W. Only thin layer of Chickamanga limestone can be present here however. The basal mottled layers are also exposed in the treet leading up to Mountain Terrace, Birmingham, where they are in immediate contact with the Copper Ridge dolomite and at Sloss No. 1 mine, Bessemer, where they are separated from the Copper Ridge by the shale member, there abou 100 feet thick. These variegated layers in the base of the limestone mass of the Chickamauga appear to be a constan feature, for they have been observed from Foster Mountain, 15 miles northeast of Birmingham, to a point several miles south west of Bessemer.
Character.-The Chickamauga is mainly a limestone, the layers of which range from an inch or two to 2 feet or more in thickness. (See Pls. VIII, IX, and X.) Most of the mass is medium grained, but there are layers of lithographie texture Is a rule the color is dove-gray or dark gray, but locally the basal layers are purple or mottled with purple. In some places these layers are highly argillaceous or even become a slightly calcareous and compact red shale or mud rock. Near he top of the formation is a layer of voleanic ash or tuff about 2 feet thick.
The detailed section of the Chickamauga as exposed at Mountain Terrace, in the northeast environs of Birmingham, which is given on puge 7, shows its general character. (See also fig. 3 , section 1 .)
Below the main mass of limestone occurs locally a rock that weathers to the consistency of dry mud and that, in the nweathered condition, is probably a thin-layered calcareous mud rock. This rock, which may be called a shale, carries
"Hnyes, C. W., Geol. Soc, America Bull. Vol. 2, p. 143, 1891 (paper read
at meeting of December, 1890); U. \&. Geol. Survey Geol. Atlas, Chatta-

Lingulas as much as 1 inch long and half an inch broad. It is exposed at the intersection of Fourteenth Street and Fourteenth A venue, South Birmingham, and near Sloss No. 1 mine Bessemer. At this place 50 feet is exposed, and the bed is probably at lenst 100 feet thick, below it is the Attalla conlomerate and above it 50 feet of purple mottled limestone.

Thickness.-The thickness of the Chickamauga in the Bes emer quadrangle probably does not exceed 250 feet, bui exact measurement is difficult. The thickness differs from place to place. The thickness above the bentonite bed is 30 feet at Mountain Terrace and apparently only about 10 feet on Twentieth Street Road, Birmingham. Variations in thickness would result from the unconformities within its mass. A Birmingham a fairly careful measurement gives 194 feet, a shown in the section above, but the basal shale and the Attalla chert conglomerate are absent at the point where this section was measured. In Temnessee beds included in the Chickamauga in places aggregate a mnch greater thickness.
Attalla chert conglomerate member.-The Attalla chert conglomerate member, named in the Birmingham folio from Attalla, Ala., is composed mostly of rather small angular fragments of chert embedded in a matrix composed of comminuted hert. Io phich are 4 or 5 inches in limeter. It occurs in mall isolated areas, as in Birmingham, on Cemetery Ridge and mall ished of Bers and South Highlanas, where it has been exposed in mading in South Highlands, where it has been exposed in grading street; near West End, in a conspicuons little knoll about 500 feet southeast of the Alabama Great Southern Railroad; at
Woodward and Brighton; and at several places in the Salem Woodward and Brighton; an
Hills, southwest of Bessemer.
The thickness of the Attalla differs considerably from place to place, but in general there is nothing to indicate that it is to place, but in general there is nothin
anywhere more than 20 to 40 feet thick.
anywhere more than 20 to 40 feet thick.
The Attalla lies upon the eroded surfice of the Copper The Attalla lies upon the eroded surface of the Copper
Ridge and Ketoua dolomites and in places upon the edges of heir upturned and eroded beds. A mile or so south of Birmingham a low knoll of the Attalla rests on the Conasauga limestone. Nowhere, so far as known, is the conglomerate overlain by rocks older than Chickamanga. It is possible that some areas of the Attalla were deposited in old caves or underground watercourses in the dolomites in the period when the region was above sea level, preceding the deposition of the Chickamanga, or even in Mesozoic time. In places, however, it is a bedded deposit dipping beneath the Chickamanga Volcanic ash (bentonite).-The presence of a layer of volcanic ash in the uppermost part of the Chickamauga of this region irst came to light in sinking the Woodward shaft to the Bi seam of iron ore 3 miles southeast of Bessemer. Near the bottom of the shaft a 20 -inch layer of gray crumbling rock attructed the attention of J. A. Udden, geologist of the Tennessee Coal, Iron \& Railroad Co. Samples were taken and submitted to E. S. Larsen, of the United States Geological Survey, who reported upon the rock as follows:
The rock is made up very largely of rather coarsely crystalline uartz and biotite, and meesory apatite and zircon. It is withon
doubt an altered rhyolite tuff and is similar to the bentonites of the western United States. The montmorillonite is probably derive from the glass of the original tuff.
The ash bed was later identified by Wilbur A. Nelson, State geologist of Teunessee, on Red Mountain at Birmingham, where on the Twentieth Street Road it appears to be about 10 feet below the top of the Chickamanga. (See PI. XVII.) He identified it also on Mountain Terrace road, where it is 31 feet below the top of the Chickamauga, as shown in the section at the left and in Plate X. At both these points and in the Woodward shaft it is associated with Plectambonites curdsvillenWoodward stant is whe Mountin Tormee however, all Moumation Plecta the section. Plectamboniles curdsvillensis is a form peculiar to the limestone in Kentacky known as the Curdsville limestone of basal Trenton age. The circumstances would seem to indcate that the ash bed was deposited in Alabama in the early part of the Trenton epoch. Volcanic ash in the same strati graphic relations is now known at points as far north as south ern Ohio and central Pennsylvania. Evidently there were active volcanocs in early Trenton time near enough for the ash to be transported into Alabama either by air or by water In central Pennsylvania thin beds of voleanic ash occur in timestone of Chazy age also, and in Alabama at Ragland such beds have recently been discovered in the Little Oak limestone also of Chazy age.
Ago and correlation.-About the lower half of the Chicka mauga limestone in this area represents the Stones River group of middle Tennessee, which is equivalent to part of the Chazy group of New York. The Lenoir limestone of Cahaba Valley is believed to be represented in the lower half of the Chickimauga. The upper part of the formation in the knobs to the southwest of Blount Mountain in the Birmingham quadrangle and at Birmingham contrins a good fauna of Black River age and at the top of the formation in both localities limestone of Trenton age occurs in thicknesses ranging from 10 to 50 feet See sections, p. 8.)
The fossils of the following lists, collected mainly in the Birmingham quadrangle and identified by Ulrich, are the basis of the statements made above:

The fossils whose names are preceded by an asterisk \(\left(^{*}\right)\) are known only from beds of Stones River age. Most of the others are probably distinct species whose nearest relatives are speces ong ores, through thes ossils, representatives of the four formations of the Stones River group, namely, in sscending order, the Mur freesboro limestone, Pierce limestone, Ridley limestone, and Lebanon limestone
In Birmingham Valley in the Bessemer quadrangle and elsewhere there do not appear to be any beds equivalent to the Hoiston marble, Athens shale, Tellico sandstone, and typical Sevier shale (\(=\) Ottosee shale of Ulrich) of Tennessee and the Little Oak limestone of Cahaba Valley, aggregating as a max imum 6,000 to 8,000 feet of strata of late Chazy age. The absence of these strata makes a great unconformity between the Stones River and Black River parts of the Chickamauga limestone of this area. The exact position of this unconformity is not certainly determined, but it is at least about 90 feet below the top of the beds of Black River age and is believed to be at the horizon of the thin rubbly limestone and coral reef shown in Plates VIII and IX. The beds immediately above this rubbly layer are of Lowville age, but it is not yet proved that the immodiately underlying limestone is of Stones River age, although that is probable from the different character of the limestone and from the fact that Stones River fossils have been collected at the quarry shown in Plate IX from beds extending from the bottom of the Stones River equivalent upward appar-
ently high enough to include this limestone. The occurrence of coral reefs at this horizon, as shown in Plate VIII, may indicate a break.
The Black River fossils from the upper half of the Chiekamanga limestone consist of the following forms:

According to Ulrich, Tetradium cellulosum, Cryptophragmus antiquatus (Beatricia gracilis), Escharopora confluens Phyllodictya varia, Schmidtella crassimarginata, Ctenobolbine subcrussa, and Bathyurus spiniger are known only in beds of early Black River or Lowville age. The Cliftonia is a rare representative of a fauna which usually is confined to the eastern belt of the Appalachian Valley from Canada to Alabama.
The 45 feet of granular limestone that forms the top of Foster Mountain, from which came all but one of the following fossils, and 10 to 30 feet of thin-bedded limestone in Red Mountain, at Birmingham, represent the Trenton limestone of New York.
\begin{tabular}{|c|c|}
\hline Dendroerinus scatidactylas Bilinge. & Rhynchotrema of. 8 . (Hail). \\
\hline Pachydictya aff. P. acuta (Hall). & Pleetambonites curdsv \\
\hline Rhinidict \({ }^{\text {a }}\) & T \\
\hline Dinorthis aff. D. holstoni (Safford). & Zygorpira reeurvirostris (Ha Isotelas maximas Locke. \\
\hline Dinorthis peetinella (Rmmone). & Encrinurus raunulus Clarke \\
\hline Raflieequtin aiternata (Em- & \\
\hline
\end{tabular}

Plectambonites ourdsvillensis, according to Ulrich, is characteristic of beds of basal Trenton age in Kentucky and acteristic of beds of basal Trenton age in Kentucky and
elsewhere. It occurs in the section at Mountain Terrace, elsewhere. It occurs in the section at Mountain Terrace,
Birmingham. The same form associated with Dalmanella Birmingham. The same form nssociated with Dalmanella
testudinaria is present in the topmost 8 feet of the ChickaLestudinaria is present in the topmost 8 feet of the Chicka-
mauga in the bottom of the Woodward shaft in Shades Valley mauga in the bottom of the Woodward shaft in Shades Valley
3 miles southeast of Bessemer. The Trenton part of the 3 miles southeast of Bessemer. The Trenton part of the Chickamauga in the Bessemer quadrangle the
sponds to ouly the base of the Trenton elsewhere.
sponds to only the base of the Trenton elsewhere.
The slabs of soft ferruginons and calcareons hig
The slabs of soft ferruginons and calcareons highly fossiliferous sandstone collected at the top of the Chickamauga limestone on Red Mountain, at a few points between Birminghan and Bessemer, contain the fossils listed below, which were identified by Ulrich. These fossils show this sandstone to be of early Lorraine age and to correspond to the Eden shale o Ohio and Kentacky. It is the sole representative of the Cincinnatian series in the district.
 asconyonmity at tor of tien ondometax
In Birmingham Valley there is a great stratigraphic gap between the Chickamauga and the overlying Red Mountai formation, and in Cahaba Valley between the little Oak lime stone and the overlying Frog Mountain sandstone. In Bir mingham Valley all the rocks of Trenton age, except a fer feet of basal Trenton, and all the rocks of Cincinnatian age except locally a few feet of early Lormine (Eden) age, are absent, and in Cahaba Valley, in addition, the entire Silurian system and all of the Devonian system below the Frog Moun tain sandstone are absent. In Ohio, New York, and Pennsylvania, where rocks of these ages occur, their aggregate thickness is 5,000 feet.
shumian system
The Silurian systen is represented in this area only by the Red Mountain formation.

\section*{hed mountain formation}

Name.-The name Red Mountain "group" of Tuomey embraced all the rocks from Cambrian to basal Carboniferou inclusive that crop out in.Jones and Opossum valleys. Smith however, restricted the name Red Mountain to the Silurian formation. These rocks have also been called Clinton formation and Rockwood formation. However, as the fossils show that the part of the Red Mountain above the bottom of the Big seam of iron ore is of Clinton age and the part below the Big seam is of upper Medina age, and as the rocks are lithologically similar throughout, so that it is not desirable to separate them into two formations, Smith's very appropriate name Red Mountain formation is adopted for them.

Distribution.-The formation crops out along the crest of Red Mountain and extends below Shades Valley and the Cahaba coal field eastward to the great Helena fault. This area contains the largest exposures of the formation and also the main known body of workable iron ore. The formation is not present in Cahaba Valley, where its horizon is included in the unconformity between the Little Oak limestone and the Frog Mountain sandstone. There are small outliers of the formation along the crest of Flint Ridge and a narrow strip in the fault block south of Wylam. There is a considerable area in West Red Mountain As shown by bore holes, the formation Red Morern. As she Werior coal field for leas 10 miles, but its western limit is not lnown
Character. - The Red Mountain formation
Character.-The Red Mountain formation is composed of sandstone, shale, iron ore, and a very little limestone. Sand stone is the largest constituent. The sandstone above the Big sean or (1 pon or the Red Mor he is thick bedded, fine grained, largely ferruginous, and hence red and hard, but some that contains less iron oxide is yellowish and
softer. Most of it is only slightly or not at all fossiliferous. softer. Most of it is only slightly or not at all fossiliferous.
One bed (Hickory Nut ore seam), however, carries abundant One bed (Hickory N
Pentamerus oblongus.
The sandstone in the Medina part (below the Big seam) occurs partly in thin layers mixed with shale and partly in a thick-bedded stratum 25 feet thick. The thin layers are me dium fine grained, brownish, soft, porous, and friable or mealy Some are highly fossiliferous and ferruginous and dark brown to nearly black. Probably most of the thin layers of sandstone are limy in their natural state, and the porous condition at the outcrop is due to the leaching of the limy cement. The thick-bedded sandstone is fine grained, compact, soft, and slightly ferruginous. It weathers reddish brown on the surface but is yellowish within. The shale throughout the Red Mountain is mostly a hardened laminated yellowish-green clay, but locally it is bleached nearly white on exposure.
The following sections, the graphic sections in Figure 3, and Plates XI-XIII show the character of the formation.
Section of Red Mountain formation and Chickamauga limestone on Twentieth Street in Birmingham, on su
southwest corner of sec. 6, T. Is \(\mathrm{S} ., \mathrm{R} .2 \mathrm{~W}\).
the m
\begin{tabular}{|c|c|c|}
\hline Fort Payne chert: & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Ft. in.}} \\
\hline Chattanoga shale & & \\
\hline sandstone) \(\qquad\) & 10 & \\
\hline Red Mountain formation: & & \\
\hline 26. Shale, violet, purple, and gray, with sandstone layers 2 feet in maximm thickness & \(45 \pm\) & \\
\hline 25. Not exposed. Shale and sandstone with & & \\
\hline Pentamerus zone (Hickory Nut seam) and Ida seam of iron ore & \(50 \pm\) & \\
\hline 24. Sandstone, thick bedded, ferruginous & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\pm\)}} \\
\hline 23. Iron ore (Big seam). & & \\
\hline 22. Shale and sandstone with pebbles & \(2 \pm\) & \\
\hline 21. Iron ore (Irondale seam). & \multicolumn{2}{|l|}{\(6 \pm\)} \\
\hline 20. Shale and thin sandstone layers. & \multicolumn{2}{|l|}{2} \\
\hline 19. Shale mainly; thin sandstone layers near middle & 7 & 6 \\
\hline 18. Shale, full of thin sandstone layers 4 inches in maximum thickness & 4 & \\
\hline 17. Shale mainly; a few thin sandstone & 8 & \\
\hline 16. Shale and thin sandstone layers 2 inches in maximum thickness & 4 & \\
\hline 15. Shale mainly - & 6 & \\
\hline 14. Ore, lean, fossiliferous, small quartz pebbles. & 1 & \\
\hline 13. Sandstone, ferruginous, dark brown to black, rotten, fossiliferous & 7 & 6 \\
\hline 12. Shale, yellow & 2 & \\
\hline 11. Sandstone, ferruginous, dark brown, rotten, like No. 13 & 2 & \\
\hline 10. Shale, yellow & & 6 \\
\hline 9. Sandstone, thick bedded, ferruginous, yellow;
weathers reddish & 3 & 9 \\
\hline 8. Shale, yellow & 1 & \\
\hline 7. Sandstone like No. 9. & 14 & \\
\hline 6. Sandstone, bouldery & 5 & \\
\hline 5. Sliale and thin sondstone. & 14 & \\
\hline 4. Not exposed; like No. 5 (known from section on Mountain Terrace, Birmingham). & \(20 \pm\) & \\
\hline
\end{tabular}

Chickamanga limestone:
3. Limestone: Plectambonites curdscillensis of 2. Vasal Trenton age)
1. Limestone: Stromatocorium rugosum, Ecto- 1 maria prisca Y (of Black River age).
Section of Red Mountain formation near Sloss No. 1 mine, at Bessemer Fort Payne chert.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Devonian (\%) thin.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & Fens \\
\hline & & 30 \\
\hline \multicolumn{2}{|r|}{11. Shate and sandstone} & 40 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{10. Sandstone, thick bedded, ferruginous, red}} & 20 \\
\hline & & 15 \\
\hline & Sandstone full of Pentamerus (Hickory Nut
seam) & 10 \\
\hline \multicolumn{2}{|r|}{7. Ore, Ida seams} & \\
\hline \multicolumn{2}{|r|}{Sandstone, ferruginons, red} & 20 \\
\hline \multicolumn{2}{|r|}{Ore. Big seam:} & \\
\hline \multirow[t]{4}{*}{} & Ore: bench mined \({ }_{14}^{14}\) & \\
\hline & Sandstone and shale, yellow-green - 31 & \\
\hline & Ore, liny 25 & \\
\hline & Sandstone, highly ferruginous..... 511 & \\
\hline \multicolumn{2}{|r|}{Shale and thin sundstone layers} & \\
\hline \multicolumn{2}{|r|}{3. Sandstone, ferruginous, dark brown, rotten: contains fossils} & \(5 \pm\) \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{3. Shale and sandstone like No. 3}} & \(20 \pm\) \\
\hline & & \(20 \pm\) \\
\hline \multicolumn{2}{|l|}{ickamauga limestone.} & \(249 \pm\) \\
\hline
\end{tabular}

The amount of limestone is insignificant. More is shown in the Woodward shaft than is known elsewhere.
The iron-ore beds are made up largely of fragments of fossil Bryozoa and brachiopods, replaced and cemented by iron oxide and mingled with sand and small quartz pebbles. The unweathered ore preserves much of the calcium carbonate of the fossils, and this may reach 20 per cent of the ore bed.
The sandstone, Nos. 6 to 9, of the section on Twentieth Street in Birmingham does not extend as far south as Bessemer. The dark rotten fossiliferous sandstone, Nos. 11 to 13, persists and is No. 3 of the section at the Sloss No. 1 mine at Bessemer. The limestone in the upper part shown in the section at the Woodward shaft is not known elsewhere in any outcropping sections.
rock") out of which have been made the pebbles between the Irondale and Big seams described above. The absence in the Bessemer quadrangle of the rocks separating the two seams in the vicinity of Irondale and the presence of pebbles made out of some of these rocks indicate a gap or unconformity between the two beds in the Bessemer quadrangle.
Big seam.-The Big seam is the center of interest in the Red Mountain formation because it is the foundation on which rests the industrial greatness of the Birmingham district. It includes about 20 feet of ore and ferruginous sandstone, and in practical continuity below it, in the northern part of the in pracier corne the entive mass about 25 feet thick. The upper 10 to 14 feet of entire mass about 25 feet thick. The upper 10 to 14 feet of the bed is the best, and mining is practically confined to this portion. (See Pl. XIV.)

Ida seam.-The Ida seam, 15 to 50 feet above the Big seam, appears to be persistent, as it is known from Irondale to Bessemer. In places, as in the Sloss No. 1 mine, near Bessemer, the Ida seam is directly beneath the Pentamerusbearing bed; in other places it seems to be 15 to 20 feet below that bed, possibly because Pentamerus is not plentiful enough close above the Ida seam at that place to have been observed.
Hickory Nut seam.-The Pentamerus zone is persistent and lies 30 to 50 feet above the Big seam. The sandstone in which casts of the brachiopod Pentamerus oblongus are abundant and which is strongly impregnated with iron oxide is commonly called an iron ore under the name Hickory Nut seam, suggested by the resemblance of the internal casts of the fossil to the opening hull of a hickory nut. The bed, however, is nowhere, so far as the author knows, an iron ore, and the name is therefore a misnomer.
Potholes in the Red Mountain formation.-At the Ishkooda mine a cylindrical mass of sandstone 20 feet or so in diameter penetrates the ore bed. The sandstone contains Pentamerus. A pothole probably had been formed in the ore bed at the time Pentamerus was living in the region or later, and this pothole

Irondale seam.- The Irondale seam is known as far south as the southeast corner of sec. 20 , T. 18 S., R. 3 W . It is everywhere composed of thin layers of ore, shale, and ferruginous sandstone and is 2 to 6 feet thick. It is separated from the Big seam by about 2 feet of shale and thin ferruginous sandstone layers full of discoid waterworn pebbles of limestone as mūch as 6 or 8 inches in diameter. These layers have been seen from the Helen Bess mine, in the northeast environs of Birmingham, southwest to the Ishkooda mine, in the SE. \(\frac{1}{4}\) sec. 20, T. 18 S ., R. 3 W . (See Pls. XV and XVII.)
Relations of the Irondale seam to the Big seam.-At Irondale and vicinity the Irondale seam is separated from the Big seam by as much as 28 feet of shale and sandstone. \({ }^{14}\) In that vicinity the Irondale seam is capped by the limestone ("Jack
the Birmingham distriet, Ala.: U. S. Geol. Survey Bull. 400, pl. 13, \(B, 1910\),
seems subsequently to have been filled with sediment. This subject is further considered in the chapter on geologic history, and the ore beds are more fully described under the heading "Economic geology."

Thicloness.-As shown in the detailed sections, the Red Mountain formation is 239 to 256 feet thick. The measurement at the Woodward shaft is correct; the others, which are made up from surface measurements, are only approximate except the part below the Big seam in the section in Birmingham. This part is 85 to 97 feet thick. No good measurements of the formation have been made west of Opossum Valley. Only a small thickness has been preserved in the small outliers on Flint Ridge. In a bore hole in Shades Valley near Oxmoor the part of the formation above the Big seam is 91 feet thick, and the ore is 19 feet 6 inches thick. The bore hole went 40 feet below the ore without reaching the
bottom of the formation, the whole thickness penetrated being 151 feet. The greatest thickness recorded above the Big seam is 191 feet, which was noted in a drill hole 1,200 feet cest of the Sloss No, 1 mine, at Bessemer.
Age and corvelation.-By the study of the fossils of the Red Mountain formation Ulrich has arrived at the conclusion that the part below the Big seam of iron ore is of Medina age and that only the Big seam and overlying part of the formaand that only the Big
tion is of Clinton age.
The most diagnost
The most diagnostic species from the beds below the Big seam, mainly identified by Ulrich, are listed below:
\begin{tabular}{|c|}
\hline \multirow[t]{11}{*}{\begin{tabular}{l}
Eavterolarma crometrieut \\
(Foerste). \\
Zaphrentis bilateralis Hallt \\
Clathropora frondosa Hall. \\
*Helopora fragilis Hall. \\
Phaenopora aff. P. ensiform \\
Hall. \\
Chasmatopora (Phylloporina) \\
angulata (Hall). \\
*Rhínopora verrucosa (Hall), \\
*Atrypa marginalir (Dalman) \\
Coelospira of. C. plicatula (H)
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

Rhatyotrophinin daytonenols Foers) Schuchertella subplana (Conrad) Strikhionallina striath (Hall). Bueanella trillobata (Conrad),
COyclonema daytonenso Focrite Cyclonema daytonenso Foernte.
Cyelonema sp. undet., common in Brassfield of outhern Ohtio,
Pterinea ef. P. undata (Hall). Pterinea of. P. undata (Hall),
Tetranota of. T. obsoleta Ulrich and Schofield.
© Valymene vordes Foerste Cadymene vogder Foerste
Pterygometopus of. P, tr Pterygom
(Hall).

The starred species, with the exception of the Helopora, are unknown except in the Brassfield limestone of Ohio and Kentueky, the Cataract formation of Canada, the Albion sandstone (upper Medina) of New York, and the Rockwood ore of Tennessee. Rhinopara verrucosa is, except possibly in a single occurrence, a Medina fossil, and Helopora fragilis is most common in beds of that age. As some of these diagnostic forms occur in the Mrondale seam of ore, there can be no reasonable
doubt of the Medina age of the lower part of the Red Mountain formation in this area.
Of the age of the upper or Clinton part of the Red Mountain formation Ulicich, in an unpublished manuscript, says:
In Alabama, as in Pennsylvania and New York, three Clinton faunas - a lower, a middle, and an apper-are distinguishable. But it is not at all certain that they correspond in time to the divisions ecoguized in the northern States.
We may aceept as extabished by faunal evidence that the repre-
sentative of the Clinton in Alabama, beginning with the Big ore sentative of the Clinton in Alabama, beginning with the Big ore seam, corresponds in central New York.
All the Clinton fossils from northeastern Alabama now in the United States National Musenm, Iisted below, indicate ouly lower Clinton horizons:

MFonograptus elfintonensis Hall.
Pascoolus sp.
Cornulites dis

Pachydictya of. P. crasma Urich
Orthis flabellites var. Foeste.
Blobites blifoba Limnecuk
- Pis Forstiophia of. P, dayton
"Leptacma rliomboldalls Wilek-
ene
*Plectambonites of. P. transter
-Plectan
sactambonites of. (Wahlenberg). transwer
s. (honefes cornutue
Chonetes cornutu: (HaIn:
A noplotheen hemiopherien
(Sowerby).

Rhynchonellay janen Billingk
-Pentamerus oblongus 8owerby -Pentamerus oblongus 8owerby.
"Pentamerus ovalis Hall
 stricklandinian of. S. deformin Meek aud Worthen.
Strickhandinia in
Whitheldella intermedia (Hall)
Liospirat sp, undet.
Phaverotrema aff. P. oceidens (Hall.
 (Hall).

Of the 22 species in this list those marked with an asterisk ()) oceur also in lower Clinton deposits in New York. As compared Tennessee, this approximately contemporaneous Allabama forth of proves strikingly different. Two of the most reliable of the Clinton suide fossils (Chonctes cornutus and Anophothecea hemispherica) are present; and it is chiefly on their account that these deposits in ortheastern Alakama are determined as of lower Clinton age. The orizon of Pentumerus oblongus may represent the horizon of the Wolcott limestone member or that of the somewhat older "Reynalen"
imestone member of the lower Clinton of New York. Nevertheleas we miss the extremely common Osinton of New York. Nevertheless anting in northeru lower Clinton faumas.
In Red Mountain the Big ore seam is extremely rieh in fossil Bryozoa, and as Bryozoa are rare elsewhere in the Clinton, this ally to our knowledge of the life of this epoch. At least ten genern are represented: Fistulipora, Mallopora, Lioclemella, Chasmatopora (Phylloporina), Helopora, Pillodictya, Clathropora, Miaenopora, Pachydietya, and Lichenalia. If we were not sure that the bed is much older, these Bryozoa would inmediately suggest the Rochester or Osgood epoch of the upper Clinton. On the other hand they remind as nearly as moch of the late Medina bryozoan fauma, especially that The second or middle fossil zone in the Clinton of central Alabama specially marked by Pentomerus oblongus and \(P\). ornatie and by the absence of the fossils aswociated with thase species in the lower zone in northeast Alabama, as deseribed above. This zone is represented by the ferruginous sandstone kuown as the Hickory Aut seam. The Pentamerus is widely distributed in the southern Appalachian Valley. Apparently it marks a definite zone that is provisionilly correlated The limestone of New York.
The upper 50 fect or more of the Red Mountain formation in cenof either of the underlying Clinton zones. The following list includes the most common species and such of the rarer forms as are valuable for purposes of correlation.
Of this list Fencatella ef. F. elegans, Semicoscinium of. E. tenuireps, Atrypina disparilis, and Dalmanites limuhurus indicate approximate
believed to be represented in the upper part of the typical Clinton of central New York. \({ }^{4}\)
\begin{tabular}{|c|c|}
\hline Zaphrentis blateralis Hally & Orthostrophin (Orthis) \\
\hline seteria alabamense Buts. & fasciata (Hall). \\
\hline Large columnals of crinold or cystid. & \begin{tabular}{l}
Plectambonites intermedia. \\
Chonetes aff. C. cornutus Hall.
\end{tabular} \\
\hline Fenestella ef. F. elegans Hall. & Stricklandinia ef. S. deformis Meek \\
\hline Semicoscinium of. S. tenuiceps Hall. & and Worthen Atrypa reticolaris (Línnems) \\
\hline Ptilodietya gladiola Billings. & Atrypina disparilis (Ha \\
\hline Stropheodonta corrugata Conrady & Spirifer radiatus (Sowerby). Dalmanites limulurus Gireen. \\
\hline Orthis llabellites Foerste. & Encrinurus sp. undet. \\
\hline
\end{tabular}

In Birmingham Valley the oldest formation present above the Red Mountain is the Frog Mountain sandstone, of Oriskany and Onondaga age. In Pennsylvania there intervenes between the Clinton and the Oriskany 2,000 feet of rocks of Cayugan and Helderbergian age. In Cahaba Valley, where the Frog Mountain sandstone rests upon the Little Oak limestone, the Red Mountain formation and all of the Upper Ordovician are lacking, in addition to the formations that are Ordovician are lacking, in adaition to the formations that are rocks in Cahaba Valley that represent the time necessary for the deposition of about 6,000 feet of rocks in Pennsylvania.

\section*{devonian system \({ }^{15}\)}

The Devonian system is represented in this part of Alahama by the Frog Mountain sandstone (which here is of Oriskany and Onondaga age, as explained beyond) and perhaps by the Chattanooga shale, which is of either Upper Devonian or early Carboniferous age.

\section*{noo mountain andistosk}

Name.-The Frog Mountain sandstone was so named by Hayes, from Frog Mountain, Cherokee County. As now used the name applies to any sandstone of Devonian age beneath he Fort Payne chert, or the Chattanooga shale.
Distribution.-The Frog Mountain sandstone is known in this area only along the crest of Little Oak Mountain, in the Vandiver quadrangle, and along Red Mountain, in the Besemer quadrangle. It is exposed in Graces Gap and in the cut at the Twenfieth Street erossing of Red Mountain in Birmingham. A few feet of sandstone in Clear Branch Gap, southwest of Bessemer, is probably Frog Mountain, although no fossils have been found in it to prove its age. The Frog Mounhain sandstone is also exposed in a cut on the Southern Railway half a mile east of Leeds and in a gap through Little Oak Mountain, 4 miles south of Leeds, in the NE. \(\frac{1}{4}\) sec. 1, T. 18 S., R. 1 W., at the north edge of the Vandiver quadrangle.

Character.-The Frog Mountain sandstone ranges from a coarse-textured friable yellow rock along Red Mountain to a rather fine textured gray or yellowish rock along Little Oak Mountain, where it weathers to a somewhat porous and soft chalky mass. Locally it contains very small quartz pebbles. In Clear Branch Gap it is a hard quartzite. The following sections show the character of the Frog Mountain:
Section in Cahabia Valley, half a mite east of Leeds and \(\&\) miles north of
\begin{tabular}{|c|c|}
\hline Payne chert. & weet \\
\hline \multicolumn{2}{|l|}{\({ }^{\text {Chattanooga shale (purple) }}\)} \\
\hline Frog Mountain sandstono: & \\
\hline \multicolumn{2}{|l|}{Sandstone, hard, brown pebbly} \\
\hline Sandstone, soft, green. & \\
\hline \multicolumn{2}{|l|}{Sandstone, brown, cherty} \\
\hline \multicolumn{2}{|l|}{Chaiky rock, with fossils (Chonetes); thin} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Sandstone, brown, cherty \({ }_{\text {1 }}{ }^{\text {1t }}\)}} \\
\hline & \\
\hline
\end{tabular}

Little Oak Ilimestone
section about \& mites southeost of Seed, wear the boundary betioven the
\begin{tabular}{|c|c|}
\hline Chert (Fort Payn & Feot \\
\hline \multicolumn{2}{|l|}{Concealed (Chattanooga shate)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Frog Mountain saldstone:}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Not exposed, probal } \\
& \text { Limestone (Little Oak) }
\end{aligned}
\]}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Section at Clear Branch Gap, 5 miles south of Bessemer} \\
\hline Fort Payne chert. & \\
\hline Chattanooga shale: & \\
\hline Clayey layer stannod black & \\
\hline Clay, green. & 1 \\
\hline Frog Mountain sandstone: Quartsite, distinctive Oris kany foacils (see list) & 6 \\
\hline & \\
\hline
\end{tabular}

Thickness.-As shown by the sections the Frog Mountain sandstone is from 6 inches to 20 feet thick in this area.
Age and correlation.-The Frog Mountain sandstone has hitherto been classified as of Oriskany age. As a result of recent investigation by the writer it has been discovered that \({ }^{15}\) For the latest views on the stratigraphy and correlation of the Clinton see the volume on the Silurimn of Marylhand (Mry) Mand Gool Survey, 1923), In a Fortheoming paper the author of this follo will name the sund.
tone of Oriskany nge in Red Mountain the Clear Branch sandstone, the ame Frog Monmtain will be restricted to the sandstone of Onondaga ago in Cataba Vnley, and the sandatone of Hamitton age as described herelin,
vhich is not present in theere quadrangles will be named the Ragland
the sandstone occupying the position of the Frog Mountain in different parts of the State ranges in age from Oriskany to probably Hamilton. The facts on which the above assertion is based are stated below.
From the 6 inches of sandstone in Clear Branch Gap (see preceding section) the fossils in the following list were collected:

\section*{Hippari \(\operatorname{cin}^{2}\) proximus Vab \({ }^{\text {Rantooiain pecculiaris (Conrad). }}\)}

The following forms were collected from the west side of Birmingham Valley, on the Alabuma Great Southern Railroad, 2 miles west of Vance and about 16 miles southwest of Clear Branch Gap. The material here is a soft white chalky rock, brobably decomposed chert, and was mistaken in the field for the Fort Payne, which crops out at the same point continuously with the Devonian bed.
\begin{tabular}{|c|c|}
\hline Stropheodonta sp. undet. & Spirifer of. S. sul \\
\hline Leptostrophia sp. unde & Spirifer sp. undet. \\
\hline "Laptostrophia ef. L. oriskanin Clarke. & Anoplotheca flabellites (Conrad). \\
\hline -Anoplia nueleata (Hall). & \\
\hline
\end{tabular}

The fossils of both lists were identified by E. M. Kindle.
The species marked with an asterisk (\({ }^{*}\)) constitute a distinctly Oriskany fauma, and there can be no reasonable doubt that the rocks from which they were obtained are of Oriskany age, notwithstanding the fact that Anoplotheca Alabellites, Anoplia notwithstanding the fact that Anoplotheca flabellites, Anoplia mucleata, and Eatonia peculiaris also range into beds of Onondaga age. The 6 inches of sandstone carrying the fauna of the inst list is, however, the only representative of the Oriskany known in this area. The Frog Mountain of the Little Oak Mountain strip is of Middle Devonian age, as shown by the succeeding discussion. No fossils have been obtained from the Frog Mountain sandstone along Little Oak Mountain in this reas, but on the same ridge and same outcrop a quarter of a mile east of Leeds and \(3 \frac{1}{1}\) miles north of the Vandiver quadrangle Chonetes mucronatus is common. In the Watkins cut of the Seaboard Air Line Railway through the same ridge 1 mile east of Odenville and 14 miles northeast of Leeds the Frog Mountain section is as follows:

From the middle of bed No. 5 of the above section were ollected Anoplotheca acutiplicata, Chonetes mucronatus, and Chonostrophia reversa. Abont 3 miles northeast of the Watkins cut, in Watson Gap (see topographic map of Springville quadrangle) was collected a piece of very fine grained siliceous ock like some of that in No. 5 of the above section, carrying an undetermined species of Cypricardella, a large species of Paleoneilo, also apparently undescribed, and Loxonema of. \(L\). delphicola. About 7 miles still farther northwest, at Cox Gap, on the same ridge and outcrop, where the Frog Mountain is about 25 feet thick and carries layers of rock like that of the piece found in Watson Gap, the following species were col ected 6 to 8 feet below the Chattanooga shale: Tropidoleptus carinatus, Loxonema cf. L. delphicola, and a fragment of the living chamber of a cephalopod which agrees fully with Orthocras crotalum, although the specimen is slightly compressed. Eleven miles to the northeast, at Greensport, where Coosa River cuts through the same ridge, here named Beaver Creek Mountain, the Frog Mountain is lacking and the Chattanooga shale rests directly upon the upper or Clinton part of the Red Mountain formation, which wedges into the section going northward between the Watkins cut and Cox Gap.
Of the fossils occurring along Little Oak and Beaver Creek mountains cited in the preceding paragnuphs, Choneles mucroatus ranges through the Onondaga and Marcellus into the Hamilton. It is cited as a common species from both the Columbus and Delaware limestones of Ohio, the former of Onondaga and the latter of Hamilton and Mareellus age. Chonostrophia reversa is a common form occurring in the Delaware limestone only and thus known elsewhere only in beds regarded as of Hamilton age. Tropidoleptus carinatus is a common Hamilton form, which is also cited by Schuchert from the Marcellus shale and which ranges into Upper Devonian formations but has never, so fir as the writer is aware, been cited from beds known on other evidence to be as
old as Onondaga. The same is true of Loxonema delphicola. It is a common Hamilton form of New York and ranges up into the lower part of the Mississippian series. The Cypricardella and Palconeilo are distinctly Hamilton or later types. Orthoceras crotalum is also cited by Hall only from the Hamilton. The only other form that elsewhere seems known from the Onondaga is Anoplolheca acutiplicata.
The assemblage of fossils cited above is clearly of Middle Devonian age, and as some of the collections were obtained within 10 feet of the bottom of the Frog Mountain and specimens were seen still lower, it is certain that the formation along Little Oak Mountain includes no component of Oriskan age. The case for the post-Oriskany age of the Frog Mountain sandstone of Cahaba Valley and the belt east of the Coos coal field is made conclusive by the fossils at the base of the sandstone \(1 \frac{1}{2}\) miles south-southwest of Ragland, which is miles southeast of Cox Gap on Beaver Creek Mountain, described in a preceding paragraph, and about 35 miles north east of Birmingham. In an abandoned quarry southeast of Ragland the section exposed is as follows:

Fort Payne chert:
\({ }_{7}\) yet
5 Fog Mountain sa
5. Sandstone, thick bedded: some layers coarse grained others fine grained, with nodular chertife bands
 calcareous , calcareous, highly fossiliferous,.................
 (corals)......

\section*{Great unconformity.
Little Oak limestone:}

Limestone to bottom of quarry, thick bedded, gray
to dark, ribbony or banded on weathering, fossil-
From beds 2 and 4 of the above section a very rich coral fauna was obtained. Most of the species and individuals wer collected from bed 4 , where they are associated with brachiopods, bryozoans, and trilobites. Bed 2 also carries an abundance of corals, but they are only sparingly liberated from the matrix of limestone, and a large collection could not be made. The seem, however, to be of the same species as those from bed 4 The corals have not yet been carefully identified specifically but it is apparent at a clance that the asemblage beats a strong resemblance to that of the rich Devonian coral fauna at the Falls of the Ohio at Louisville, Ky., which is of Onondag and Hamilton age. There are species of cyathophylloids including Blothrophyllum, species of Favosites, and species of Cladopora. Associated with these corals in the same layers are Coscinium cribriformis, Cystodictya gilberli?, Tueniopora erigue, species of \(F\) estla, Strons C. mucronatus, Spirifer audaculus, S. divarieata, Anoplothece C. mucronatus, Spirifer audaculus, S. divaruata, Anoplothece acutipticala?, Tropidoleptus carinatus, Aviculopecten princeps
Actinopteria decussata, Tentaculites scalariformis, Orthoceras Actinopteria decussata, Tentaculites scalariformis, Orthocera crotalum, and Phacops rana. These fossis, occurring in the very bottom of the Frog Mountain sandstone at the Ragland locality, give decisive evidence as to the post-Oriskany age of the entire formation at that place. As between the Onondaga o Hamilton age of the beds, however, the testimony of the fossils is conflicting. The corals alone suggest only Onondaga, but even their tesimony is not entirely on the side of the Onon daga. For example, apparently both Blothrophyllum decorlical Hail Do bliss ons rem A Hamilton form. Doubtless other contradictions will appe among the corals when the collections are fully identified
The testimony of the other fossils is slightly more favorable
to the Hamilton age of the fauna. For example, Coscinium to the Hamilton age of the fauna. For example, Cosciniun cribriformis, Tropidoleptus carinalus, Chonetes coronatus, Actinopteria decussata, and Orthoceras crotalum are common Hamilton forms and are not reported from the Onondaga although T. carinatus occurs in the Marcellus shale, which lie between the Onondaga and Hamilton in New York. Nearly all the other forms occur in both the Onondaga and Hamilton but most of them only sparingly in the former, while they are all so abundant in the latter that any assemblage of which they are a prominent constituent is generally regarded as a Hamilton fauna.

The easternmost outcrop of the Frog Mountain sandstone occurs along a ridge passing about 2 miles west of Piedmont Calhoun County, Ala., and running northeastward toward Frog Mountain, the type locality of the Frog Mountain sandstone, which is in southeastern Cherokee County, about 6 mile north of Piedmont. In the ridge referred to the Frog Mountain sandstone may be as much as 50 feet thick and so far as exposed consists of coarse sandstone. A few fragments of corals and of finely striated brachiopods were found in this sandstone, and a few incomplete specimens of silicified corals were found on the slope below the sandstone. From some locality on this ridge about 2 miles from Piedmont a good collection of free specimens of silieified fossils has been obtained and is now in the U. S. National Museum. The collection includes, besides a number of well-preserved corals, Atrypa
reticularis, Spirifera duodenaria, Paracyclas elliptica, Pleurotomaria capillaria, and Loxonema cf. L. delphicola. This fauna is Middle Devonian and entirely post-Oriskany. Here too the testimony is conflieting as to the Onondaga or Hamilton age of the fauna. Atrypa reticularis ranges through the Silurian and Devonian; Spirifera duodenaria is reported from the Onondaga only : Paracyclas elliplica occurs in both Onondaga and Hamilton; Pleurotomaria capillaria and Loxonema delphreola seems to be confined to the Hamilton. Owing to lack of precise description of locality and horizon, the exact lack of precise description of locality and horizon, the exact source of this fauna is unknown, but it may fairly be assumed of Ragland, described above, in the bottom of the Frog Mounof Raghand, described above, in the bottom of
tain sandstone as developed west of Piedmont.
Another facies of the Devonian appears to be present in
Another facies of the Devonian appears to be present in
Frog Mountain, the type locality, and between Duke and Frog Mountain, the type locality, and between Duke and
Reads, in the northwestern part of Calhoun County. On a Reads, in the northwestern part of Calhoun County. On a
knob about midway between Duke and Reads and east of the knob about midway between Duke and Reads and east of the
Louisville \& Nashville Railroad is a great quantity of very Louisville \& Nashville Railroad is a great quantity of very
coarse grained friable sandstone carrying Spirifer macrothyris coarse grained friable sandstone carrying Spirifer macrothyris
and a large eyathophylloid coral identified as Aulacophyllum and a large eyathophylloid coral identified as Aulacophyllum
unguloideum. A fully exposed section in the gap of Ohatchee unguloideum. A fully exposed section in the gap of Ohatchee
Creek just south of Reads shows the sandstone to be only 20 Creek just south of Read
feet thick in this vicinity.

\section*{feet thick in this vicinity.}

Frog Mountain, the type locality of the Frog Mountain sandstone, has not been examined by the writer, but Mr. Ulrich kindly furnishes the following section made by him in 1906
\begin{tabular}{|c|c|}
\hline Floyd shate: & Feet \\
\hline \multicolumn{2}{|l|}{4. Shale, dark, with Archimedes.} \\
\hline \multicolumn{2}{|l|}{og Mountain sandstone:} \\
\hline 3. Sandstone, coarse, red and fossiliferous at top (Spirifer macrothyris and Amphigenia curtay). & \(150 \pm\) \\
\hline \multicolumn{2}{|l|}{2. Sandy, calcareous (magnesian), and cherty beds} \\
\hline \multicolumn{2}{|l|}{with ronnded quartz grains seattered through magnesian limestone, the quartz grains increas-} \\
\hline \multicolumn{2}{|l|}{ing toward the bottom. Fossiliferous cherty-} \\
\hline looking rock at bottom containing Chonetes & \\
\hline Unconformity & \\
\hline Limestone of Beekmantown age, probably Newala: & \\
\hline Limestone, fine grained, with Cryptozoa and & \\
\hline
\end{tabular}

In the coarse red sandstone at or near the top of No. 3 of the above section an Amphigenia, apparently \(A\). curta, a shel suggesting Stropheodonta perplana, Spirifer divaricalus, and Spirifer macrothyris occur in association with cyathophylloid corals in a more or less fragmentary condition. No evidence of the rich coral and brachiopod fauna found south of Ragland as described above, with its distinctly Hamilton elements, has been found at Frog Mountain. As Spirifor macrothyris and representatives of the genus Amphigenia, occurring at the top of Frog Mountain at its type locality, are not recorded from beds younger than Onondaga, and as Chonetes mucronatus, oceurring in the bottom of the Frog Mountain at its type locality, is not recorded from beds older than Onondaga it follows that, so far as the known evidence goes, the typical Frog Mountain sandstone is entirely of Onondaga age. It Frog Mountain sandstone is entirely of Onondaga age. It is
interesting and significant that the Frog Mountain sandstone at Leeds is identical lithologically with the very base of the at Leeds is identical lithologically with the very base of the
Frog Mountain sandstone at Frog Mountain and also carries Frog Mountain sandstone at Frog Mountain and also carries
Chonetes mucronatus as at Frog Mountain. This indicates Choneles mucronatus as at Frog Mountain. This indicates
that only the basal part of the formation as developed at the that only the basal part of the formation as
type locality is present in these quadrangles.
type locality is present in these quadrangles.
The Frog Mountain sandstone extends
The Frog Mountain sandstone extends still farther northeastward into Georgia, where it is present in Lavender Moun tain and in Horseleg Mountain, about 1 mile west of Rome, in Floyd County, and was mapped by Hayes in the Armuchee chert. At Horseleg Mountain Spirifer macrothyris occurs in coarse soft reddish sandstone. In both Lavender and Horse leg mountains this sandstone is immediately underlain by fossiliferous chert which belongs to the Armuchee chert of Hayes as described in the Rome folio. This chert is well exposed in the railroad cut at the southwest end of Lavende Mountain about half a mile west of the railroad station at Lavender. At this place it is about 50 feet thick. From thi chert at the north end of Lavender Mountain Rhipidomell musculosa, Stropheodonta magnifica, Chonetes hudsonicus Anoplia nucleolata, Mexistella rostellata, Spirifer tribulis and Platystoma ventricosa, all of Oriskany age, have bee collected. A collection of silicified fossils from Catoos County, Ga., 40 miles north of Rome, contains Eatonia peot liaris and a Spirifer of the type of S. murchisoni or S. angu laris. Both species of Spirifer are Oriskany forms, and the Eatonia, although recorded rarely from beds of Onondag age, is of more common occurrence in older beds, as those o Oriskany or even of still older Helderberg age.
It appears, then, that except for the occurrence of a smal thickness of Oriskany in the region southwest of Bessemer southwest of Vance in Tuscaloosa County, and in the vicinity of Jemison, Chilton County, no Oriskany is known in Ala bama. Whether the Oriskany of these Alabama localities and the Oriskany (Armuchee chert) of northwest Georgia are now or ever were connected except by way of the open ocean entirely unknown. The typical Frog Mountain sandstone and
that of Little Oak Mountain, as at Leeds and extending southward into the Bessemer and Vandiver quadrangles, is apparently all of Onondaga age, but in the region between Frog Mountain and Leeds, as 1 mile east of Odenville and at Ragland, where the Devonian sea lingered longest, the Frog Mountain probably includes beds ranging in age from the later part of the Onondaga into the early part of the Hamilton epoch.

There is a stratigraphic break between the Frog Mountain sandstone and the succeeding Chattanooga shale, the extent of which is in doubt, owing to the uncertainty as to the age of the Chattanooga. If the Chattanooga is of Genesee age, as it is classified in the earlier reports, the unconformity in this area represents no more than the Marcellus, Hamilton, and Tully formations; if it represents some still younger part of the Upper Devonian the unconformity is correspondingly greater; and if it is basal Carboniferous, as held by some, the break represente a considerable part of the Middle Devonian and all
of the Upper Devonian, or about 6,000 feet of rocks not of the Upper Devonian, or ab
present in this part of Alabama.

\section*{devonian or carbonterbous system}
ohattanooga bhale
Name.-The Chattanooga shale was named by Hayes \({ }^{10}\) from Chattanooga, Tenn. In this region it overlies the Frog Mountain sandstone or, where that is absent, the Red Mountain formation and is immediately succeeded by the Fort Payne chert.

Character and distribution.-The Chattanooga is generally a black fissile shale, the black color being due to the presence of carbonaceous matter. The shale is likely to have reddish layers or blotches or to be purplish or greenish where it has weathered down to a clay. In a cut on the Louisville \& Nashville Railroad on Red Mountain, near the Twentieth Street crossing, just southeast of Birmingham, the Chattanooga consists of about 4 inches of green clay above and 12 inches of dark clay below. \({ }^{17}\) Similar beds represent the shale throughout the southern part of the Bessemer quadrangle. The Chattanooga, though thin, is persistent along Red Mountain, appearing wherever its horizon is exposed. In Clear Branch Gap only a black stain at the top of the Frog Mountain represents the formation. It has not been observed in Cahaba Valley south of Leeds, 3 miles north of the Vandiver quadrangle. (See section on p. 9.)
Thickness.-In the Bessemer-Vandiver area the Chattanooga is nowhere known to be more than 2 feet thick and is probably only a few inches thick in most of the area.
Age and correlation.-The Chattanooga shale includes all the sediments preserved in this region that were deposited in the time between the Frog Mountain epoch and the Fort Payne epoch. Within this time a maximum of about 8,000 feet of Middle and Upper Devonian and lower Mississippian feet of Middle and Upper Devomian and
rocks accumulated in central Pennsylvania.
Whether the Chattanooga was deposited in the Devonian or Mississippian part of this long period has not been determined Mississippian part of this long period has not been determiked
to the satisfaction of all geologists, owing to the lack of to the satisfaction of all geologists, owing to the lack of
decisive evidence. It has generally been classified as Devonian, but Ulrich and others believe it to be basal Mississippian. nian, but Ulrich and others believe it to be basal Mississippian.
Ulrich has obtained from it, at Chattanooga, Lingula melie and Ulrich has obtained from it, at Chattanooga, Lingula melie and
Orbiculoidea newberryi, two fossils of the Sunbury shale of Ohio, and at other places, particularly north of Huntsville, Ohio, and at other places, particularly north of Huntsville,
Ala., a large number of species of conodonts characteristic Ala., a large number of species of conodonts characteristic
of the Sunbury shale, of early Mississippian age. These conoof the Sunbury shale, of early Mississippian age. These cono-
donts are regarded by Ulrich as decisive evidence of the Missisdonts are regarded by Ulrich as decisive evidence of the Missis-
sippian age of the Chattanooga shale in Alabama and southern sippian age of the Chattanooga shale in Alabama and southern
and Middle Tennessee. However, Lingula melie, or a form and Middle Tennessee. However, Lingula melie, or a form
that can hardly be distinguished from that species occurs also that can hardly be distinguished from that species occurs also
in the Ohio shale in Kentucky, below the Sunbury, and the in the Ohio shale in Kentucky, below the Sunbury, and the
Ohio shale, as shown by actual tracing by the writer and others Ohio shale, as shown by actual tracing by the writer and of the
across Kentucky, probably includes the greater part of across Kentucky, probably includes the greater part of the
Chattanooga. The writer has obtained Barroisella subspatulata Chattanooga. The writer has obtained Barroisella subspatuata
from beds below the middle of the Chattanooga shale at from beds below the middle of the Chattanooga shale
Blount Springs, Ala. This form, associated with Lingula melie, occurs in the black shale in Illinois and Indiana, which is also believed to fall within the limits of the Ohio shale. The Ohio shale is classified as Devonian by the United States Geological Survey, but it also is believed by Ulrich to be of Mississippian age, except a small thickness locally at the bottom, which is admittedly of Genesee age, so that even if the Chattanooga shale is of the age of part of the Ohio it is still Mississippian, according to Ulrich. On the other hand, those who, like Keith, maintain that the Chattanooga is Devonian base their belief on the continuity of the Chattanooga with the black shale of undoubted Devonian age in southwestern Virginia, which can be traced without break into the Chattanooga. As the black shale in southwestern Virginia is 500 to 1,100 feet thick and has Lingula melie and Barroisella in its upper part, that part is regarded as Mississippian by Ulrich, who believes that the "Hayes, C. W., The overthrost fanlts bf the southern Appalachians:
Geol. Soc. America Bull, vol. 2. p. 142, 1891. \({ }^{175}\) 17 Butts, Charles, U. S. Geol. Survey Geol. Athas, Birmingham folio (No
southwestward thinning is effected by the loss of Devonian southwestward thinning is effected by the loss of Devonian
beds from the bottom, so that only the top part, of Mississippian age, extends into southern Tennessee and Alabama.

As already shown, there is throughout most of this area an unconformity between the Chattanooga shale and the basal Mississippian Fort Payne chert, the extent of which depends upon the age of the Chattanooga. In the southeast corner of the Vandiver quadrangle shale of Mississippian age of the Floyd type appears to overlie immediately the Newala limestone, of Lower Ordovician age, so that in that locality there is an unconformity between the Mississippian shale and the Newala limestone equal to a maximum of about 24,000 feet of rocks which occupy that interval in Tennessee, Virginia, and Pennsylvania. The absent rocks include a part of the Lower Ordovician, all of the Middle and Upper Ordovician, all of the Devonian and Silurian, and the lower part of the Mississippian series of the Carboniferous system.

\section*{carboniferous system \\ plan series}

The Mississippian series in this area includes the Fort Payne chert, the Warsaw limestone, the Gasper formation, the Hartselle sandstone (as restricted), the Bangor limestone (as restricted), or the Floyd shale, which is the equivalent of the last three, and at least the lower part of the Parkwood formation.
The type region of the Mississippian series is in the Mississippi and Ohio valleys. Section 1 in figure 4 shows a sequence of the Mississippian formations in that region which is fairly representative. The other sections in figure 4 show the relations of the Mississippian of Alabama to that of the type region.

Name.-The Fort Payne chert was named from the town of Fort Payne, in Dekalb County, northeastern Alabama. The name was published almost simultaneously by C. W. Hayes, of the United States Geological Survey, and E. A. Smith, State geologist of Alabama. In Hayes's original usage the Fort Payne included all the limestone and chert between the Hartselle sandstone or Floyd shale and the Chattanooga shale. It thus included whatever equivalents of the Tuscumbia limestone
of the Alabama Geological Survey are present in northeastern Alabama and also the equivalent of the Warsaw limestone of this folio. In recent years, however, the name has been restricted to the rocks between the Chattanooga shale below and the Tuscumbia limestone (or Warsaw limestone) above, and that is the definition recognized in this folio.
Distribution.-The Fort Payne crops out on West End Mountain, and there is a small patch, a fault block, a mile
southwest of Wylam. The formation crops out along the east flanks of Red Mountain, its bottom reaching high up on the east slope or to the crest. In the vicinity of Morgan, in Shades alley, an area of Fort Payne is brought to outerop by a fault on the east side. In Cahaba Valley it crops out along the crest and east slope of Little Oak Mountain, this ridge being due to the presence of the resistant chert, which has not been eroded down to the same level as that of the limestone on the west and the soft shale on the east. In the southeast quarter of the Vandiver quadrangle beds that are supposed to be Fort Payne chert crop out around an elliptical area along Page Spring Branch.
Character:-At its outcrop the Fort Payne is made up of layers of chert from a few inches to 2 feet in thickness, generally separated by thin partings of shale. Some of the layers are very even surfaced, as shown in Plates VII and IX in the Birmingham folio. Plate VII shows the thinner, more unevenly bedded chert, which is the prevailing type, and Plate IX the thicker-bedded chert.
The chert is generally yellowish, but weathered pieces are commonly whitish, with small red patches. It is brittle or finely jointed and breaks so easily that it can be blasted out to a depth of 100 feet in a condition to be used for road surfacing without much further preparation.
In places some beds of the chert yield on weathering a light, very fine grained soft, porous rock suitable for use as polishing material. Primarily the chert as a formation is calcareous, as shown by specimens brought up from considerable depths as cores of diamond-drill borings. Some of the chert in such material appears as irregular inclusions in limestone, but this chert is full of crystals of calcite according to C. W. Washburne. The chert is at present fine-grained crystalline quartz, but it probably was not originally in this form.
Thickness.-The thickness of the formation ranges from 90 to 200 feet, or possibly a little more in some sections. Logs of well borings in Shades Valley report 125 to 200 feet of chert and limestone that are included in the Fort Payne. In the
Woodward shaft the thickness is 129 feet. The formation is Woodward not over 125 feet thick along Little Oak Mountain. probably not over 125 feet thick along Little Oak Mountain.
Age and correlation.-Extensive collections of fossils from the Fort Payne of the Birmingham quadrangle were studied in Whaw of the Missisippi Valley. Whether both the Bur lington and Keoks are or ores burington with the material in hand rener was minable with the material in hand. However, in the writer's pinion, such forms as Rhipidomella oweni, Athyris lamellosa, Delthyris no micate a horizon as low as Fern Glen, at the base of the Osage group. In the main, however, the Fort Payne corresponds to the Keokuk, for it can be traced into northern middle Tennessee, where generally it certainly includes only rocks of Keokuk age. A list of fossils as identified by Girty in 1908 follows:
\begin{tabular}{|c|c|}
\hline Lingula aff. L. tighti Horrick. & Productas \\
\hline domella oweni Hall an & in. \\
\hline & \\
\hline Rhipidomella aff. R. thiemei (White). & \begin{tabular}{l}
Reticularia aff. R. setigera (Hall). \\
Spirifer aff. S. forbesi Norwood a
\end{tabular} \\
\hline Chonetes aff. C. geniculatus & Pratt \\
\hline hite. & Spirifer increbescens 1 \\
\hline Chonetes aff C. illinois & Spirifer keokuk Hall. \\
\hline & \\
\hline Chonetes aff. C. logani Norwood and Pratten. & Spirifer leidyi Norwood and Pr Spirifer rostellatus Hall. \\
\hline Chonetes aff. C. ornatus Shumard. & Spiriferella aff. S. neglecta (Hall). Spiriferina aff. S. depressa Herrick. \\
\hline Chonetes planumbonus Meek and Worthen. & Spiriferima subelliptica (McChesney) Syringothyris aff. S. carteri (Hall). \\
\hline Productella aff. P. concentrica (Hall). & Ambocoelin? aff. A. lavicula Rowley Cyrtina aff. C. burlingtonensis Row- \\
\hline Productella aff. P. pyxidata & \\
\hline Hall. & Delthyris novamexieana (Mill \\
\hline Productella spinulicosta (Hall) & Athyris 1 \\
\hline & \\
\hline Pustula biseriata (Hall)? & Oliothyridina sublamellosa (Ha) \\
\hline Pustula aff. P. blairi (Miller) & Eumetria verneuiliana (Hall) \\
\hline Pastula aft. P. seabricula & Allorisma consanguinatum H \\
\hline astula off P walleciana & Ifitopec \\
\hline Pustula aff. P. wallaciana & Girty \\
\hline & Acanthopeeten? \\
\hline Productus aff. P. burlingtonensis Hall. & sis Newberry. Aviculipecten aff \\
\hline & \\
\hline ductus aff. P. mesialis Hall & Conocardium aff. C. prattenianum \\
\hline Productus aff. P. parvus Me & Hall. \\
\hline & \\
\hline
\end{tabular}

Name and correlation.-The Warsaw limestone, named by Hall from Warsaw, III., has only recently been discriminated in Alabama, although it is a constituent of the Tuscumbia limestone of the Alabama Geological Survey, which occurs in northwestern Alabama and in Little Wills Valley in northeastern Alabama. In Little Wills Valley the Tuscumbia was formerly included by the United States Geological Survey in the Fort Payne chert. The Warsaw was included in the Bangor limestone (broad sense) as mapped by the writer in the Birmingham folio.
Distribution.-The only known exposures of the Warsaw in these quadrangles are in the area mapped in Shades Valley about 1 mile west of Morgan and another at Birons Ford
cross Shades Creek. The Warsaw was also penetrated in the Woodward shaft to the iron ore east of Bessemer. The only ther exposures seen in the general region are on the Louisville \& Nashville Railroad 1 mile northwest of Irondale and at Vann's quarry, 2 miles north of Trussville, which is the best development and exposure in the region. (See Pl. XX.) The formation is also well exposed at Blount Springs, Ala., in he new railroad cut. There is no doubt of its persistence from Vann's to Birons Ford, southeast of Bessemer. It crops out along the lowest ground between Red Mountain and Sand Ridge in the northern part of the Bessemer quadrangle.
Character.-The Warsaw is a coarsely crystalline thickbedded gray limestone. It is highly fossiliferous, being largely made up of crinoidal plates and plates of other echinoderms. It appears to be high in calcium carbonate. In the Woodward shaft it is reported to be 79 feet thick. It is about 90 feet thick at Vann's quarry.
Age and correlation.-The Warsaw of northern Kentucky and that of southern Indiana are satisfactorily correlated with the Warsaw of the type locality. From northern Kentucky the formation can be traced continuously into northern Alabama, where it is included in the Tuscumbia limestone of the Alabama Geological Survey. It is typically developed in the head of Sequatchie Valley in Tennessee and doubtless is continuous from that locality to Blount Springs, in the south end of the same valley. Furthermore, the Warsaw is distinguished by a good number of diagnostic fossils. Of these the following species have been identified by the writer from the localities in Shades Valley, from Vann's to Morgan:
\begin{tabular}{|c|c|}
\hline Batocrinus sp.? & Camarotoechia mutata (Hall) \\
\hline Pentremites conoideus Hall. & Cliothyridina hirsuta Ha \\
\hline Platy crinus boonvillensis sililert & Dielasma formosum (Hal) \\
\hline Talarocrinus simplex (Shumard). & Spirifer lateralis Hall. \\
\hline Dichotrypa lyroides Ulitich. & Spirifer bifurcatus Hall. \\
\hline Brachythyris subeardiformis & spiriferella neglecta (Ha) \\
\hline
\end{tabular}

Patycrinus boonvillensis sililer?
Talarocrinus simplex (Shumard)
Dichotrypa lyroides Uitrich.
Brachythyris subeardiformis (Hall).

Dhelasma formosum (Hall)
Spirifer lateralis Hall.
Spirifer bifurcatas Hall.
spiriferella neglecta (Hall).
of assemblage of fossils is one not known elsewhere outside of the Warsaw and may be accepted as conclusive evidence of the age of this limestone.
unconformity at the tor of the warsaw hambstos
In this area the Warsaw limestone is succeeded by the Gasper formation. In western Kentucky there intervene between the Warsaw and the Gasper formation the Spergen limestone, the St. Louis limestone, the Ste. Genevieve limestone, There is thus a considerable stratigraphic gap or unconformity between the Warsaw and the Gisper. At Vann's quarry there is beneath the shale of the Gasper formation about 8 feet of is beneath the shale of the Gasper formation about 8 feet of a part of the Gasper oolite to the north.

\section*{chester grour
subdivioss}

The Gasper formation, Hartselle sandstone as here restricted, Bangor limestone as here restricted, Floyd shale, and in part at least the Parkwood formation fall within the limits of the Chester group, named from Chester, III., in the type region of the Mississippian series; the name has been in common use since 1860 .
The Chester rocks in Shades Valley in the Bessemer quadrangle have been called "Oxmoor shales and sandstones" by the Alabama Geological Survey, the top of the "Oxmoor" being somewhere in the Parkwood formation. Owing to the subdivision of the "Oxmoor" of the Alabama Survey, and owing to the fact that the name Oxmoor was used by Hayes for the Hartselle sandstone only, it has been thought best not to endeavor to establish the name Oxmoor in any restricted sense that could be made applicable. Any restriction of Oxmoor has also been made unnecessary by the identification in Alabama of the formations of the typical Chester group of the Mississippi Valley region.
BASPER FOMMA

Name.-The Gasper formation, which in this area succeeds the Warsaw limestone, was named for its exposures on Gasper River, in Warren County, Ky. Its normal position within the Chester group is between the Cypress sandstone above and the Bethel sandstone below. In these quadrangles, bowever, the Bethel sandstone, the Cypress sandstone, and the overlying Golconda formation are absent, so that the Gasper formation is overlain by the Hartselle sandstone as restricted (equivalent to the Hardinsburg sandstone of the Mississippi Valley section) and is underlain by the Warsaw limestone; the Spergen, St. Louis, and Ste. Genevieve limestones, which normally intervene between the Bethel and the Warsaw, are also absent. It is possible that in the upper part of the Gasper formation as here mapped there may be a thin representative of the Golconda formation. (See Pls. XIX and XX.)
In the section given by Hayes \({ }^{18}\) for northeastern Alabama a shale immediately underlying the Hartselle ("Oxmoor")
"Hayes, C. W., Report on the geology of northenstern Alabama and
adjacent portions of Georgia and Tennessee: Alabama Geol. Survey Bull.
sandstone and corresponding to the Gasper formation is called sandstone and corresponding to the Gasper formation is called Floyd extending westward beneath the Hartselle.
Distribution.-The Gasper formation persists throughout Distribution.-The Gasper formation persists throughout the Birmingham quadrangle, to the north, where it was included in the Bangor limestone (broad sense) as mapped in the Birmingham folio. It extends southward along Shades Valley between Sand Ridge and Red Mountain nearly to the latitude of Bessemer, where the Hartselle sandstone thins out and the Gasper merges with the general body of the Floyd shale, of which it forms the basal part. It is partly exposed in Graces Gap and Red Gap. The best exposure, however, is at Vann's quarry in Shades Valley, north of Truesville, in the Birmingham quadrangle, 15 miles northeast of Birmingham.
Character.-In Red Gap, where only the upper half or so of the Gasper formation is exposed, it is a soft blue clay shale sharply separated from the Hartselle sandstone. At Vann's quarry the shale has all been exposed in stripping. The lower part, which only was examined, is a black fragile indurated clay with many shreds of plants and a thin layer or two of concretionary ferruginous limestone. Below the shale is 7 feet of oolite of Gasper age resting upon the Warsaw limestone, as shown in Plate XVIII. At Blount Springs, where it is fully exposed at the east end of the railroad cut about half a mile east of the station, the formation is composed of shale and thin layers of sandstone in the upper 20 feet and of dark micaceous clay shale below. Here a merging into the Hartselle is indicated. Here also, at the very bottom and attached to the upper surface of the thick-bedded limestone that is supposed to be St. Louis, is a thin argillaceous layer carrying fossils of Chester age
Thickness.-In the exposures at Blount Springs the Gasper formation is 50 feet thick; at Vann's quarry it is fully 100 feet thick; and in the log of a bore hole in the vicinity of Red Gap it is given as 97 feet thick. (See fig. 4, section 3.)
Age and correlation.-At Blount Springs, in the Birmingham quadrangle, a few species of fossils were obtained from the bottom of the formation. Among these fossils are a single specimen each of two species of Pentremites, one apparently \(P\). biconvexus and the other, partly inclosed in the matrix, resembling P. pyriformis. Another fossil is Chonetes chesterensis. These fossils indicate that the age of the bed is the same as that of the upper part of the Gasper oolite of central Kentucky or its partial equivalent, the Paint Creek formation of western Kentucky and southern Illinois. At Vann's quarry Talarocrinus, a characteristic Gasper fossil of Alabama, occurs in the oolite at the bottom, mentioned above.
The Gasper formation 2 to 3 miles north of Trussville has yielded a few fossil plants, identified by David White, which yielded a few fo
are listed below :

White says that the genus Cephalotheca has not been eported hitherto on this continent. Its known occurrence lsewhere is in rocks regarded as of Devonian age.
Additional fossils collected from the Gasper formation at Red Gap and a short distance west of Trussville in the Birminghan quadrangle are listed below as identified by G. H. Girty :
\begin{tabular}{|c|c|}
\hline Archimedes invaginatus Ulrich. & Caneyella wapanuckensis Gir \\
\hline Diaphragmus elegans (Norwood and Pratten). & Leda vaseyana (McChesney). \\
\hline Leiorhynchas sp. (L. laura or L. earboniferum") & Goniatites aff. G. kentuckyensi (Miller). \\
\hline Allorisma aif. A. consanguina- & Ostracoda undetermined. \\
\hline
\end{tabular}

Caneyella is a form known elsewhere apparently only in Arkansas and Oklahoma, where it occurs in the Caney and Moorefield shales.
To the north of these quadrangles the Gasper has been identified at many localities by its fossils and lithology. In the Gasper of that region occur species of the crinoid genus Talarocrinus, which are diagnostic of the Gasper, and the coral Campophyllum gasperense, which is confined to and highly characteristic of the lower part of the Gasper in Kentucky and Tennessee.

\section*{RTSLIM}

Name.-The Hartselle sandstone was named by E. A. Smith from Hartselle, Ala., which is located upon the formation. As originally defined and used in previous reports, however, the name was applied to all the sandstone beds and associated beds of shale and limestone down to the base of the Bethel sandstone. As here restricted the Hartselle is a definite and widely distributed lithologic unit, the bottom of which crops out at the north end of the railroad cut half a mile or more north of Hartselle and the top of which descends below the railroad level about 3 miles south of Hartselle and 1 mile north of Leesdale. As here redefined the formation occupies the stratiLeesdate. As here position of the Hardinsburg sandstone of the Missisgraphic Valley section of the Chester group. In this area, as
sipp
elsewhere in the State, it is overlain by the Bangor limeston as restricted, the basal part of which corresponds to the Glen Dean limestone of the Mississippi Valley. In northwestern Alabama the Golconda formation underlies the Hartselle sandstone as restricted and is in turn underlain by the Cypress sandstone. In these quadrangles, however, the Golconda and sandstone. In these quadrangles, however, the Golcouda and
Cypress are absent so far as known, and the Hartselle sandCypress are absent so far as known,
stone rests on the Gasper formation.
stone rests on the Gasper formation.
Character and distribution.-In the Bessemer-Vandiver district and in the Birmingham quadrangle, on the north, the Hartselle sandstone ranges from a predominantly fine-grained hard rock or almost a quartzite to one that is locally coars grained and friable. The coarse-grained friable phase is well exhibited at a quarry half a mile west of Irondale, where the rock is utilized for sand, being so soft that it can be pulverized by rubbing with the fingers.
The Hartselle sandstone is one of the most persistent stratigraphic units in the region, being present in Brown Valley, in Murphrees Valley, and along the east side of Shades Valley nearly to Readers Gap. Owing to its resistant character it is a ridge maker, forming, for example, Sand Ridge in Shade Valley, which extends along the east side of Red Mountain from the north edge of Bessemer quadrangle to a point cast of Bessemer, where the sandstone and the ridge die out. The Hartselle can not be recognized in Cahaba Valley in th Bessemer-Vandiver district, although east of Leeds, in th Birmingham quadrangle, 4 miles along the strike northeast o the margin of the Vandiver quadrangle, there is a sandston in its position and correlated with it. There is a good devel opment of both the Hartselle sandstone and the Gasper formation in Watkins Gap, 1 mile east of Odenville and 10 miles or more northeast of Leeds.
Thicleness.-The thickness of the Hartselle sandstone penetrated in the bore hole in the vicinity of Irondale, as interpreted by the drillers, is 117 feet. (See fig. 4, section 3. The sandstone gradually diminishes in thickness southward in Shades Valley until it thins out entirely about the latitude of Woodward shaft, a little sontheast of Bessemer.
Correlation.-The Hartselle sandstone as restricted occupies the stratigraphic position of the Hardinsburg sandstone of Illinois and Kentucky and is correlated with that formation.

\section*{hagor thantone (kestactro}

Name.-The Bangor limestone as redefined and restricted is named from Bangor, Ala., in the Birmingham quadrangle named from it is is typically developed and fully exposed. It neludes the limestone between the underlying Hartselle sandincludes the limestone between the underlying Hartselle sand-
stone and the overlying Pennington shale, or, as in Shades stone and the overlying Pennington shale, or, as in Shades
Valley between the Hartselle and an overlying tongue of Valley between the Hartselle and an overlying tongu
Floyd shale, as explained in the description of the Floyd.
Floyd shale, as explained in the description of the Floyd.
The name Bangor limestone was introduced at approximately The name Bangor limestone was introduced at approximately the same time by Hayes, of the United States Geological Sur-
vey, and by Smith, the State geologist of Alabama. Unforvey, and by Smith, the State geologist of Alabama. Unfor-
tunately the name has never been precisely defined nor tunately the name has never been precisely defined nor
consistently applied. The following quotation reveals just consistently applied. The following quotation r
what strata Hayes \({ }^{19}\) intended the term to include.
what strata Hayes \({ }^{19}\) intended the term to include.
The upper member of the sub-Carboniferons or Mississippian group consists in the main of pure blue limestone. Its greatest develop ment is in the western division of the area, where it rests directly upon the Oxmoor [Hartselle] sandstone; or, where that is wantiog
as at Stephenson, Ala., the limestone extends without break down as at Stephenson, Ala,, th
to the Fort Payne chert.

The map accompanying the report from which the above quotation is taken, as well as the maps of the Stevenson and Gadsden folios, show that Hayes included in the Fort Payne chert all the strata of Mississippian age below the "Oxmoor" (Hartselle) sandstone, and of necessity where the "Oxmoor" i absent the Bangor rests upon his Fort Payne.
Smith included in the Bangor in the Tennessee Valley in northwestern Alabama all the limestone and sandstone below the "Coal Measnres" (Pottsville formation) and above the top of the siliceous (cherty) limestone, probably there correspond ing to the top of the St. Louis limestone. Smith thus included in the Bangor the Ste. Genevieve limestone and Gasper oolite. In Birmingham Valley the Ste. Geneviev is absent and the Gasper consists of 50 to 100 feet of shal underlain, at Vann's quarry, by a thin bed of oolite. (See Pl XX.) In the Birmingham folio, which covers the area north of the Bessemer-Vandiver district, the writer made the top of the Fort Payne as now limited the bottom of the Bangor, thus including in the basal part of the Bangor, in the south end of Browns Valley, 30 miles due north of Birmingbam, about 130 feet of limestone now known to belong to the St. Louis and Warsaw formations. As the Bangor in that usage include Warsaw formations. As the Bangor in that usage includes name to the limestone unit typically developed at Bansor, which overlies the Hartselle sandstone ("Oxmoor" sandstone of Hayes), and thus to return to Hayes's oricinal asage. The name Hayes), and thus to return to Hayes's original usage. The name
was thus restricted by the writer in the "Geology of Alabama." 10
1\% Hayes, C. W., op. cit., p. 48 .
ro Alabama Geol. Survey Special Pub. 14, 1926 .

Distribution.-The Bangor limestone in this area crops out only in the northern part of Shades Valley immediately east of Sand Ridge, where it occupies a wedge-shaped area that tapers southward to a point a few miles south of Graces Gap. No southward to a point a few miles south of Graces Gap. No
natural exposures were observed. One small exposure was natural exposures were observed. One small exposure was
seen in an old quarry about half a mile east of Graces Gap. seen in an old quarry about half a mile east of Graces Gap.
Knowledge of the limestone in this area has been acquired Knowledge of the limestone in this area has been acquired
through borings to the iron ore. The Bangor does not extend through borings to the iron ore. The Bangor does not extend
southward to the latitude of Bessemer, as shown by a shaft and southward to the latitude of Bessemer, as shown
by borings in Shades Valley east of Bessemer.

Character:-Where the Bangor is exposed in the area to the north of this district, as in Browns and Murphrees valleys, the north of this district, as in Browns and Murphrees valleys,
in the Birmingham quadrangle, it is a rather thick bedded, in the Birmingham quadrangle, it is a rather the prevailingly coarsely crystalline or oolitic bluish to gray limeprevailingly coarsely crystalline or oolitic bluish to gray
stone, generally crowded with fossils. In Shades Valley, stone, generally crowded with fossils. In Shades
where it is not exposed in outcrop, its character is reported in where it is not exposed in out
the logs of borings as follows:

Log of boring in the NE. \(\ddagger\) SE. 7 sec. 26, T. S7 S., R. \& F., in Shades Valley
about 4 miles northeast of Rosedale

These logs do not give much information regarding the character of the limestone. If it differs from its character in the region farther north the reasonable supposition is that it an pas to the Floyd shate acquired near the are
In the vicinity of Bangor a clay or dark shale that has a maximum thickness of about 20 feet and lies directly above the Hartselle sandstone is included in the Bangor. Above the shale is a sandstone as much as 5 feet thick. The best exposures of these beds are in a cut on the abandoned site of the Louisville \& Nashville Railroad about half a mile south of Louisville \& Nashville Railroad about half a mile south of
Bangor and in an old road in the SE. \(\frac{1}{4}\) sec. \(22,1 \frac{1}{2}\) miles east Bangor and in an old road in the SE. \(\frac{1}{4}\) sec.
of Bangor, where the sandstone is 5 feet thick.
Thiclkness.-As shown by borings the Bangor limestone is 365 feet thick in Shades Valley, at the north edge of the 365 feet thick in Shades Valley, at the north edge of the
Bessemer quadrangle, and at least 133 feet thick at Graces Bessemer quadrangle, and at least 133 feet thick at Graces
Gap. It may be thicker in that latitude than is shown in the Gap. It may be thicker in that latitude than is shown in the
boring, which may have started below the top of the limestone. boring, which may have started below the top of the limestone.
In the latitude of Bessemer it is absent, as shown by the shaft In the latitude of Bessemer it is absent, as shown by
already mentioned and borings to the bed of iron ore.
lready mentioned and borings to the bed of iron ore.
Age and correlation. - The age and correlation of the Bangor limestone are explained in connection with the age and correlation of the Floyd shale.

\section*{yboyd shale}

Name.-The name Floyd shale was introduced by Hayes for a thick mass of rock typically developed in Floyd County, Ga., composed predominantly of green, dark, and black shale but including considerable limestone and some sandstone.
In Shades Valley the Bangor limestone as here restricted passes laterally into shale like that of the Floyd, and to this shale the name Floyd is applied, although it is not strictly equivalent to the typical Floyd, which includes older beds than the Bangor. In Shades Valley the Floyd also extends up to the sandstone that makes Little Shades Mountain, which is taken as the base of the Parkwood formation, and in the northern part of Shades Valley an upper tongue of Floyd shale overlies the Bangor limestone.

Distribution.-There are five areas of Floyd shale, a narrow strip northeast of Dolomite; the Shades Valley area, which expands to a width of 4 miles soumeast of Bessemer, where low dipe and gentle rolls prevail; the Cahaba Valley belt; the Vandiver-Peavine Creek belt; and the wide area east of the Coosa coal field. In the Coosa area the beds are intensely crumpled and apparently somewhat broadly and irregularly folded, so that the formation, though probably not over 1,200 feet thick, spreads over an area 6 to 7 miles wide in a highly inclined attitude.
Character.-The Floyd is composed predominantly of gray calcareous olive-green and carbonaceous black shale and subordinately of impure limestone and hard fine-grained greenish and gray sandstone. The shale is exceedingly soft and friable and crumbles easily in the hand. There is little or no stiff fissile shale. The limestone and sandstone of the Floyd are fissile shale. The limestone and sandstone of the Floyd are
lenticular, especially in the region east of the Coosa coal field. On the south side of Bee Mountain, 3 miles southeast of On the south side of Bee Mountain, 3 miles southeast of
Ressemer, 140 feet above the highway, there is a lens of
coarsely crystalline fossiliferous limestone 5 feet thick at the thickest point and about 100 yards long on the outcrop. On the edges it breaks down into nodules, and a little beyond disappears entirely. Limestone lenses of the same character ere noted at a few places in the area east of the Coosa field. The general character of the Floyd in Shades Valley is
revealed in a bore hole near the Woodward shaft the \(\log\) of revealed in a bore hole near the Woodward shaft
which is given below as identified by J . A. Udden:

The absence of the Bangor limestone and Hartselle sandstone as distinct units in this locality is demonstrated by this

Thickness.-The best determination of the thickness of the Floyd is afforded by the Woodward shaft, where the thickness penetrated is 895 feet. As the shaft starts about 150 feet below the top of the Floyd, the total thickness is about 1,045 eet. In a boring on Shades Creek, 21 miles southwest of Oxmoor in the NE sec. 8, T. \(19 \mathrm{~S}, \mathrm{R}, 3 \mathrm{~W}\), it is about 1,000 feet thick.
Owing to extreme crumpling in the area in Coosa Valley, in the Vandiver quadrangle, no reliable estimate of thickness can be made. It may not exceed 1,100 or 1,200 feet, although owing to the crumpling the formation is highly inclined and is outcrop is 7 miles wide

Relations of the Floyd shale and Bangor limestone.-At Trussville, in the Birmingham quadrangle, about 20 miles ortheast of Oxmoor, the interval between the Hartselle sandtone and the bottom of the Parkwood formation is occupied by the Bangor limestone as here restricted. At Oxmoor or a little to the south, in the Bessemer quadrangle, the correspondag interval is occupied by the Floyd shale. Between the latitude of Oxmoor and that of Trussville the Bangor limestone and that part of the Floyd shale above the Hartselle sandstone pass laterally into each other. About midway between Trussville and Oxmoor a drill hole penetrated first 292 feet of dark shale and below that 365 feet of limestone in going down to the top of the Hartselle sandstone, showing that in the vicinity of Irondale almost the upper half of the Bangor has passed nto the shale facies. The equivalence of the Bangor limetone and that part of the Floyd shale above the Hartselle sandstone seems fully established by their stratigraphic and geographic relations just described.
Age and correlation of Floyd shale and Bangor limestone.The Floyd shale and Bangor limestone as here restricted carry an abundant fauna of Chester species identified by G. H. Girty in 1908 and listed below. The first of the lists given is a composite list of species collected from both the Bangor imestone and Floyd shale at different places in Shades Valley in the Birmingham and Bessemer quadrangles. The fossils in the second list came from the top of the Floyd shale east of the Coosa coal field, at the east end of the tunnel on the Central of Georgia Railway between Dunnavant and Vandiver,
\begin{tabular}{|c|c|}
\hline Pentrem & Pustula \\
\hline Pentremites pyramidatns Ulrich. (Added by Butts.) & \begin{tabular}{l}
Reticularia setigera (Hall). \\
Spirifer aff. S. cameratus Morton.
\end{tabular} \\
\hline Prismopora serrulata Ulrieh. (Added by Butts.) & Spirifer increbetcens Hall. Spiriferleidyi Norwood and \\
\hline Archimedes coumunis Ulrich & Spiriferima spinosa Norwood and \\
\hline chimedes & Pratt \\
\hline Archimedes swallovanus Utrich. & Spiriferin \\
\hline Archimedes terebriformis Ulric & \\
\hline Chonetes aff. illiuoisensis Worthen=C. chesterensis Weller? & Aviculopecten aff. A. coxanus and Worthen. \\
\hline (Question by Butc.) & A viculopecten hardinensis Wor \\
\hline Oliothyridina sublamellosa (Hall). & Caneyella wapanuckensis Girt Deltopecten occidentalis (Shu \\
\hline Cliothyridina hirsuta (Hall)? & Edmondia aff. E. glabra Meek \\
\hline Composita subquadrata (Hall). & Leda \\
\hline Diaphragmas elegans (Strumurd) & Leda vaseyana (MeChesney). \\
\hline Dielasma formosum (Hal) & Lima cheaterensis Wo \\
\hline Eumetria verneuiliana (Hall). & Myalina arkansana Weller. \\
\hline Leiorhynchus laura \(=\) L. carboniferum? (Question by Butts.) & Myalina batesvillensis Girty. \\
\hline Lingalodi & Nucul \\
\hline & Pteria (L \\
\hline Derbya (Orthotetes) kaskaskien- & Pteria on \\
\hline sis McChesne & Schizodusaf. S. symmetricus \\
\hline Productas inflatus McCh & \\
\hline Productus aff. P. hirsutiformis & Yoldia laevistriata Meek and \\
\hline Produetus parvus Meek and & Conularianf. C. newberryi Winch \\
\hline Worthen. & Bncanopsis ant. B. textilis (Hall). \\
\hline Productus aff. P. pyxidiformis DeKoninck. & Euphemus aff. E. nodocarinatus (Hall). \\
\hline Productus semireticulatu & Straparollus planidorsatus Meek and \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow{11}{*}{\begin{tabular}{l}
Archimede \\
Archimedes \\
Eomposita \\
Derbya (Or \\
sis McOh \\
Productus \\
tin. \\
Reticularia \\
Pratten.
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

A few plants have been collected from clay just above the Hartselle sandstone exposed in a cut on the old site of the Louisville \& Nashville Railroad half a mile south of Bangor in the Birmingham quadrangle (list No. 3), and from the Floyd shale in Shades Valley near the south boundary of the Bessemer quadrangle (list No. 4). These plants are listed below as identified by White.
s.

\section*{Asterocalamites
(Schlotheium). Bothrodendron sp.
Lepidodendron vol Sternberg.
Lepidophyllam n. np . Lepidophylimen n . sp .
Psilophyton sp.
Sigilaria (Subsigillaria) n. sp.}
\(\qquad\)

Rhacopteris sp.
Cardiopteris. n sp.
Sphenopteris n.
s.
sp. (West Vir
Sphenopteris goepperti Dunker. sphenopteris zoepperti Dunker.
Sphenopteris ap. nutet. of. Rhacop
teris machaneki Star. ginia form) teris machaneki Stor

Nearly all the species of invertebrates in the above lists would be expected in any considerable collection of Chester roup fossils from the Mississippi or Ohio valleys. Neverthe ess, Pentremites pyramidatus is known elsewhere only from he Glen Dean limestone of Kentucky and Tennessee, and Prismopora serrulata, which is very common in the Glen Dean, is rare in any other formation. Chonetes chesterensis is lso common in the Glen Dean in Tennessee and abundant in it in Colbert County, Ala., where it is associated with other characteristic Gilen Dean forms. The position of the Bangor as here restricted and of the part of the Floyd shale above the Eartselle sandstone, which is correlated with the Hardinsbur sandstone, is an added evidence of the Glen Dean age of a least the lower part of the Bangor and equivalent beds in the Floyd shale. It is probable, however, that the upper part of the Floyd corresponds to part or all of the Pennington formation of

 (northern pat onl, nol Ther are he tongue of Thoyd shale overlying the Bayor limestone in hades Valley was called Pennington in the Birmingham folio The occurrence of Caneyella in this region is interesting
 and the Moorefield shale of Arkansas and has not, so far as th present writer knows, been found in Chester rocks elsewher xcept in Alabama.
The plants are of interest in that fossil plants are rare in the Mississippian formations of the central United States. They exhibit, too, a curious mixture of forms generally accredited to the Devonian (Psilophyton), Mississippian (Sphenopteris moraica and S. schistorum), and Pennsylvanian (the Asterocala mites and the Lepidodendron).
parkwood formatton
Name.-The Parkwood formation was named from the town of Parkwood, in the Bessemer quadrangle, which is located on the he fand adse sand Eittle shade how Roll Oxmoor and bew (hoe whe taken base of the Pottsville formation. (See section 3, fig. 4.
Distribution.-The formation crops out in these quadrangles only on the west sides of the Cahaba and Coosa coal fields whence it dips eastward beneath the younger rocks. It crop out along both sides of the Vandiver-Peavine Creek valley and, dipping westward, it is exposed for a short distance along the east side of the Coosa field in the southern part of the Vandiver quadrangle. Along most of the east side of the Coosa field the Parkwood is faulted out. The best outcrops of the Parkwood are in the vicinity of Oxinoor, where it is nearly all exposed, and along the Southern Railway west of Genery Gap, in the Bessemer quadrangle.
Character:-The Parkwood formation in these quadrangle is composed of gray shale and sandstone that bear a clos esemblance to the Pottsville rocks, which overlie the Park wood. The sandstone generally makes thick beds, the maximum being 100 feet. Some of it is hard and quartzose, bu most of it is probably more or less feldspathic. Much of it is
\({ }^{21}\) Butts, Charles, U. S. Geol. Survey Geol. Atlas, Birmingham folio (No.
somewhat ferruginous and weathers to a rusty color. No calcareous matter occurs in the formation, and at only one point was black shale noted. In these respects the Parkwood is entirely different from the underlying Bangor and Floyd in Shades Valley. In its eastern areas of outerop, however, the Parkwood is searcely distinguishable from the Floyd, for the apper part of the Floyd, although it contains layers of black hale, is there largely made up of gray shale with gray quartzose sandstone similar to that of the Parkwood.
Thickness.-The thickness of the Parkwood appears to be 200 feet just east of Trussville, in the Birmingham quad rangle ; 1,500 feet east of Irondale, also in the Birmingham quadrangle, and at Oxmoor in the Bessemer quadrangle; and guad over 1,000 feet on the west side of the Coosa coal field The thickness attains the maximum at Trussville and decreases in all directions as if the formation were beveled by pre Pottsville erosion.
Age and correlation.-The Parkwood affords very little evi dence of its age except that of its position above the Floyd shale, which is of Chester age, and below what is taken as th base of the Pottsville formation. Lithologically, except for the absence of coal beds, the Parkwood is more like the overlying Pennsylvanian than the underlying Mississippian formations. Fossils were found in it in the sandstone that makes Bee Ridge, where it is exposed in a cut on the Southern Railway half a mile north of Genery Gap. These fossils are listed below as identified by G. H. Girty
\begin{tabular}{|c|}
\hline \multirow[t]{10}{*}{\begin{tabular}{l}
Rhombopora? sp \\
Schizophoria n. sp. \\
Derbya erassa Meek and Hayden? \\
Pustula aff. P. nebraskensis \\
(Owen)? \\
Marginifera? n. sp. \\
Dielasma? sp. \\
Spirifer rockymontanus Marcou. \\
Composita subtirita (Hal). \\
Hustecia n. sp. ? \\
Nueula sp.
\end{tabular}} \\
\hline \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline Parallelodon aff. P. tenuistria (Meek and Worthen). \\
\hline Aviculopecten sp. \\
\hline Deltopeeten occiidentalis (Shuma \\
\hline Pleurophorus subcostatus Meek an Worthen. \\
\hline Bueanopsis? sp. \\
\hline Euphemus sp. \\
\hline Pleurotomaria \\
\hline \\
\hline
\end{tabular}

Girty says:
The Pottsville age of this collection does not rest on certain ground hough it may be regarded as probable. Hardly any of the specie y on the Pennsylvanian side This fauna, bowever, shows a conspicuous change from the lowe aunas, a change marked by the complete elimination of the diagnos. ic genera and species that assure their Mississippian age. At the same time it shows a distinct rapprochement with the Pottsville faunas above, the most noteworthy evidence in point being perhap
the Sclizophoria, which occurs in so many of the Pottsville colleetion but is entirely lacking in the Mississippian ones. The genera Marsinifere and Hustedia, though they probably are not quite restricted to the Pennsylvanian faunas, suggest the same assignment.
Another collection of fossils, listed below as identified by Girty, is composed of distinctly Mississippian species. The horizon of these fossils is at least 500 feet above the bottom of the Parkwood as somewhat doubtfully located in the vicinity of the place at which the lot was obtained.
\begin{tabular}{|c|}
\hline Fistuliporasp. Cystodictya sp. \\
\hline Rhombopora sp \\
\hline Fenestella tenax Ulich.
Archimedes sp. \\
\hline Archimedes sp. Polypora sp. \\
\hline Diaphragmos elegans (Wo \\
\hline marotoechia? sp. \\
\hline
\end{tabular}

The source of these fossils is a fine-grained friable brownish o yellowish sandstone or sandy shale 20 feet thick and rathe anlike most of the Parkwood or Floyd beds, If the horizo en Perrecty identified the Ioter the Parkwood is certainly Mississippian, probably correspond ing to part of the Pennington formation of the type region, in southwestern Virginia. The Mississippian-Pennsylvanian boundary would lie then, between the horizon of this faun and the horizon of that obtained from the sandstone of Be Ridge. Such a location of the boundary is just what would be expected, if, as is probable, the Parkwood bridges the gap that elsewhere in the Appalachin region separates the Mississppian and Pennsylvanian. In this folio the Parkwood tentatively classified as Mississippian.

\section*{}

Where the Parkwood is thickest, in Shades Valley, sedimen tion was apparently continuous into Pennsylvanian time, but in the Warrior field, where the Parkwood is absent, the Penn sylvanian rocks rest unconformably on the Floyd. This rela tion is in harmony with the marked unconformity that has been long recognized by geologists as existing between the Mississippian and Pennsylvanian on the west side of the Appalachian Valley province from Alabama to Pennsylvania
matswinar pormation
Name.-The Pottsville formation takes its name from Pottsville, in the anthracite coal field of Pennsylvania. It form the lowest part of the Pennsylvanian series in the Appalachian coal fieds and constitutes the top of the Paleozoic section in Alabama.

Distribution.-As shown on the areal-geology maps, the Pottsville formation occupies three separate areas-the Warrior field, in the northwest corner of the Bessemer quadrangle; the Cahaba field, which lies diagonally across the median part of the two quadrangles, and the Coosa field, which extends diagonally across the Vandiver quadrangle.
Character.-The Pottsville rocks are made up of sandstone and shale containing coal beds. The sandstone consists almost wholly of quartz grains, though it contains a little mica and eldspar and scattered crystals of magnetite and zircon. None of the sandstone contains enough feldspar to be markedly arkosic. In addition to aluminous matter the shale contains a large proportion of very fine quart/ grains and of mica shreds in about equal proportion, together with small amounts of the in about equal proportion, together with small amounts of the
other minerals that occur in the sandstone. Carbon and iron other minerals that occur in the sandstone. Carbon and iron
oxide are present in both shale and sandstone as coloring matter. The shale of the Pottsville ranges from a pure clay to matter. The shale of the Pottsville ranges from a pure clay to
a sandy material; the clay is excellent for building brick, a sandy material; the clay is excellent for building brick,
especially pressed brick, and the sandy material for vitrified especially pressed brick, and the si
brick for paving and other purposes.
brick for paving and other purposes.
Although most of the rocks are
Although most of the rocks are probably of fresh-water origin, yet the presence of marine fossils in certain beds from the bottom to the top of the formation shows that those bed were deposited in the sea.
Coal is the most distinctive and valuable constituent of the formation and is fully described under the heading "Economic geology." The names and vertical succession of the coal bed are shown in the columnar-section sheet and in Figure 5.
The lower part of the formation includes thick and resistant beds of sandstone or conglomerate that persist throughout al its areas and express themselves in prominent ridges, such as Sand Mountain in the Warrior field, Shades Mountain in the Cahaba field, and Double Mountain and others in the Coosa field. These beds are commonly called "Millstone grit." Owing to their stratigraphic significance and topographic promnence several of these sandstones are named and mapped as members of the Pottsville formation.
The part of the formation above that which contains these hasal sandstone members is a monotonous repetition of shale and sandstone beds, in which some of the shale beds are as much as 200 feet thick. Nearly all the workable coal beds occur in this upper part-that is, above the "Millstone grit." The coal groups of the Warrior field are generally associ ated with much sandstone. The coarsest conglomerate in the Bessemer-Vandiver district, the Straven conglomerate, occurs high in the formation. Some of these upper sandstone beds re prominent enough to be mapped as members, as the Razburg sandstone member in the Warrior field, the Rocky Ridge sandstone member and the Straven conglomerate member in the Cahaba field, and the Straight Ridge and Wolf Ridge sandstone members in the Coosa field.
Boyles sandstone member.-At the base of the Pottsville in the Warrior field, immediately above the Bangor limestone or Floyd shale, lies the Boyles sandstone member, named from Boyles Gap through Sand Mountain, 4 miles north of Birmingham. Its only area of outcrop in the Bessemer quadrangle extends from Wylam to a point 1 mile southwest of Dolomite, where it is faulted out. It is nearly vertical along this outcrop which is marked by a low ridge or a line of low knolls. The sandstone is coarse, thick bedded, quartzose, and in place conglomeratic at the base. Where thickest it changes to laggy, finer-grained, and perhaps argillaceous rock toward th op. In the vicinity of Wylam it is slickensided and quartziti s a result of crushing and slight metamorphism great fault bordering the coal field. It is about 100 feet thick and is believed to correspond to the Pine sandstone of the Cahaba field.
Razburg sandstone member.-The highest bed of the Potts ville in this area, in the northwest corner of the Besseme quadrangle, is a sandstone named the Razburg sandstone member, from Razburg post office, 9 miles west of the Besseme quadrangle, where it is well developed and exposed. The Razburg sandstone occupies a large part of the surface of the Warrior field in the Bessemer quadrangle and is persisten throughout a large area in the Brookwood quadrangle, to the outhwest. It is gray, generally thick bedded, rather coarse, and 20 to 30 feet thick.
Brock coal.-The Brock coal bed, named from Brock Gap near Parkwood, is regarded as the base of the Pottsville forma ion in the Cahaba coal field. As it is a persistent bed and is recognizable at a number of points along the northwest margi of the Cahaba field it serves excellently as a boundary
Shades sandstone member.-The Brock coal is overlain by 40 to 60 feet of shale, above which lies the Shades sandston member, named from Shades Mountain, which is formed of this sandstone. It crops out along the crest and eastern slope o the mountain, and its basal 40 feet or more crops out as a cliff for long stretches on the western slope of the mountain The cliff is especially conspicuous on Shades Mountain at Oxmoor. In the Coosa field, where the Shades sandstone member is steeply inclined, its outcrops give rise to such conspicuous ridges as Oak Mountain, Double Mountain, and

Double Oak Mountain. The Shades sandstone is thick bedded, rather coarse, and generally somewhat conglomeratic in he lower part, where the pebbles of white quartz are small and pockety in distribution. It is about 200 feet thick in the Cahaba field and even thicker in the Coosa field.
Pine sandstone member.-About 200 feet above the Shade sandstone in the Cahaba field and 1,000 feet above it in the Coosa field lies the Pine sandstone member, named from Pine Ridge, in the Cahaba field. In the Bessemer quadrangle this member crops out along the crest and east slope of Pine Ridge the sandstone and the ridge persisting the entire length of the Cahaba field. In the Coosa field the Pine sandstone, like the Shades, is more strongly developed than in the Cahaba field It crops out along the ridges parallel to the outcrop of the Shade sandstone and forms the crest of Pine Mountain. Signal Mountain, the highest point in the quadrangles, is formed of this sandtone. The Pine sandstone member is quartzose, coarse, and thick bedded at the base but finer grained and more flaggy at the top and is 250 feet thick. It is correlated with the Boyles sandstone member of the Warrior field
Chestnut sandstone member.-A bove the Pine sandstone lies bout 500 feet of beds that are mostly shale, and above this shale lies a persistent quartzose sandstone 100 feet thick, which makes Chestnut Ridge, an easily recognizable feature along almost the whole length of the Cahaba field. This sandstone is named the Chestnut sandstone member.
Rocky Ridge sandstome member.-The Rocky Ridge sandstone member is named from the fact that it forms Rock Ridge, to the east and northeast of the Cahaba pumping station, in the northwestern part of the Vandiver quadrangle This member has been recognized only in the Little Cahaba syncline, where it crops out in two separate areas, the narrow syncline east and northeast of the pumping station and the somewhat more complexly folded area \(2 \frac{1}{2}\) to 5 miles south of the pumping station and east of Caldwell ford. It is best dis played and apparently best developed around the south end of the syncline cast of the pumping station. As shown in that locality it is a thick-bedded conglomeratic quartzose sandstone apparently 50 to 100 feet thick. It is sufficiently prominen in the southern area described to be traceable with a good degree of certainty and has served as a key to the complex structure of that area.
Straven conglomerate member.-The Straven member, named from Straven, in the Montevallo quadrangle, lies about 500 feet below the top of the Pottsville of this area. It extends across the quadrangles and is present in each of the subordinate basins on the east side of the Cahaba field. The Straven is a very coarse conglomerate 40 feet thick or thereabouts. It is composed of quartzite and chert pebbles 4 inches or less in diameter, with just enough fine material to cement the pebbles together. The pebbles diminish in number and size northward, and in the area southwest of Henryellen in the Birmingham quadrangle the bed is a sandstone that has a few small pebbles scattered through it. The Straven conglomerate is the basal bed of a conglomerate series of the same kind, which reaches a thickness of 2,000 feet, making the uppermost part of the Pottsville formation in the southeastern part of the Cahaba field west of Montevallo. The source of the material Cahaba field west of Montevallo.
was probably still farther southeast.

Wolf Ridge sandstone member.-In the Yellowleaf basin of the Coosa coal field there is a persistent hard quartzitic sandthe Coosa coal field there is a persistent hard quartzitic sand-
stone 50 to 100 feet thick, which lies about 1,200 feet above stone 50 to 100 feet thick, which lies about 1,200 feet above
the Pine sandstone and which makes a ridge known as Wolf the Pine sandstone and which makes a ridge known as Wolf
Ridge, from which the sandstone is named. The Wolf Ridge Ridge, from which the sandstone is named. The Wolf Ridge
sandstone is especially well developed to the east of Pine sandstone is especially well developed to the east of Pine
Mountain, in the northeastern part of the Vandiver quadrangle, where it makes a persistent and prominent narrow
ridge, in the gaps of which, as at Rattlesnake Gap, the hard ridge, in the gaps of which, as at Rattlesnake Gap, the hard white sandstone is well exposed. It also makes a well-marked
ridge to the north of Locust Ridge and northwest of Thomas ridge to the north of Locust Ridge and northwest of Thomas
Gap, in the sonthwest corner of the Vandiver quadrangle. Gap, in the sonthwest corner of the Vandiver quadrangle.
The Wolf Ridge sandstone is correlated with the Chestnut The Wolf Ridge sandstone i
sandstone of the Cahaba field.
sandstone of the Cahaba field
Straight Ridge sandstone member.- The name Straight Ridge sandstone is given to a resistant bed 50 to 100 feet thick that makes the ridge of that name which extends along the west side and south end of the Yellowleaf basin. It lies about 800 feet above the Wolf Ridge sandstone.
Red shale.-The upper 2,000 feet of the Pottsville of the Coosa coal field is composed of shale with thin sandstone layers. In this mass red shale occurs at 1,500 feet and 1,000 feet below the top. At each level this shale appears to occu as lentils here and there through beds 50 to 100 feet in thick ness. These red shales are notable from the fact that they are the only such shales in the Pottsville of Alabama.
Thicloness.-The thickness of the Pottsville in the Warrio field in this area is about 2,300 feet, in the Cahaba field 5,500 feet, and in the Coosa coal field 7,400 feet.
Age and correlation. - Considerable collections of fossi plants and invertebrates have been made from the Pottsville formation in the course of several seasons' work in the Birming ham district. The collections of invertebrates were obtained
at points in the Warrior and Cahaba coal fields as widely separated as Cleveland, in the northeastern part of the Birmingham quadrangle; Henryellen, in the eastern part of the Birmingham quadrangle; and the mouth of North River, in the southwestern part of the Brookwood quadrangle, about miles north of Tuscalooss. The collections range through nearly the full thickness of the Pottsville, occurring in at leas five thin zones or layers in the Warrior field, the lowest of which is only about 100 feet above the bottom and the highest near the brion coal, near the top of the formation. In the Cahaba field two fossil-bearing rones are known, one about the middle and the other well up toward the top of the formation.
The abundance of invertebrate fossils in the Pottsville o Alabama is remarkable in view of their scarcity in the Pottsville farther to the northeast in the Appalachian coal field. ville farther to the northeast in the Appalachian coal field.
Because of that scarcity these invertebrates can not be used to Because of that scareity these invertebrates can not be used to
any extent in correlating the Pottsville of Alabama with that any extent in correlating the Pottsville of Alabama with that of other parts of the Appalachian region, and because of their great similarity through the full thickness of the Alabama
Pottsville, they are not serviceable for identifying horizons or Pottsville, they are not serviceable for identifying horizons or
for correlating the beds of the Warrior and Cahaba coal fields. for correlating the beds of the Warrior and Cahaba coal fields.
They do, however, throw much light on the history of the They do, however, throw much light on the history of the
Alabama region in Pottsville time, as brought out under the Alabama region in Pottsvil)
The invertebrate fossils from the Pottsville formation of the Birmingham district, Ala., shown in the following list wer identified by G. H. Girty in 1908:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{wards and Haime.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Lingula aff. L. carbonaria Shumard.}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Lingulid \\
Schizoph
\end{tabular}} \\
\hline & Derbya Clarke. \\
\hline \multicolumn{2}{|l|}{Derbya crassa Meek and} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{etes n .}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Prod} \\
\hline & Productus semireticulatus Ma (fine variety). \\
\hline \multicolumn{2}{|l|}{Productus aff. P. symmetricus McChesney.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Marginifera muricata Norwood and Pratten. \\
Spirifer rockymontanus Marcou
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Ambocoella planiconvexa Shumard.} \\
\hline \multicolumn{2}{|l|}{Spiriferina kentuckyensis Shumard.} \\
\hline \multicolumn{2}{|l|}{Spiriferina spinosa Norwood and Pratten?} \\
\hline \multicolumn{2}{|l|}{Composita subtilita (Hall).} \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

General correlation of the coal beds.-As there is no direct connection between the different coal fields of Alabama, the fossil plants must serve for correlating the coal beds. An incomplete study of the considerable collections of fossil plant has enabled David White to correlate tentatively the Rosa coal in Berry Mountain, the Swansea or Inland coal of the Blount Mountain field, and the Black Creek, Mary Lee, and Prat coal beds of the Warrior field with the Gould, Harkness, Wadsworth, and Clark (Little Pittsburgh?) beds, respectively of the Cahaba field, as shown in Figure 5. On stratigraphi grounds the Nivens and Howard coals of the Coosa basin are correlated by the writer with the Gould coals of the Cahaba basin, as the Gould coals lie in the interval between the Pin and Chestnut sandstones and the Nivens and Howard coals between the Pine and the Wolf Ridge sandstones, the Wol Ridge being correlated with the Chestnut. The higher coals of the Coosa basin are tentatively correlated in a general way with the beds shown opposite them in the section of the Cahaba field in Figure 5. As fossil plants are rare in the south end of the Coosa basin, this means of correlation is no at present available.
White divides the Pottsville formation into lower, middle and upper Pottsville. The lower Pottsville extends from the bottom of the Pottsville to the top of the Lee formation of Virginia and Tennessee or to the top of the sandstone in east Tennessee named Emory by Safford and Killebrew and Rockcastle by Campbell. It includes the Pocahontas coals of Virginia and West Virginia. The middle Pottsville includes the beds that carry the Sewell and Quinnimont coals of West Virginia, and the upper Pottsville includes the Kanawha coals of West Virginia. The corresponding divisions in the Alabama coal field are indicated in Figure 5.
According to White, the Mary Lee bed of the Warrior Field lies at nearly the same horizon as the Soddy coal, a bed that is close above the Lookout sandstone of Hayes in northern Alabama, which is about 700 feet below the top of the lowe Pottsville. The same horizon is therefore approximately represented by the Soddy coal of Tennessee, the Mary Lee an Tewcastle coals of the Warrior field, and the Wadsworth bei of the Cahaba field, which are thus several hundred feet below
the top of the lower Pottsville. The still higher part of the the top or the the Warrior field falls in the middle Pott ville, no upper Pottsville being present, in that field. In the ville, no upper Pottzville being present, in that field. Mothe
Cahaba field the upper Pottsville is represented by the MonteCahabaa field the upper Pottsville is represented by the Moute-
vallo and higher coal beds, the boundary between the middle and upper Pottsville lying near the Helena or Yeshic coal.

Reater Itachint.0.0 teen
A list of the plants identified by White, upon which he bases the correlations just stated, is given below:

\section*{quaternary system}

The deposits of the Quaternary system consist of the alluvium in the present valleys and are of recent age. They rest directly upon the surface of the Paleozoic rocks, no Mesozoic
or Tertiary rocks being known in the Bessemer-Vandiver area. The alluvium consists of fine gravel and silt that has been laid down by the existing streams as they have overflowed their banks. It is confined to strips along the streams, and these strips with few exceptions are narrow. Its total area is only a few square miles, and its thickness is only a few feet.

\section*{structure pefinition}

The term structure is here used to indicate the attitude or "lay" of the strata, which are in reality extensive sheets of rock piled one upon another. Definitions of the terms used in describing structural features are given on the inside of the cover pages of this folio.
methods of repreafntivg structure
The structure of the Bessemer-Vandiver area is shown by structure sections and by structure contours. A structure section shows the lay of the strata as it would appear in a deep trench cut across the region at right angles to the general strike of the rocks. Structure contours show the structure by lines resembling those that represent surface contours, drawn on the map through points at which the surface of a bed taken as the reference stratum lies at a given distance above or below sea level. As for example a line passing through all points on the top of the Pratt coal bed 500 feet above sea level, another through all points 550 feet, a third through all points 600 feet above sea level, and so on. In the Bessemer-Vandiver district the structure is represented by contours only in the small area of the Warrior coal field, in the northwest corner of the Bessemer quadrangle.

The details of structure are shown on the map by strike and dip symbols, by the lines that represent the position of the frults and axes of the folds, and by the structure sections. A few comments on general and special features follow.

\section*{aexeral featuris}

The general structure of this district is that characteristic of the Appulachian Valley province from Canada to Alabama, The originally horizontal strata have been folded as a result of lateral compression, so that now the major features of the structure are comparable to a succession of great waves that cross the quadrangles in a northeasterly direction, the crests of the waves corresponding to the great anticlines, such as the Birmingham anticline, and the troughs of the waves to He Beea, as the crests of the great anticlines have been eroded off, the undulating structure can be visualized only when the arches are restored in imagination. These major structural features are themselves affected by minor anticlines and synclines, which are mapped and named. Great overthrust fumlts form the eastern boundaries of the synclinal troughs occupied by the castern folds.
From the Birmingham anticline the roeks dip southeastward into the Cahaba trough. The Red Mountain formation, which into the Cahaba trough. The Red Mountain formation, which
crops out at 1,000 feet above sea level on the crest of Red crops out at 1,000 feet above sess level on the crest of hed
Mountain, descends castward to 7,000 feet or more below sea level in the Acton basin. The general southeastward dip is interrupted by minor folds like the Tacoa and Dolly Ridge anticlines and the corresponding Belle Ellen and Little Valley anticlines and the corresponding Belle Ellen and Little Valley
synclines. Along the southeast margin of the Cahaba field lie synclines. Along the southeast margin of the Cahaba field ree
the subordinate basins-the Eureka, Helena, Acton, and Little the subordinate basins-the Eureka, Helena, Acton, and Little
Cahaba basins. Between the Little Cababa and Acton basins Cahaba basins. Between the Little Chiaba and aton basins
is an area of complicated folding which has not been fally worked out, though its general character is indicated by the mapping and by structure section \(\mathrm{C}-\mathrm{C}^{\prime}\) of the Vandiver quadrangle.
In the same manner the rocks on the southeast limb of another anticline dip from Cahaba Valley southeastward into the Coosa trough but are interrupted by minor folds like the Vandiver anticline and the other minor folds mapped. The Vandiver anticline separates the Yellowleaf basin from the main area of the Coosu coal field. The Yellowleaf basin is a canoe-shaped syncline with the east side faulted out but with both ends partly preserved. From the east side of the Coosa field the rocks seem to dip eastward in general to the Columbiana syncline, which crosses the southeast corner of the Vandiver quadrangle. The former existence of an anticline near the Coosa field is indicated. The surface rocks east of the Coosa field are minutely crumpled, as noted in the description of the Floyd shale (p. 18).
An interesting question in connection with the plicated Floyd shale of Coosa Valley is discussed under the heading "Geologic history."
The east limbs of the great anticlines have been briefly described, but a complete exposition of the structure of the region demands attention to other structural features.
In the development of the folds throngh pressure on the southeast, which produced a movement of the great body of rocks to the northwest, the crests of the major anticlines were the synclines, so that ther to northwest the anticlines (or
the southeast limbs of the synclines, as they may equally wel be designated), which had at the beginning a northwestward dip, became vertical and then overturned with a southeastward dip, and finally in a few places the beds were completely overfolded, so that the beds in these limbs were upside down. These limbs were weakened by stretching and crushing till they finally gave way, and the overlying masses slid forward they finally gave way, and the overlying masses sidd forward
along the planes of the breaks to such an extent that the older rocks, which were buried deep in the center of the overturned arches, were thrust upward stratigraphically into a position. above the upper rocks involved in the folding. In time the above the upper rocks involved in the folding. In time the
overturned and overthrust masses were eroded away and the surface was reduced to the present condition, in which no trace surface was reduced to the present condition, in whing is preserved in the topography. Thus were
of thate of the faulting is preserved in the topography. Thus were formed the great faults that border the coal fields-the Opos-
sum Valley, Helena, and Coosa faults-and thus the common sum Valley, Helena, and Coosa faults-and thus the comicines
limbs of the folds (that is, the northwest limbs of the anticlines limbs of the folds (that is, the northwest limbs of the anticen or
and the southeast limbs of the synclines) were destroyed or and the southeast limbs of the synclines) were destroyed or
buried. The total porthwestward movement along each of buried. The total northwestward movement along each of
these faults was at least as much as the thickness of rocks disthese faults was at least as much as the thickness of rocks dis-
placed, which in the Opossum Valley fault is at least 2 miles and in the Helena fault at least 3 miles in places. The actual horizontal movement may have been much greater. The combined effect of all these faults is an overlapping or "weatherboard" structure for the whole area.

\section*{dip of fautit planes}

The dip of the fault planes is unknown for most of their length, but at Aldrich, in the Montevallo quadrangle, data obtained in mining show a dip of \(35^{\circ} \mathrm{E}\). for the Helena fault at that place.

\section*{mitamorphism}

Notwithstanding the great movement, with attendant friction and crushing near the fault planes, there has been but slight metamorphism of the rocks. The Montevallo coal bed, which has been mined up to the fault, is said to show no change that would indicate any difference from its ordinary chemical composition.
As already described, the Floyd shale is very minutely crumpled, and the beds everywhere dip steeply. They have also been fructured minutely, and the fractures have been filled inch thick.

\section*{GEOLOGIC HISTORY}

In the earliest time of which there is record in the sedimentary rocks of the Appalachian Highlands, perhaps a hundred million years ago, along the site of the Appalachian Valley lay a strait between still more ancient lands on the east and on the west. This strait was on the eastern border of a great area, extending to the region of the present Great Lakes, that was slowly but intermittently subsiding during lalk of Paleozoic time. The Appalachian Strait widened into the Appalachian Gulf. The filling up of this subsiding earth basin by sediments derived from the bordering lands constitutes the part of this history which properly begins with the Paleozoic era, The vast lapse of time which had preceded the Paleozoic era, The vast lapse of time which had preceded
the deposition of these sediments is recorded in the rocks of the Blue Ridge and Piedmont provinces. These rocks, which extend beneath the Appalachian Valley and Appalachian extend beneath the Appalachian Valley and Appalachian
Plateaus, are the foundation upon which the Paleozoic rocks Platen

\section*{paleozoic era}

\section*{cambrlan period}

From the bordering land areas great quantities of fine mud were discharged into the Appalachian Strait by the rivers of Talladega time (Algonkian? and Paleozoic). At times coarse sand mixed with small quartz pebbles was deposited and forms the few thin beds of quartzite in the Talladega slate. \({ }^{22}\) There was also a short period of limestone deposition, when the Sawyer limestone member was laid down. Fine clayey material greatly predominated, however, which indicates that the material was derived from land of low relief or was deposited in water distant from shore so that only the finer sediment was transported to it.
As most of the Talladega rocks were originally finely stratified clay they were evidently deposited in water, seemingly under conditions favorable to Cambrian types of life. Except for the rave occurrence of calcareous algae in the Sawyer limestone, however, no organic remains have ever been discovered in them or in their equivalent in Georgia and Tennessee and it is believed that the Talladega sea was destitute of life during most of the time of its existence. In this lack of life the lower two-thirds of the Talladega rocks accord with known pre-Cambrian rocks elsewhere, and the weight of evidence seems to the writer to favor their pre-Cambrian age in part.
\({ }^{\text {MB Butsk }}\) Charles, U. S. Geol. Survey Geol. Athas, Montevallo Columbiann Pollo (in preparation). Butts, Charles, and others, Geology of Alabama:
Alabama Geol Survey Speeial Pub. 14, 1920.

In the succeeding Weisner epoch much coarse sand with fine gravel was deposited in alternation with fine material like that of the Talladega. \({ }^{22}\) The Weisner epoch was certainly Cambrian, for Lower Cambrian fossils occur, though rarely, in Cambrian, for Lower the Weisner formation.

The Weisner epoch was succeeded by that in which the The Weisner epoch was succeeded by that in which the
Shady limestone was laid down. \({ }^{22}\) This indicates a great Shady limestone was laid down.
change in geographic or meteorologic conditions, for obviously change in geographic or meteorologic conditions, for obviously pure limestone can not be deposited except in water free from
earthy sediment. A few forms of life are known to have earthy sediment. A few forms of life are known to have
existed in the sea of the Appalachian region in Shady time but existed in the sea of the Appalac
so far as known life was scarce.
so far as known life was scarce.
The deposition of earthy sedi
The deposition of earthy sediment was resumed in the succeeding Rome epoch, and a notable feature of the deposits then formed is the red shale, which denotes perhaps an accumulation of soil stained red by iron oxide on a tributary land during an arid time in which the Shady limestone was laid down, the lack of water for the transportation of sediment being the cause of the clear sea of Shady time. At rare intervals the Rome sea was invaded by swarms of trilobites and brachiopods whose remains are now entombed in the deposits laid down during the time of their invasion.
In the Conasauga epoch, which followed the Rome epoch, the conditions again favored the formation of limestone in Alabama. The land area west of the Appalachian Strait was submerged, for limestone or sandstone of Conasauga (Upper Cambrian) age is widely distributed over the Middle West, where the older Cambrian rocks are absent, so that the Upper Cambrian rocks rest upon pre-Cambrian crystalline or metamorphic rocks. Life flourished throughout the Conasauga epoch. There were many species of trilobites and a great abundance of individuals. Brachiopods were also plentiful but of few species.
Probably in Conasauga time a persistent land barrier was raised between Cahaba and Birmingham valleys, for, as shown under the heading "Descriptive geology," the Conasauga is absent along the castern margin of the Cahaba coal field and probably was not deposited there because of an island in that part of the Conasauga sea. This Cahaba barrier marks an area in which there was a decided tendency to uplift, technically called a positive area, as shown below, and to this tendency is due the peculiarities of distribution of the Ordovician limestones in the two valleys as noted under the heading "Stratigraphy" (p. 3) and hereinafter mentioned.

\section*{cambrian or ordoviclan pertod}

The period succeeding the deposition of the Conasauga limestone and ending with the deposition of the Chepultepec dolomite was one of the most notable periods for the deposition of dolomite in the history of the earth. After the Conasauga limestone was laid down Birmingham Valley and Cahaba Valley were elevated above sea level, and the resulting erosion produced the unconformity described on page 3 . After the deposition of the Brierfield dolomite in the Montevallo region22 there followed a resubmergence, including that of the Cahaba barrier, except south of Bessemer (p. 3), and the Ketona dolomite was laid down in both Birmingham and Cahaba valleys. The deposition of the Ketona was succeeded by another uplift of about the same region as before while the Bibb dolomite of the Montevallo region was deposited, after which the sea spread over all of the southern Appalachian region and so remained while the great mass of the Copper Ridge dolomite was deposited. In Alabama, northwestern Georgia, and probably southern Tennessee this submergence continued during Chepultepec time, but in the Birmingham Valley local uplifts precluded the deposition of the Chepultepec and succeeding Longview and Newala limestone.
The seas of this dolomite period were nearly devoid of living organisms that possessed parts capable of fossilization except in Chepultepec time, when some forms, principally gastropods, were common but not abundant.
It is the common belief that dolomite is not deposited as dolomite but that limestone is first deposited and subsequently changed into dolomite by the substitution of magnesium for part of its calcium. So far as known limestone at present is being precipitated from solution in water by organic agencies such as mollusks, corals, and lime-secreting plants, among Which bacteria play a noteworthy part. As the doloner parts of organisms, which would have been preserved, it is evident that the limestones from which the dolomites have been derived were not deposited by shell-bearing animals or corals. It seems necessary, then, to assume that the plants, bacteria, and similar necessis, orgamisms were the principal agents, and that, being perishable, they have left no remains. The great mass of limestone may with its deposition in sea water charged with magnesium salts.
ordovictan period
The Ordovician period was one of notable oscillation in the Appalachian Valley province, leading to repeated emergence and submergence of certain areas and corresponding gaps in
the sedimentary sequence and causing a patchy distribution of the rocks of different ages in some areas as described under the heading "Stratigraphy." The theory of oscillations as affecting the distribution of formations in Birmingham and Cahaba valleys is illustrated in Figure 6.

The Cahaba barrier seems to have been continuously effective and part of the time to have extended over Cahaba Valley. After a short emergence during Stonehenge time (p. 4) the Cahaba Valley was resubmerged, and Ordovician deposition began with the Longview limestone and continued apparently without interruption through Newala and Odenville time, after which Cahaba Valley emerged during early Chazy time, in which the St. Peter sandstone and possibly limestone of early Stones River age were deposited elsewhere. The Birmingham Valley seems to have been land during most of the time from the end of the Copper Ridge epoch to the beginning of the Chickamauga epoch. When it was again submerged the advancing sea first occupied the lowlands and valleys, in which were accumulations of chert fragments and sand such as exist along the present streams. These accumulations formed the Attalla conglomerate member (p. 7), and above this was laid down mud washed in from the higher unsubmerged areas to form the basal shale member of the Chickamauga (p. 6). In places the mud was red, being such as would be derived from the red soil of the dolomite areas of the present day. Finally, as most of the region became submerged, limestone deposition began, and the basal layers of limestone were in places stained red by a small amount of red clay, which was still being washed into the water. In Cahaba Valley the deposition of limestone, which seems to have begun at about the same time as in Birmingham Valley with the deposition of the Mosheim limestone, was interrupted while the Athens shale was being deposited in the sonth end of the valley. Dry land probably existed in the north end of the valley during Athens time. On resubmergence of the entire valley the Little Oak limestone (late Chazyan) was deposited, after which the valley area was elevated above sea level and so remained until it was temporarily submerged again in Frog Mountain until

Limestone deposits were laid down almost continuously during Ordovician time, the only interruption being the Athens episode, during which fine black calcareous mad was deposited in Cahaba Valley. In Athens time this Alabama region had oceanic connection with other parts of the earth generally, as denoted by the world-wide distribution of the Athens grapdenoted by
tolites (p. 6).

In Chickamauga time the waters of the region abounded in brachiopods, bryozoans, gastropods, and other marine forms, whose fossilized remains now fill the Chickamauga limestone and are present less abundantly in the Lenoir and Little Oak and are pre
limestones.
The distinct faunas of Birmingham and Cahaba valleys during Ordovician time developed through the complete separation ing Ordovician time developed throug
of the two seas by the Cahaba barrier.
of the two seas by the Cahaba barrier.
Some remarkable episodes of the Ordovician period were Some remarkable episodes of the Ordovician period were
volcanic eruptions that occurred from late Chazy to early Trenvolcanic eruptions that occurred from late Chazy to early Tren-
ton time. The sites of the volcanoes are unknown, but the ton time. The sites of the volcanoes are unknown, but the
one active in Trenton time was so located that the ejected rock one active in Trenton time was so located that the ejected rock dust was distributed, probably by the winds, over an area extending from Alabama to southern Ohio. Thus originated the bed of volcanic ash in the upper part of the Chickamauga limestone, described on page 7. The rarity of volcanic action in the Ordovician period in eastern North America is in strong contrast with conditions just across the Atlantic, where, in Wales and western England, volcanoes were active throughout Ordovician time and volcanic ash makes a large proportion of the Ordovician rocks, the ash beds or tuff aggregating several thousand feet in thickness.

\section*{silurian period}

Crustal oscillation continued through the Silurian period. The elevation of the Cahaba Valley area above sea level prevented the deposition or resulted in the removal of any Silurian deposits that may have been laid down in that region. Birmingham Valley and the site of the Cahaba coal field, on the other hand, were submerged at the beginning of the period and o remained while the Red Mountain formation was laid down, After about 100 feet of shale and sandstone had accumulated the Irondale ore seam was deposited, and above that seam 25 feet or more of shale and sandstone. Then there was uplift, and the beds down to the Irondale seam were eroded, and probably the Irondale seam itself in the vicinity of Bessemer. The local proximity of the Irondale to the Big seam, as on Red Mountain east of Birmingham, and the intervening shale and conglomerate (p. 8 and \(\mathrm{Pl} . \mathrm{XV}\)) were the results of this uplift and erosion.
Next followed perhaps the most notable event in the history of the region. A slight submergence ensued, and in the shallow sea or a sheltered lagoon the Big seam of ore was aecumulated. Animals swarmed in the hospitable water, and their accumulated skeletons formed a coquina-like limestone. In Cahaba Valley and eastward, where the Silurian is absent, lay an ancient land deeply covered with the ferruginous soil that had been formed through the decay of a vast thickness of dolomite and limestone, just such as now covers large areas in the Birmingham region. The rivers that rained this area and emptied into the Silurian lagoon bore supplies of iron compounds in solation, just like modern ivers. Throngh the constant evaporation of the waters of the lagoon and the constant addition of the iron-bearing solutions the iron became concentrated and was deposited in the coquina, in time replacing part of the lime carbonate of the skeletal remains. Thus the Big seam of ore was formed, and on renewed subsidence it was buried beneath the superincumbent sandstone and shale. By a repetition of the same conditions the Ida seam was formed. In the vicinity of Ishkooda an area was probably uplifted and eroded and a pothole was formed that penetrated the Big seam (p. 8). This pothole was formed during or after the time when Pentamerus lived in the region, for casts of Pentamerus shells occur in the material that fills the pothole. Of the Cayuga epoch, which lasted during the remainder of the Silurian period, no record remains in Alabama except in the extreme northwest corner of the State, where rocks of this age are believed to be present but are not exposed.

\section*{devonian period}

The gap in the record at the end of the Silurian period covers also the early part of the Devonian period. Then the region was again submerged, the submergence beginning in Oriskany time and continuing into Onondaga time. A few characteristic Oriskany animals made their way into the southern part of the region and a few Onondaga forms invaded the Cahaba Valley belt. The remainder of the Devonian period, an immensely long time, is, however, a blank in this region, except in so far as the Chattanooga shale, regarded by the writer as more probably of Mississippian age, may constitute a meager record that is not susceptible of certain interpretation. The range of possible interpretations is so great and the The range of possible interpretations is so great and the
subject so speculative that limits of space preclude further discussion here. Evidence is accumulating, however, that the Devonian sea persisted into Hamilton time in a considerable area at least in parts of St . Clair and Calhoun counties lying to the northeast of these quadrangles.

\section*{oarbontferous period}

The events of the early part of Carboniferous time (Kinderhook epoch) are not recorded in the Birmingham distriet unless in the Chattanooga shale, and the succeeding Fern Glen
and Burlington epochs are represented only in the lower beds of the Fort Payne chert. The region was entirely submerged, however, during Keoknk (Fort Payne) and Warsaw time but was raised again above sea level during all or parts of St . Louis and Ste. Genevieve time and the early part of the succeeding Chester time. Then it was resubmerged and so continned during the rest of Chester time, and, except in the northern part of the Bessemer quadrangle, where the Bangor limestone was deposited, prevailingly earthy sediment accumulated to form the Gasper formation, Hartselle sandstone, Floyd shale, and Parkwood formation. The deposition of the Parkwood seems to bave been followed soon by the deposition of the Brock coal and the basal sandstone of the Pottsville of the Cahaba and Coosa fields, but the area of the Warrior coal field was above sea level during all or part of Parkwood and early Pottsville time, as shown by the unconformity between the Floyd shale and the Pottsville in that area. The deposits of Pottsville time were mud, clay, sand, and vegetal matter, which formed the Pottscille slales, sandstones, and coal beds. The pebbles of chert in the great masses of coarse conglomerate, begiuning with the Straven congłomerate member, were doribtless derived from arcas of Copper Ridge dolomite, and the pebbles of quartzite and here and there one of conglomerate were probatily derived from the Weismer and Tathulega formations, for in Carboniferons time areas of all these formations were ratect into land to the east and sontheast of the coal fields.
The most interesting and valuable deposit of the Pottsville is coal. Land vegetation became abundant and grew luxuriantly in swampe of rast extent near sea level, in which thick deposits of vegetal débris accumulated as in a modern peat bog. These deposits were covered by sediment and in time converted by pressure and loss of moisture and gaseons constituents into bituminous coal. The process was repeated many times, giving rise to many coal beds, thick and thin. That the coal swamps were near sea level is proved by the occurrence of marine fossils op to bof the coal (pi14) ts the phats in top to botom of the Fotssvine (p. 14). As the plants grew in the air and the amimals fived only in the sea diere must have been alternate emergence and submergence, such as would most likely take place if the land stood continuously near sea level so that a slight sinking would permit flooding by the sea. As the Pottsville accommated near sea ere and is about 9,000 feet thick in the southern part of the Cahaba field, there must have been constant although, as shown by the coal beds, intermittent subsidence of the earth's crust during the long time of its accumulation. The luxuriant vegetation of the Carboniferous period consisted largely of great trees allied to modern club mosses and of smaller plants allied to modern ferns. No flowering plants had yet appeared.
As a bed of peat about 5 feet thick is necessary to make 1 foot of bituminous coal it is easily seen that at the highest imaginable rate of growth a very long time was required to accumnlate the coal beds of Alabama, which in the Cahaba field, for example, aggregate not less than 100 feet in thickness and thus required an amount of vegetal matter equal to a bed of peat 500 feet thick.
No record of events during the rest of the Carboniferons period exists in Alabama, In this unrecorded time the Pennsylvanian coal measures of upper Pottsville, Allegheny, Conemaugh, and Monongahela age were laid down in western Pennsylvania, Ohio, Indiana, and Illinois, and above them the Permian series of the Carboniferous, the last of the deposits of the Paleozoic ers.

\section*{appalachian revolution}

The Paleozoic era was one of subsidence and deposition in the Appalachian Gulf region. It was a constructive era, in which rock formations were built up. At the end of the Paleozoic a reverse movement-uplift of the formerly subsiding area-began, and it has continued ever since. The region became dry land. As the land emerged from the water it was attacked by the agents of erosion, which have been active during all subsequent time. This great change in the operations of nature in this part of the earth is known as the Appalachian revolution. Besides the direct uplift that affected the region there was a lateral westward movement of the crust, the effects of which are most conspicuous along the Appalachian Valley (p. 15), where the strata were folded, crumpled, and faulted and changed from their original borizontal to their present inclined attitudes, as already described and as shown in the structure sections. Probably these movements were very slow and continued long into the Mesozoic era. They must have been accompanied by violent earthquakes, to judge from the earthquake results of such comparatively slight movements as that which produced the San Francisco earthquake and that on the Red Gap fault, which produced the earthquake in the Birmingham region a fer years ago.
mesozoic and cenozolc eras
The Mesozoic and Cenozoic were eras of destruction, and almost no records of them exist in the Birmingham district. Like all land areas the region was subjected to erosion during the whole time; a great thickness of solid rock has been
removed- 10,000 feet, for example, in the vicinity of Bir-mingham-and, as a resalt, the present hills, ridges, and valleys have been carved in the surface of the region.
Cumberland peneplain.-Although erosion has been constant the upward movements of the crust in the Appalachian Highlands seem to have been intermittent. Some of the pauses were so long that extensive areas were worn down nearly to a plain (peneplain) near sea level. The peneplain of which there is the best evidence seems to have attained its complete development in early Cretaceous time, for its marginal parts, slightly submerged by a tilting movement, were covered by early Cretaccous deposits on the Constal Plain. Farther north, however, the peneplain was more elevated, and in the Cumberland Platean it is now represented by an extensive fairly even surface, approximately 2,000 feet above sea level. Thence it slopes southward, comnecting approximately with the surface of Sand Mountain in northern Alabama and that of Blount Mountain, 1,300 feet high, farther south. Possibly the crest of Red Mountain and Higher summits of the Warrior and Cahaba cond fields nearly coincide with the old peneplain, but it is too obscurely preserved in these southern latitudes to be surely identified. Because this old peneplain of supposed Cretaceons age is excellently preserved in the Cumberland Plateau it is named the Cumberland peneplain. It may be the same as the Schooley peneplain of New Jersey, which is also thought to dip beneath the Cretaceons deposits of that aren
Penephains of later date and lower altitude are preserved in the Highland Rim of middle Tennessee and in the Coosa Valley of Alabsma. The Highland Rim and Cumberland peneplains probably converge southward and become indistinguishable in the Warrior coal field. The surface of this peneplain is shown in one of the illustrations of the Montevallo-Columbiana folio. Life of the Mesocoic and Cenozoic eras in Alabama.-There can be no doubt that the land of the sonthern Appalachian can be no doubt that the land of the sond animal life peeu-
region supported the succession of plant and and liar to each period of the Mesozoic and Cenozoic eras, although liar to each period of the thesozoic and Cenozoic eras, although
but scanty remains of this life have been preserved or yet but scanty remains of this life have been preserved or yet have been found in the Cretaceous deposits of Alabama, and have been found in the Cretaceous deposits of Alabama, and
the trees must have grown on the land bordering the Cretathe trees must have grown on the land bordering the Creta-
ceous sea. Among these genera are the fan palm, the sequoia ceous sea. Among these genera are the fan palm, the sequola
("big trees" of California), pine, tulip ("yellow poplar"), ("big trees" of California), pine, tulip ("yellow poplar"),
magnolia, sycamore, sassafras, holly, poplar, willow, cinnamon, magnotia, sycamore, sassafras, holly, poplar, willow, cinnano,
fig, and walnut. The oak was living at this time in the fig, and walnut. The oak was living at this tome in me
Carolinas, but no specimens have been reported from Alabama, Carolinas, but no specimens have been reported from Alabama, In Cenozoic time a number of other genera of trees such as kickory, pawpaw, cassia (senna), redbud, dogwros, are in the made their appearance, and their remains are preserved in the
Eocene (lower Tertiary) deposits of Alabama. Two living Eocene (lower Tertiary) deposits of Alabama, Two living genera of ferns, Lygodium (climbing fern) and Asplen
(spleenwort), are also recorded from the Alabama Eocene.
(spleenwort), are also recorded from the Alabama fishes probAmong the animals modern types of clams and fishes prob-
ably inhabited the rivers of Alabama throughout the Mesozoic ra and the Tertiary period of the Cenozoic era, as they did the ivers of other regions during those times. The great reptiles, the dinosaurs and others that inhabited the Rocky Mountain region, also probably roamed through the forests and over the plains of Alabama, although any morasses in which any of them may have been mired and preserved were removed in the general course of crosion. The strange mammals that are so well known from remains found in the Tertiary deposits of the West, also doubtless lived in Alabama, but like the dinosaurs and for the same reason they have left no traces. In early Quaternary time, while the northern part of North Americs was buried in the ice of the glacial epoch, the mastodon, megatherium, cave bear, saber-toothed tiger, and a host of other recently extinct animals inhabited the Alabama region, and we may believe that the first human being to tread the soil of Alabama was a contemporary of these extinct animals.
It will be dimly perceived perhaps from this brief history that the present is only a stage in the unceasing evolution of the earth and its inhabitants and is genefically connected with a remote past as well as with an equally remote future. The beginning of this mighty train of events we can not know, and its end we can not foresee.

\section*{ECONOMIC GEOLOGY}

The mineral resources of the Bessemer-Vandiver area consist of conl, iron, dolomite and limestone, shale and clay, road metal, chert, building stone, sand, lime and cement materials, soil, and water. The most valuable of these resources are coal, iron, and dolomite, for these are the raw materials of iron making, the principal mineral industry of the region. A necessary condition for the profitable operation of the ironmaking industry in Alabama is the proximity of the deposits of coking coal, iron ore, and dolomite or limestone to one another. Red Mountain forms the western edge of the orebearing area; the enstern edge of the Warrior coal field is 5 miles distant; and in the valley between is the dolomite. The raw materials for iron smelting are therefore cheaply assembled in this region.

COA.

\section*{oenemal veatube-}

As shown on the map (fig. 7), the coal measures of Alabama lie in four different fields-the Plateau, Warrior, Cahaba, and Coosa fields. The Bessemer-Vandiver area includes parts of the last three fields mentioned. The number, names,

sequence, grouping, and correlation of the coal beds are shown in Figure 5. The coal of this district is a high-grade bituminous coal, all of it being excellent for making steam and for domestic use and much of it for making coke and gas. The coal along the cast side of the Warrior field is regarded as the best coking coal in the State. Analyses of 19 samples of these coals, as they come from the mine, are given in the table on page 20; the averuge composition is approximately 3.0 per cent moisture, 29.9 per cent volatile matter, 61.0 per cent fixed earbon, 6.4 per cent ash, and 1.19 per cent sulphur.

Coals or the wabhon fielid
The Bessemer quadrangle includes in the northwest corner a small part of the Warrior coal field.
The coats of the Warrior field are more or less distinctly separated into groups, which were named by McCalley, in ascending order, the Black Creek coal group, including the Black Creek, Jefferson, and Lick Creek coals; the Mary Lee oal group, including the Ream, Jagger, Blue Creek, Mary Lee, and Newenstle coals; the Pratt coal group, including the Gillespie, Curry, America, Nickel Plate, and Pratt coals; the Cobb coal group, including the Cobb upper and Cobb lower coal; the Gwin coal groun, including the Thompson Mill and Gwin beds: and the Brookwood coal group, including the Carter, Milldale, and Brookwood coals. The beds of the last two groups do not ocenr in the Bessemer-Vandiver area.
```

mhack crark coal arour

```

The Black Creek coal group does not crop out in the Bessemer quadrangle owing to the Wylam and Opossum Valley fults, as shown in section \(\mathrm{B}-\mathrm{B}\) ' of the Bessemer quadrangle. A coal identified as Black Creek is exposed on the electric ailroad between Thomas and Pratt City, 2 miles northeast of Wylam, and the same bed is exposed at a number of places hear Vulley Creek, 6 milea southwest of Pleasant Hill Church. At both places a workable bed, 2 feet thick or more, is indicated. It is probably a worksble bed in the Bessemer quadrangle. Nothing is known of the other coals of the group in his area.

\section*{wart lek coal grour}

The Mary Lee coal group probably crops out a short distance weat of the Boyles sandstone for a mile or two northeast and southwest of Dolomite, thin coals being exposed at several places along this strip. The only coals observed, however, are
made up of thin layers a few inches thick separated by shale bands as much as 5 feet thick. Borings that penetrate the Mary Lee group in this territory show that the different beds of the group can be recognized but are greatly split up and that workable benches occur only in the Jagger and Blue Creek beds. The same split-up condition that is characteristic of the beds of the Mary Lee group throughout the eastern part and probably through the whole Warrior field persists in stronger development in this part of the field. The comparatively thin layers of clay or shale in the Mary Lee bed elsewhere are represented here by layers of shale as much as 5 feet thick, which separate the thin layers of coal so widely that the bed is worthless. A section obtained 1 mile northeast of Dolomite is an example. (See fig. 8, section 1.) In the Besse-

mer quadrangle the Jagger and Blue Creek beds are in better condition than the Mary Lee, each having a workable bench 2 feet 6 inches thick, with which are associated thinner layers that are separated by a greater or less thickness of clay or shale.

\section*{pratt coal aroup}

The Pratt coal group crops out from Wylam to a place 2 miles southwest of Dolomite, where its outcrop is cut off by the Opossum Valley fault. As the other beds of the group are deeply covered by rock waste, none of them are known on the outcrop except the Pratt, and that one only where it has been opened in mines. They dip steeply to the northwest along their outcrops.
Gillespie and Curry coal beds.-Borings show that a number of thin layers of coal occur through a wide zone that may be broadly correlated with the Gillespie bed. Still higher there are a number of benches that correspond in a general way to the Curry bed. One of these benches, 220 feet below the Pratt coal, is 2 feet 6 inches thick.
America (Double) and Nickel Plate (Cardiff') coal beds.The America bed, or at least its main bench, is 123 feet below the Pratt bed at the top of the Pratt group. This bed has been exposed in Wylam and Ensley, and sections measured at these places are published in the Birmingham folio (p. 18). In the Bessemer quadrangle, as revealed by borings, there are a number of layers separated by shale that may be assigned to this general horizon. One main bench, however, 123 feet below the Pratt is 3 feet 11 inches thick and has a 3 -inch parting in the middle. A thin bed 28 feet below the Pratt is regarded as the Nickel Plate. It is not known to be minable in the Bessemer quadrangle, but either the Nickel Plate or America bed is minable at the Virginia mine, 5 miles southwest of Pleasant Hill Church.
Pratt coal bed.-The Pratt is a valuable bed throughout the part of the Warrior field in the Bessemer quadrangle and is extensively mined by the Woodward Iron Co. at the Dolomite mines. At both mines it is over 6 feet thick, including partings. (See fig. 8, section 2.) The quality of the coal in this locality is of the very best, as shown by analyses 3579 and 3580 in the table on page 20. The low content of sulphur and ash permits coking without previous washing

The Cahaba coals have been fully described by Squire and by the writer. \({ }^{23}\) In this field there are ten coal beds workable in large enough areas to be of commercial importance. In ascending order these beds are the Gould, Lower Nunnally, Middle Nunnally, Harkness, Wadsworth, Buck (Atkins), Youngblood (Black shale), Clark, Thompson, and Helena.

> gould coal grour

There appears to be more than one bed at the general horizon of the Gould coal, but only one workable bed is known in any section. At the entrance to the Bamford mine the bed worked is 20 inches thick. It is reported to range in thickness from 1 foot 6 inches to 3 feet and to have an average of 2 feet of clear coal. The site of the original mine on this bed,
\({ }^{32}\) Squire, Joseph, Report on the Cababa coal field, 131 pp., 1 pl., Ala.
ama Geol. Sorver, 1890. Buts, Charles, The northern part of the Cahaba bama Geol. Sorvey, 1890 . Butts, Charles, The northern
coal field: U. S. Geol. Survey Bull. 316 , pp. 76-115, 1907.
perated many years ago by William Gould, from whom the bed was named, is said to be 4 miles northeast of the Bamford mine. This mine in 1906 was called the Star Cahaba No. 1, but later the name was changed to Elvira. At last accounts it was not operating. At this mine the bed differs much in thickness, as shown by an increase from 1 foot 6 inches at the entrance to 4 feet at a place 200 feet down the slope. The composition of the coal at this mine is shown by analysis 3646 (p. 20). Just north of the Louisville \& Nashville Railroad at Elvira two of the beds of this group have been exposed in prospect pits and grading operations. The upper bed is 2 feet and the lower bed 1 foot 6 inches thick. Half a mile south of Rocky Ridge Church a thickness of 3 feet is reported for one of these beds. Across the northwestern part of the Vandiver quadrangle the coal beds of this group, if present, are practically unknown. In Little Valley Mountain the bed is not known to be workable. It is a fair conclusion that the Gould group contains the equivalent of a bed 2 feet thick on its outcrop across the Bessemer quadrangle.

General features.-The Nunnally group of coals, named by Squire from the Nunnally farm, 1 mile northwest of Sydenton, is also called by the same author the Five group in an area southwest of the type locality where five thin coal beds comprise the group. Locally, as to the north of Greenlee Ford and northeast of the Cahaba pumping station in the Vandiver quadrangle, the group carries one to three workable beds of coal. Near the south margin of the Bessemer quadrangle there are apparently two beds identified as belonging to this there are apparently two beds identified as belonging to this group. At tivo places, one in the eastern part of sec. 34, and hickess of 24 and 27 inches respety is reported for the hickness of 24 and 27 inches respectively is reported for the upper bed, and in the western part of sec. 35 , in the same
Lower Nunnally coal bed.-Between the locality just deLower Nunnally coal bed.-Between the locality just decribed and sec. 25, T. 19 S., R. 3 W., no workable beds are known in this group. Near the center of sec. 23 a bed regarded as the Lower Nunnally is 3 feet \(9 \frac{1}{2}\) inches thick. See fig. 8, section 3.) Just east of Acton Ford, in the northwest corner of sec. 17, T. 19 S., R. 2 W., the bed is 4 feet \(6 \frac{1}{2}\) inches thick. (See fig. 8, section 4.)
About 1 mile northeast of Acton Ford, the bed is 3 feet 3 inches thick and has more partings at the top. (See fig. 8, section 5.\()\)
The outcrop of the bed is traceable northward for several miles, and openings have been made on it at several places, but its thickness and character could not be determined. Near the center of sec. 26, T. 18 S., R. 2 W., 1 mile south of the pumping station, the bed is 2 feet thick, and half a mile to the north, in the southern part of sec. 23 of the same township, the bed is 3 feet 6 inches thick. (See fig. 8 , section 6 .)
For 2 miles north of the locality last described practically nothing is known of the Nunnally coals. In this strip there is reason to suspect that the rocks have been subjected to considerable disturbance in which a segment of the crust including he coal beds has perhaps been faulted out at the surface. In the NW. \(\frac{1}{1}\) sec. 13, T. 18 S., R. 2 W., however, and northward, the outcrop of the Lower Nunnally seems to be certainly dentifiable, and the bed is from 2 feet 6 inches to 4 feet 4 nches thick. The greatest thickness is shown in an opening in the SE. \(\frac{1}{4}\) sec. 1, T. 18 S., R. 2 W. (See fig. 9, section 1.) North of the last-named locality the bed deteriorates, as shown in the SW. \(\frac{1}{4}\) sec. 32, T. \(17 \mathrm{~S} .\), R. 1 W . (See fig. 9 , section 2.) Middle Nunnally coal bed.-In the S. \(\frac{1}{2}\) sec. 18, T. 19 S., R. 2 W., about 2 miles south of Rocky Ridge Church, a thick bed of coal has been prospected at two places half a mile apart. It is called the Middle Nunnally, because it is the middle one of three beds of good thickness in this locality. At one opening the bed is 9 feet \(7 \frac{1}{2}\) inches thick. (See fig. 9 , section 3.) No

\section*{}

Figure 9.-Sections of Nunnally coal beds

bed of such thickness in this position was found south of this locality nor to the northwest for a distance of 9 miles. At an opening in the SW. \(\frac{1}{4}\) sec. 12 , T. 18 S., R. 2 W., a bed regarded as Middle Nunnally is 1 foot 9 inches thick. (See fig. 9 , section 4.) On the river bank in the NE. \(\frac{1}{4}\) of the same
section the bed is much thicker. (See fig. 9, section 5.) Just north of the margin of the quadrangle the bed is 6 feet thick and has 1 foot of bone near the middle. (See fig. 9 , section 6.) The facts set forth above indieate that the Middle Nunnally is locally valuable. Possibly more thorough prospecting would show it to be of workable thickness and quality throughout still larger areas.
Upper Nunnally coal bed.-The Upper Nunnally coal bed was seen in the SE. \(\frac{1}{4}\) sec. 18, T. 19 S., R. 2 W., where it is 2 feet thick and lies between beds of sandstone. Some indications of a bed of workable thickness were also seen in sec. 12, T. 18 S., R. 2 W., and thence northward along the river to the north margin of the quadrangle.

\section*{tarkness coali bed}

The Harkness bed is not well known in the Bessemer quadangle. At the Harkness farm, on the Louisville \& Nashville Railroad in the SW. \(\frac{1}{4}\) sec. 4, T. 20 S., R. 3 W., which is said by Squire to be the type locality of the bed, there is a thin orthless coal, but there is some doubt whether it is the bed named Harkness in the northern part of the Cahaba field. \({ }^{24}\) Near the center of sec. 17, T. 20 S., R. 3 W., on the west limb of the Tacoa anticline, a thick bed of black shale and bony coal regarded as the Harkness is exposed in a cut of the Atlanta, Birmingham \& Atlantic Railway.
From the Harkness farm northward to and beyond the Cahaba pumping station, in the Vandiver quadrangle, practically nothing is known of this bed. North of the pumping
 margin of the quadrangle the bed runs about 4 feet thick and contains more or less bony coal.

\section*{Wadsworth coal bed}

The Wadsworth bed is so named because it was mined long ago by Frank Wadsworth at Tacoa station. A mine recently pened about a mile southwest of Falliston is also probably on his bed. Although not known to the writer the Wadsworth oal undoubtedly crops out in the belt of vertical rocks around he Tacoa anticline to the northeast of Tacoa and thence southward on the west limb of the anticline to Sydenton, where it was once mined, and half a mile farther south to the old Star Cahaba No. 2 mine. It is uncertain whether the outcrop crosses the axis of the Belle Ellen syncline near the old No. 2 ine and turns back northward or continues southward and rosses the axis at some point in the Montevallo quadrangle. It has been mapped doubtfully by broken lines, according to he second supposition. If this supposition is correct, however, the bed underlies but a very narrow strip along the synclinal axis. In the vicinity of Sydenton there are three abandoned mines, which are shown on the map. At the old Star Cahaba o. 2 mine, half a mile southwest of Sydenton, a section was measured. (See fig. 10, section 1.) The composition of the

coal is shown in analysis 3770 in the table (p. 20). The bed in this vicinity is reported by Squire to average 3 feet 3 inches thickness. At Langston Ford, \(1 \frac{1}{4}\) miles northwest of Sydenton, the bed was measured. (See fig. 10, section 2.)
Very little is known of the bed between Langston Ford and the vicinity of the pumping station in the Vandiver quadangle. A bed of which 18 inches is exposed near the center \(f\) sec 16. T \(19 \mathrm{~S}, \mathrm{R} 2 \mathrm{~W}\) is regarded as the Wadswoth sec. 10, N. 10 ., R. 2 W., is the in at See fig. 10 section 3) The bed, hase bee fred See fig. 10, section 3.) The bed has been prospected farther EFth and shows from 4 to 6 feet of coal. At a pit in the L. \(\frac{1}{4}\) SW. \(\frac{1}{4}\) sec. 7, 1. 18 S., R. 1 W., it is made up as shown section or Figure 10. On the wagon road just south of the orthern boun 6 號 thickness of 6 to 8 feet is indicated. It is a valuable bed in this part of the Cahaba field

\section*{big bonz (COKE oven) COAL}

The Big Bone coal bed of the region south of these quadrangles, which was supposed to be the Harkness by the writer another report, \({ }^{26}\) has been traced northward to a point near Tacoa, and it apparently connects with the Coke Oven bed of

Butts, Charles, The northern part of the Cahaba coal field: U. S.
.
Geol. Survey Bull. 316, pp. 76-1115, 1907.
26 Butts, Charles, The southern
U. S. Geol. Survey Bull. 431, pp. 89-146, 191 .

Squire. Its extension north of Tacoa is not certainly known, but it appears to break up into a number of thin beds, which may be the same as the group of thin worthless beds designated by the geologists of the Tennessee Coal, Iron \& Railroad Co. the Big Dirty coal, or at least is included in that group. Its probable horizon is mapped with a broken line. It is not known to be of value in the Bessemer quadrangle.
rugr coal (alice and jonks beds)
The Pump coal bed was examined only at ereek level just west of the water tank half a mile south of Tacoa, where the bed has the section shown in section 5 of Figure 10.
According to Squire, there is another bed only a small distance below this. The two beds correspond to beds above the Big Bone in the Montevallo quadrangle, called Alice and Jones by the prospectors of the Tennessee Coal, Iron \& Railroad Co., who traced those beds northward to the vicinity of the water tank above mentioned. In the Montevallo quadrangle, at a locality 5 miles south of the margin of the Bessemer quadrangle, these beds are about 40 feet apart and 21 to 3 feet thick with partings.
huck (atkiss) coal be
At the Falliston mine the Buck bed contains 2 feet 5 inches to 3 feet of clear coal. (See fig. 10, section 6.) The chemical character of the coal is shown in analysis 3744 (p. 20). The character of the coal is shown in analysis 374 (p. 20). The bed probably persists north of this locality and is probably one Acton basin and which show in the road southeast of Bains Bridge. In the Little Cahaba basin a bed exposed on Coal Bridge. In the Little Cahaba basin a bed exposed on
Branch in the central part of se. 18, T. \(18 \mathrm{~S} ., \mathrm{R} .1 \mathrm{~W}\). (see Branch in the central part of sec. 18, T. 18 S., R. 1 W . (see
fig. 11, section 1), seems to lie at the horizon of the Buck, and fig. 11 , section 1), seems to lie at the horizon of the Buck, and
this view is corroborated by the existence of another bed a this view is corroborated distance above in the relative position of the Youngblood short distance above in the relative position
(Black shale) bed. (See fig. 11, section 1.)
Black shale) bed. (See fig. 11, section 1.)
At points one-fourth of a mile distant on either side of the At points one-fourth of a mile distant on either side of the
locality in sec. 18 , T. 18 S., R. 1 W ., the bed, though it differs somewhat from its composition in that locality, still has a clear bench of 27 inches on the south side and 26 inches on the north side.

The Youngblood seems to be a valuable bed along the whole length of its outcrop. In a cut on the Louisville d Nashville Railroad half a mile north of Mossboro, which is just beyond the south margin of the Bessemer quadrangle, the bed is 3 feet 2 inches thick, apparently all clear coal. In the vicinity of Falliston 2 feet 8 inches to 5 feet of coal is reported. A quarter of a mile south of Buck Creek the bed is 4 feet 3 inches thick. (See fig. 11, section 2.)
North of Buck Creek the bed is believed to make a large zigzag outcrop around the axes of the Tacoa anticline and Belle Ellen syncline, where the rocks are vertical, the outcrop crossing the syncline in the vicinity of Sydenton and extending thence northward along the west limb of the syncline to the Helena fanlt about on the east margin of the Bessemer quadrangle. At a prospect on Bailey Brook in the western part of sec. 19, T. 19 S., R. 2 W., a bed identified as the Youngblood is 3 feet 4 inches thick. (See fig. 11, section 3.) In the Little Cahaba basin a bed close above the Buck bed near the center of sec. 18, T. 18 S., R. 1 W., regarded as the Youngblood, is 21 inches thick.

The Clark coal bed, well known in the Montevallo quadrangle, has been traced northward to a point where it seems to fall into the position of the Little Pittsburg on Buck Creek. Just south of the Bessemer quadrangle the bed is 15 inches thiek. At Coalmont it is reported to average 4 feet thick in Coalmont Nos. 1 and 2 mines. Elsewhere in the quadrangle the bed is of doubtful value, but a bed that may be so identified shows a good thickness at some places in the

FIGURE 11.-Seetions of Buek, Youngblood, Clark, and Thompson (apper)

Acton and Little Cahaba basins. An effort was made to mine this bed (Little Pittsburg) on Buck Creek half a mile west of Helena, the type locality of the Little Pittsburg. A measurement was made on the weathered outcrop. (See fig. 11, section 4.)

In the Acton basin, on the road three-quarters of a mile southeast of Bains Bridge, a bed of clear coal 2 feet thick may be the Clark (Little Pittsburg?).
On the west side of the Little Cahaba basin in Coal Bed Branch, in the northwest corner of sec. 19, T. 18 S., R. 1 W., the bed shows 3 feet 9 inches of coal, but 6 feet is reported, and at a place near by 5 feet is reported.
On the east side of the basin, in the SW. \(\frac{1}{4}\) NW. \(\frac{1}{4}\) sec. 9 , T. 18 S., R. 1 W., the bed, if it is the same as that just described, is broken into four or five benches 2 to 4 inches thick separated by 2 to 8 inches of clay, and its worthless character at this place is evident.

\section*{ghorson conh}

The Gholson bed, which is of good thickness several miles south of the Bessemer quadrangle, has been traced to a point about 1 mile north of Coalmont but is not known farther north. It may be the same as the Quarry or Smith Shop bed of Squire on the Louisville \& Nashville Railroad a short distance west of Helena. At Coalmont No. 1 mine, however, it is reported to average 4 feet in thickness.

The Thompson (lower) coal bed in the Bessemer quadrangle is just beneath the Straven conglomerate (see p. 14), whereas the Thompson bed of the Montevallo quadrangle is said by the geologists of the Tennessee Coal, Iron \& Railroad Co, to overlie the Straven conglomerate. To meet this situation the names Thompson (upper) and Thompson (lower) have been adopted. The Thompson (upper) bed does not extend into the Bessemer quadrangle, at least as a minable bed. The Thompson (lower) bed appears to be minable only in the Thompson (lower) bed appears to be minable only in the
Eureka basin syncline in the Bessemer quadrangle. (See Eureka basin syncline in the Bessemer quadrangle. (See
economic-geology map.) On account of the fact that the bed economic-geology map.) On account of the fact that the bed
is close below the Straven conglomerate, it is also called the is close below the Straven conglomerate, it is also called the Conglomerate coal bed. The bed is mined at Coalmont, where its condition is as shown in section 5 of Figure 11. The composition of the coal here is given in analysis 3745 (p. 20). At the north end of the Eureka basin the bed is said to be 5 feet thick. In the Helena basin the bed is reported to be irregular in thickness on account of the conglomerate roof, by which the coal is liable to be displaced at any point. In the Acton basin the bed is variable. At Acton No. 2 mine it is full of clay partings and practically worthless (see fig. 11, section 6), but at Acton No. 1 mine, 1 mile northwest of Acton No. 2, it is in better condition. (See fig. 12, section 1.) It was not seen in the Little Cahaba basin.
melena coal agd

The Helena bed is the uppermost minable coal in the Bessemer quadrangle. It was mined years ago half a mile south of Roebnck, where Squire reports the coal to be 4 feet thick and to have 2 to 3 inches of bony coal near the middle. It is reported to be 5 feet thick at the northern extremity of its outerop in the Eureka basin and to average 4 feet 6 inches in hickness at Coalmont No. 3 mine, at the south edge of the Bessemer quadrangle. It probably is a minable bed throughout the area underlain by it in this basin.

Fiaure 19.-Sections or Thompson and Helena coal beds

Squire reports that the bed is only 6 inches thick at the south end of the Helena basin, but near the north end its thickness and character make it a valuable bed, although its area is small. (See fig. 12, sections 2 and 3 , which are taken from Squire.) In the NW. \(\frac{1}{2}\) sec. 2, T. 20 B . R. 3 W ., the bed is 8 feet 5 inches hick and has a 6 -inch parting of shale 2 feet above the bottom.
In the Acton basin the bed is also in good condition and was mined at Acton No. 1 mine. It varies considerably, however, as shown by sections 4, 5, and 6, in Figure 12. Analysis 3771 (p. 20) shows the composition of the coal at Acton No. 2 mine, 1 mile southwest of Acton No. 1. In the Little Cahaba basin the Helena is a thick bed but underlies only a small area along the axis of the V -shaped syncline.
yeshuc () coal.
A thin coal in the Eureka basin above the Helena is probably the Yeshic, which is not known to be minable in the Bessemer quadrangle.

\section*{coosa coal, virld}

The writer has no detailed knowledge of the coals of the Coosa field in these quadrangles, and in fact no such information is obtainable, for no adequate prospecting on them has been done. A few test pits have been sunk on a number of steeply dipping beds, but the pits were in such a condition hat no satisfactory examination could be made.
Cunningham coal bed.-On the Cunningham estate, in the NW. \(\frac{1}{4}\) sec. 10 , T. 20 S., R. 2 W., a bed of coal about 7 feet in thickness has been opened. The bed dips castward. In the writer's opinion it lies in a narrow syncline overturned on the outheast, as shown in structure section D-D' of the Vandiver quadrangle. Indications of the bed, although the layers are thin, were observed in a railroad cut at Tafton. In the absence of positive proof to the contrary, it seems best to assume that in his locality there is but a small area of coal as thick as that at he Cunningham opening. The stratigraphic position of this ed is close above the Shades sandstone, as shown in the columnar section for the Coosa field and in Figure 5.
Coal associated with a stratum of black shale is reported by A. M. Gibson on Muddy Prong of Yellowleaf Creek in secs. 34 and 35, T. 18 S., R. 1 E., and sec. 4, T. 19 S., R. 1 E. This locality was not visited by the writer, who, however, saw the black shale at other places. A coal bed 18 inches thick is also reported by Gibson in the NE. \(\frac{1}{4} \mathrm{sec} .15, \mathrm{~T} .20 \mathrm{~S}\)., R. 2 W ., where the coal is said to be about 50 feet above the Shades sandstone. It is thus in the same position stratigraphcally as the Cunningham bed and that of the Campbell bed of the Cahaba field as described in the Birmingham folio.
Clow coal bed.-There are indications of the Clow bed close above the Pine sandstone from Yellowleaf Narrows to a point east of Little Narrows, but nothing further is known of it.
Nivens coal bed.-The Nivens coal bed, about 200 feet above the Clow, has been uncovered in grading operations on the Atlanta, Birmingham \& Atlantic Railroad just enst of Yellowleaf Narrows. At this place the bed is 6 feet thick and dips leaf Narrows. At this place the bed is 6 feet thick and dips
steeply to the east, but the conl is so thoroughly weathered steeply to the east, but the coal is so thoroughly weathered that it is impossible to ascertain the character of the bed. It is
unknown elsewhere, but a pit in sec. 32, T. 20 S ., R. 2 W ., anknown elsewhere, but a pit in sec. 32 , T. 20 S., R. 2 W.,
may be on the same bed, and it is mapped as possibly extendmay be on the same bed, and

\section*{ing southward to that point.}

Howard coal bed.-The Howard coal bed, which is apparently about 400 feet above the Pine sandstone member and therefore about 200 feet above the Nivens coal, is reported to e 2 feet 8 inches to 2 feet 10 inches thick at the Howard farm, in the SE. \(\frac{1}{4} \mathrm{sec} .3\), T. \(19 \mathrm{~S} .\), R. 1 W ., but it is not known as a workable bed elsewhere. It probably lies in a nearly flat attiude in the bottom of the Dunnavant syncline and thus in a structurally favorable condition for mining. The Howard is correlated with the Gould coal of the Cahaba coal field.
Wolf Ridge coal bed.-The Wolf Ridge coal bed, which is known only by report, is probably thin and may be dismissed without further comment. It is about 600 feet above the Howard bed.
Straight Ridge coal bed.-The Straight Ridge coal bed, 800 feet above the Wolf Ridge bed, is reported to reach a thickness of 2 cet but could not be observed at the time of the writer's survey. Martin coal bed. -The Martin coal bed, which lies 750 feet above the Straight Ridge bed, is said to have great thickness. At some places it is undoubtedly thick, but so far as the writer could observe it differs greatly in thickness from point to point. As a thin bed is known not far above it and as the bed dips steeply it may not be correctly identified at all points on its supposed outerop. Half a mile south of Calvary Church, in supposed outerop. Halr a mile south of Calvary Church, in bed if correctly identified is only a few inches thick. Farther bed if correctly identified is only a few inches thick. Farther west, in the S. \(\frac{1}{2}\) see. 24, T. 20 S., R. 2 W., the bed is about 2 feet thick and apparently is all clear coal. On the Minor farm, in the SE. \(\frac{1}{4}\) sec. 14, T. \(20 \mathrm{~S} ., \mathrm{R} .2 \mathrm{~W}\)., the bed is \(3 \frac{1}{2}\) to 3 feet thick but was so badly slumped when it was examined hat reliable detailed measurements could not be made. In the outhvest corner of sec. 7. T. 20 S., R. 1 W., an entry had an that ppears to \(a\) northwest of Coalville, on the Martin farm, the type locality, he bed has been extensively prospected and is reported to be 2 feet thick. The openings, however, were in such condition that the bed could not be examined, and no definite statements concerning the thickness and character of the bed are warranted. Gibson, \({ }^{26}\) who examined the bed when the opening was made, says that the bed consists of solid coal 12 feet 10 inches thick. At Chelsea an old opening was pointed out in which the coal is reported to be 2 feet thick. The bed has been prospected extensively in the northeast comer of sec. 26, T. 19 S., R. 1 W At one place an opening had been driven in a considerable distance and the bed is 12 to 14 feet thick, but detailed seetions were not obtainable. At another pit a few yards west of that opening the coal is 3 feet thick. The great thickness at he first opening appears to be due to a squeeze that hay resulted from the bending of the rocks around the axis of the
"Gibson, A. M., Report upon the Coosa coal feld with sections, p. 126,
Alabami Geol, Survey, 1895.

Yellow Branch .anticline, which probably lies near this place. (See map.) In a long outcrop on the Wilder farm, in the bed is 4 to 6 feet thick.

\section*{axa conamosa}

The coal beds of the Cahaba and Coosa fields are generally inclined at angles exceeding \(20^{\circ}\). In some places the beds are vertical or nearly so; in others they have a low dip or lie practically flat. The lay of the beds at any place can be determined by sections and dip symbols on the maps. In general the rocks that overlie and underlie the coal beds are stable and give no unusual trouble in mining; at least the writer has heard very few complaints in regard to these conditions. Neither is there any unusual trouble from water or gas. The construction of railroads to the mines presents no great difficulties. At present abundant timber and water is obtainable in immediate proximity to the mines.
feneral orncacter of the con
The chemical composition of the coal is shown by the subjoined table of analyses by the United States Bureau of Mines.

The samples of coal were obtained by channeling the bed rom top to bottom and rejecting the impurities that at rejected in mining. About 50 pounds of coal was thus cut from a fresh working face and reduced by pulverizing and quartering to a sample containing 1 quart. This sample wa sealed in a galvanized-iron can, in which it was transmitted to the chemical laboratory. By these means analyses were obtained that probably nearly represent the actual composition of the coal as it is mined. A number of other analyses are published in Squire's report on the Cahaba field.

In the table the analyses are given in three forms, marked \(\mathrm{A}, \mathrm{B}\), and C. Analysis A represents the sample as it come from the mine. This form is the one best suited for a comparison of one coal with another. Analysis B represents th sample after it has been dried at a temperature a little above the normal until its weight becomes constant. Analysis B thus represents the theoretical condition of the coal after all the moisture has been eliminated. Analysis C represents the coa after all moisture and ash have been theoretically removed This form is supposed to represent the true coal substance, free from the most significant impurities. Analyses B and C are obtained from analysis A merely by recalculation. The should not be used in determining the value of the coal for practical purposes, for they represent theoretical substances that do not exist.
In the analytical work it is not possible to determine the proximate constituents of coal or lignite with the same degree of accuracy as the altimate constituents. Therefore, in the proximate analyses the moisture, volatile matter, fixed earbon, and ash are given to one decimal place only, whereas in the ultimate analyses the ash, sulphur, hydrogen, carbon, nitrogen, and oxygen are given to two decimal places. The determinatio of the calorific value to individual units is not reliable, and hence the British thermal units are given to the nearest tens.

According to these analyses, the Pratt coal of the Warrio field in the Bessemer quadrangle averages 3.2 per cent mois ture, 26.6 per cent volatile matter, 65.2 per cent fixed carbon, 5.0 per cent ash, and 0.74 per cent sulphur. The coals of the Cahaba field average 2.8 per cent moisture, 32.3 per cent volatile matter, 57 per cent fixed carbon, 7.9 per cent ash, and 0.92 per cent sulphur.

As samples of the Coosa coals suitable for analyses could not be taken, definite knowledge of their chemical composition is lacking. Probably they do not differ materially from the coals of the Cahaba las. In both the Ware and Chaba flele the amount of impurities-clay and shale partings and sul phur-in some beds makes washing necessary before coking iron ore

The hematite iron ore of the Birmingham district occurs in the Red Mountain formation. This formation carries ore bed wherever it is present, but only on Red Mountain north of Sparks Gap and eastward beneath Shades Valley and the Cahaba coal field to an unknown limit is there an ore bed of sufficient thickness and persistence and of good enough quality to be worked with profit at present. Outside of the area just outlined the beds of ore are in general comparatively thin, and even where thick they carry only a small proportion of good or indifferent ore in streaks separated by ferruginous shale or sandstone

\section*{ore beds ox red momytaik}

Big seam.-The Big seam only is of present value in the Bessemer and Birmingham quadrangles. Its geologic relations have been set forth under the heading "Stratigraphy" (p. 8). In the Bessemer quadrangle it extends as a minable bed on its outcrop along the crest of Red Mountain from Sparks Gap to the north boundary of the quadrangle. From its outcrop it dips eastward beneath Shades Valley and the Cahaba coal field and probably extends to the Helena fault north of the Acton basin and thence north to the north boundary of the Vandiver quadrangle. Along the west base of Shades Mountain it is 1,900 to 2,000 feet deep, and beneath the deepest part of the Cuhaba trough in the Acton basin it is not less than 7,000 feet and probably is 8,000 feet deep. On its outcrop along Red and probably is 8,000 feet deep. On its outcrop along ked
Mountain and throughout the areas explored in deep mining the Big seam is 16 to 20 feet or more thick and is separated the Big seam is 16 to 20 feet or more thick and is separated
into two benches as a general rule by a parting near the midinto two benches as a general rule by a parting near he mid-
dle. The upper bench, 7 to 12 feet thick, is a fairly uniform dle. The upper bench, 7 to 12 feet thick, is a fairly uniform and quantity to the ore of other areas or beds that nearly all and quantity to the ore of other areas or beds that nearly all the active red-ore mines of the Birmingham district are concentrated upon it within the Bessemer quadrangle. The thickness of the upper bench decreases to \(4 \frac{1}{2}\) feet at Sparks Gap, where the bench is also broken by thin partings, showing plainly a deterioration southwestward, and it probably becomes worthless not far sonthwest of Sparks Gap. The lower bench is broken by partings of shale and sandstone. In some places it has no good ore; in others it has a layer of possibly minable grade \(2 \frac{1}{2}\) to \(4 \frac{1}{2}\) feet thick, as at the Woodward and Sloss mines, east of Bessemer

Ida seam. -The Ida seam consists of 2 to 6 feet of rather siliceous ore associated with 14 to 16 feet of ferruginous sandstone. It has been recognized at many of the workings from Bald Eagle Gap, in the Birmingham quadrangle, to a point south of Clear Branch Gap. The seam is in general from 3 to 5 feet thick where worked, and soft ore only has been obtained from it in surface workings. Such ore carries 35 to 44 per cent of metallic iron, and 32 to 42 per cent of silica. The Id seam occurs 20 to 50 feet above the top of the Big seam.
Hickory Nut seam.-The Hickory Nut seam, which is not an iron ore, comprises 3 to 5 feet of ferruginous sandstone, characterized by a great abundance of Pentamerus oblongus, the internal casts of which resemble the partly open hull of a hickory nut. It lies about 12 to 20 feet above the Ida seam.
Irondale seam.-As shown under the heading "Stratigraphy" p. 8) the Irondale seam is not of economic value in the Bessemer quadrangle
charactrr of the orrs
The iron ores of the Red Mountain formation are red hematite, and as much of this ore is fossiliferous it is called fossil ore. Some of it is also "oolitic." The mass of the ore is amorphous red hematite mixed with calcium carbonate, silica, alumina, magnesium carbonate, and other minerals in minor quantities. The ore with its associated minerals occurs in beds analogous to strata of sandstone, shale, and limestone and is interbedded with such rocks.

As the ores of this region have been fully described elsewhere it seems unnecessary to go more into detail concerning the less valuable deposits. 28 The following description is therefore confined to the areas that carry ore at present workable.
The fossil ore consists of aggregates of fossil skeletal forms such as bryozoans, crinoids, corals, and brachiopods. These forms, consisting of broken and waterworn fragments, which were originally composed of calcium carbonate, were gathered by the action of waves and currents into beds and subsequently cemented together by calcium carbonate and iron oxide, the organic calcium carbonate of the fossils being at the same
time replaced by iron oxide. More or less clay, fine sand, and time replaced by iron oxide. More or less clay, fine sand, and
small quartz pebbles were likewise included in the beds during small quartz peb
their formation.
their formation.
The oolitic ore consists of aggregates of flat grains with rounded edges, somewhat of the size and shape of flaxseeds. These grains generally lie with their flatter sides parallel to the bedding planes of the rock, and the mass is cemented by ferric oxide and more or less calcium carbonate. The flat grains have a nucleus of quartz, generally very minute, about which successive layers of iron oxide and in many grains very thin layers of silica and aluminous material have been deposited. One of the two varieties of ore generally predominates in a bed, but in some localities the fossil and oolitic materials are mixed in nearly equal proportions. The fossil ore where unweathered, as compared with the oolitic ore in the same condition, is apt to be the more calcareous, whereas the oolitic ore may carry higher proportions of silica and alumina.

Where the material is accessible to surface water the calcium carbonate is dissolved out of the beds, thereby increasing the proportional content of iron oxide, silica, and other constituents. Such altered ore is popularly termed "soft ore"; it is usually porous and friable as compared with the unaltered material, which is termed "hard ore." The "soft ore" is practically exhausted.
Chemical composition.-Conditions of blast-furnace practice determine the grade of material that may be regarded as an ore. For example, a lower percentage of metallic iron and a higher percentage of impurities may be allowed in a limy ore than in one that contains but little lime. Where brown iron ore is available a red ore high in calcium carbonate can be used as a flux, although it runs so low in iron and so high in lime that it could not be used by itself. In general, the hard and semihard ores used in the Birmingham district range in major constituents as follows: Metallic iron, 32 to 45 per cent ; calcium carbonate, 5 to 20 per cent; silica, 2 to 25 per cent; alumina, 2 to 5 per cent; magnesia, 1 to 3 per cent; phosphorus, 0.25 to 1.5 per cent; sulphur, a trace to 0.5 per cent; manganese (locally), 0.25 per cent; and water, 0.5 to 3 per cent. The ore is therefore of the non-Bessemer kind. In the
soft ore the lime generally runs less than 1 per cent, so that soft ore the lime generally runs less than 1 per cent, so that
the percentages of the other constituents are proportionately the perc
higher.

\section*{higher.}

The analyses in the table on page 21 show a typical hard ore (No. 1), a typical soft ore (No. 4), and intermediate or semihard grades (Nos. 2 and 3). These analyses represent samples of ore from a single slope on the same horizon of the Big seam in Red Mountain, near Birmingham, at distances respectively of 540 , 480,420 , and 240 feet from the mouth of the slope. Beyond the point at which the material represented by analysis No. 1
the Birmingham district, Ala, with chapter on the origin of the ores by the Birmingham district, Ala, with chapter on the origin of
E. C. Eckel. U. S. Geol. Survey Bull. 400, 204 pp., 17 pls., 1910 .
occurs there is no great change in the character of the ore, for as mined at present the seam carries an average of 35 per cent of metallic iron in this particular mine.
Analyses of iron ores from the Bio seam (of Clinton age), showing grada-
tion from hard to soft ore
\begin{tabular}{|c|c|c|c|c|}
\hline & 1 & 2 & : & 4 \\
\hline Iron, metallie (Fo) & 37.00 & 45.70 & 50.41 & 54.70 \\
\hline Silien (\(\mathrm{SiO}_{3}\)) & 7.14 & 19.76 & 12. 10 & 13.70 \\
\hline Alumina (\(\mathrm{Al}_{4} \mathrm{O}_{3}\)) & 3.81 & 4.74 & Q. 08 & 5.66 \\
\hline Lime (CaO).. & 19.20 & 8. 70 & 4. 65 & . 50 \\
\hline Manganeso (3n) & . 23 & 19 & , 21 & . 23 \\
\hline Sulphur (8) & . 08 & . 08 & . 07 & . 08 \\
\hline Phosphorus (P) & . 30 & . 49 & . 46 & 10 \\
\hline
\end{tabular}

Specific gravity. The Red Mountain ore exhibits a rather wide variation in specific gravity, which is due to variations in composition and structure. Experiments with 1 -inch cabes and lumps of ore show that the specific gravity of certain southern Appalachian so-called Clinton ores ranges from 2.93 to 3.56 . These figures correspond roughly to weights of 183 to 225 pounds per cubic foot and to volumes of 12.25 to 10 cubic feet per long ton.
hexbhichatios of Low-Gradk ork

The ore in the lower bench of the Big seam, which is not mined, contains about the same percentage of metallic iron as that in the upper bench, but owing to the larger percentage of silica and alumina and the smaller percentage of calcium carbonate it can not be profitably smelted at the present prices of iron. However, this ore can be treated so as to eliminate metallic iron in the residue. Such treatment is technically called beneficiation. In the future, as the deposits of highercalled beneficiation. In the future, as the deposits of highergrade ore become exhausted and the price of iron increases, in the Birmingham district, can probably be utilized. Much in the Birmingham district, can probably be utilized. Much
of this ore may be permanently lost, however, through the of this ore may be permanently lost, however, through the
settling of the roof of the present mines in the upper bench of the Big seam, which will make mining the lower bench imposthe Big seam, which will make mining
sible or coostly as to be prohibitive.
miniso cosmmoss
The ore bed and inclosing rocks dip southeastward under Shades Valley at angles of \(10^{\circ}\) to \(30^{\circ}\). Locally the dip is greater than \(30^{\circ}\), but over most of the area of the Big seam it is less than \(20^{\circ}\). In a few mines, as Spaulding, Woodward, and Potter No. 1, faults bave been encountered ranging in displacement from 14 to 300 feet though the maximum amount is unusual.
In a number of the mines the considerable irregularities of dip produce structural rolls. Exposures in Shades Valley also disclose local irregularities, such as vertical or overturned beds. Slight faults, such as those in the mines, are known, and probably there are others. There is a fault just east of Graces Gap and another on the cast side of the area of Fort Payne chert in the vicinity of Morgan.

The beds inclosing the ore make a strong roof and floor to the mines, and this feature, combined with the thickness of the ore and the generally medium dip, are favorable to mining. The water supply is adequate and near at hand. The mines are easily accessible by ruilroad, and transportation is cheaply provided.
The pillar and stall method of mining is followed. Most of the mines consist of slopes driven at right angles to the strike with side headings driven to right and left on the level.

\section*{deyelopmests}

Twenty-six slope mines are now operating in the part of Red Mountain between Sparks Gap and Birmingham. The 5,000 feet or longer by this time (1926) Probably four-fifths of the Red Mountain ore mined in the Birmingham district, amounting to \(6,312,207\) tons in 1925,23 comes from these mines. Detailed information on the mines and their products is given elsewhere. \({ }^{30}\)

\section*{mmatone and dolomite}

The Chickamauga and Newala limestones and the Ketona dolomite afford the best rock for lime, flux, cement, and other uses. The Conasauga limestone should afford rock suitable for some uses.

Chickamauga limestone.-The Chickamauga limestone crops out in a narrow strip at the west foot of Red Mountain, under which it dips at angles of \(10^{\circ}\) to \(20^{\circ}\). Much rock is accessible, however, free from cover of higher formations. Presumably it does not differ here materially from the rock at Gate City, in
the Birmingham quadrangle. Analyses of samples from an the Birmingham quadrangle. Analyses of samples from an old quarry half a mile north of Gate City show a composition
\#Figuren tarnished by Bureau of Mines, U. S. Dept Commerce
\(\#\) Burchard, E. \(\mathbf{F}\), and Butts, Charles, Iron ores. fuelk, and
 the Birmingham district, Sla., with ethapters on the origin of the ores by
E. C. Eekelt U. \& Geol. Survey Bull. 00 . 204 pp., 17 ple, 1910. See aliso

Beosemer-Vanaliver
of about 90 to 93 per cent calcium carbonate, 2.5 to 6 per cent silica, and 1 to 3.50 per cent iron oxide and alumina. The rock is nonmagnesian and suitable for cement. It is not so well adapted for lime and flux, however, as other rock in the district and is not likely to be in much demand for such use.
Newala limestone.-The Newala limestone is extensively exploited in Cahaba Valley for lime burning. The Keystone quarry and lime works are in this area. Part of the Newala limestone, comprising probably a thickness of 600 to 800 feet, is, with the exception of a few local beds of dolomite that are called sandstone by the quarrymen, a very pure calcium carbonate. The quantity of this rock is practically inexhaustible.
The following table gives analyses of the Newala limestone and the lime made from it. The Keystone quarry is in the Bessemer quadrangle; the other quarries are in the same belt of limestone but in the Montevallo quadrangle. The analyses are all given because the variations shown doubtless exist also in the Newala of the Bessemer-Vandiver area. They represent the extremes as well as the general average composition with sufficient accuracy for all practical purposes. The samples were collected and the analyses made by Robert S . Hodges, chemist of the Alabama Geological Survey.

The samples for the general average analyses were taken by chipping pieces from the face of the quarry amounting to about 40 pounds and representing a thickness of rock of about 200 to 300 feet. The select samples of course represent the best grade of stone. As shown by analysis 5 the best grade of stone contains over 99 per cent calcium carbonate. The granular layers (sandstone of the quarrymen) are highly magnesian. The most highly magnesian limestone approaches closely the composition of dolomite, as shown by analysis 6 , but the high content of calcium carbonate of the general average samples indicates but a small proportion of the high magnesian rock. For a series of analyses representing such a thickness of stone along an outcrop of 10 miles or more, the content of silica, alumina, and iron oxide is very low.
Analyses of lime made from Newala limentone from Cahaba Valley, Ala.

\section*{}

Ketona dolomile.-The Ketona dolomite yields a nearly pure calcium-magnesium carbonate, as shown by the analyses on page 3. A large part of the flux used in the blast furnaces of the region is derived from the Ketona, which is quarried in the neighborhood of Birmingham. A wide area of this rock in Opossum Valley forms a direct continuation of the area in which the quarries at Thomas and North Birmingham are located, and the rock is presumably of equal quality and as favorably situated for quarrying. There is another area of equally good rock exposed around the base of the Salem Hills southwest of Bessemer. In Cahaba Valley north of Helena the outcrop of the Ketona is narrow, indicating a steep dip, but south of Helena the outerop widens and the dip is probably not so steep. On Shoal Creek, \(2 \frac{1}{2}\) miles south of Maylene, in the Montevallo quadrangle, the rock dips \(20^{\circ} \mathrm{E}\), and is of excellent quality-in fact, rather better than in Birmingham Valley, as shown in the table of analyses.
The thickness of the formation in the valley south of Helena seems to be greater than elsewhere, but whether the quality of the whole mass is equal to that on Shoal Creek is unknown.
Conasauga limestone.-Very little is definitely known concerning the quality of the Conasauga limestone. Specimens cerning the quality of the Conasauga limestone. Specimens
collected from a quarry at Wheeling, near Bessemer, showed collected from a quarry at
the following composition: \({ }^{3_{1}}\)

This analysis is insufficient to determine the general charater of the Conasauga limestone. The rock analyzed is suitable for flux or for lime for most purposes. The Conasauga is utilized on a large scale for cement manufacture at Boyles, a few miles northeast of Birmingham.
Quarrying conditions.-Except the Chickamauga, which crops out on the west slope of Red Mountain, the limestone and dolomite formations crop out on the level valley floors and dip generally at high angles, necessitating open-pit quarrying below the level of the surface and consequently continual
pumping and the hoisting of the rock to a considerable height. pumping and the hoisting of the rock to a considerable height. Successful operations, therefore, demand a rather expensive equipment.

\section*{LIME AND CEMENT}

The raw materials of time and cement abound but are not much utilized. The Newala, Lenoir, and Chickamanga limestones are suitable for lime and cement; the Lenoir is utilized by the large cement mill at Leeds, in the Birmingham quadrangle, the Chickamauga supplies the lime works at Chepultepec, 30 miles north of Birmingbam, and the Newala supplies the limestone for the Keystone lime works and also for several other large lime works in Cahaba Valley south of Keystone. See analyses in second column.)
The cement plant at Leeds obtains its shale from the Floyd shale. Probably much of the shale in the Pottsville formation is suitable for cement.

\section*{chay and shale:}

The limestone and dolomite formations of the region are generally overlain by a layer of residual clay that is in places as much as 6 feet thick. This clay has been rather extensively utilized for common brick in the vicinity of Birmingham. In 1908 clay of this sort overlying the Conasauga limestone was utilized at the Standard Brick Works, 1 mile west of Bessemer. Shale suitable for making brick is present in enormous quantities in the Floyd, Park wood, and Pottsville formations. Both the Pottsville and Parkwood shales are utilized in the Birmingham region for common, pressed, paving, and chemical brick of most excellent quality

\section*{road metal}

The limestones and dolomites already described will afford exhaustless supplies of material for road making, both for oundations and surfaces. The sandstones of the coal measures and other beds will yield abundant material for foundation work. The chert of the region, especially the Fort Payne hert, is an ideal material for surfacing roads. A characteristic of the Fort Payne which especially facilitates its use for this purpose is its minutely fractured condition, at least near its outerop. It can be dug or blasted from its beds to considerable depths and comes out in a condition to go on the road with little or no further preparation. About 2 miles west of Bessemer chert is taken out in this way to a depth of about 100 feet. The comparatively brittle nature of the Fort Payne chert allows it to pulverize and become firmly compacted into a hard, smooth mass. The formation will probably yield chert practically reedy for the road at almost any place along its outcrop, and the supply easily accessible to transportation along the east flank of Red Mountain and in West End Mountain is inexhaustible.
Chert from the Copper Ridge dolomite has been used to ome extent for road dressing. It is taken from the banks adjacent to the roads, where the finer portions of the residual chert mixed with clay have accumulated at the bases of slopes. A considerable quantity of this material has been taken from a pit half a mile northwest of Mobile Junction, Bessemer.

\section*{building stonk}

Abundant sandstone for rough masonry occurs in the Pottsville formation, Park wood formation, Hartselle sandstone, and Red Mountain formation. A little brown sandstone has been taken from the Red Mountain formation in the vicinity of Gate City for superstructural work. However, very little stone of a quality suitable for such work can be obtained. In fact, the use of cement has practically supplanted that of stone for all kinds of coarse masonry, and there is practically no commercial demand for such rock as this region possesses.

\section*{soiss}

The Bessemer-Vandiver district has a variety of soils. The shale and sandstone of the Pottsville formation yield a soil that ranges from a sandy to a clay loam, depending on whether ndstone or shale predominates in the underlying rocks, from he disimtegration of which the soil is derived. These types of ine blended and modised by admixture with each other as resuk of the ear the soil by to 10 inches thick and are underlain by about 3 feet of sundy lay subsoil that contains fragments of rock. The soils themselves contain a considerable percentage of rock fragments, but as a rule the fragments are me and constita no obstacle to cultivation. The soil is of moderate fertility.

The valleys underlain by limestone and dolomite have some of the best soil．The soil which overlies the Ketona dolomite is a red clayey loam of great thickness and of high natural fertility．The areas of Copper Ridge dolomite and of Fort Payne chert have a soil composed of stony loam which is com－ paratively unfertile on the hills and ridges but is productive in the valleys and low－lying flat lands among the hills，where it has accumulated by transportation from the higher ground On the slopes and hills the soil is generally a white clay loam full of chunks of chert and boulders，which are an impediment to cultivation，but in the lower grounds the fragments of chert， though plentiful，are finer and less troublesome．The areas of Conasauga limestone have a reddish，yellowish，or black clay loam of good fertility．Locally these areas are low－lying， poorly drained，and unfit for tillage
The areas of Floyd shale in Shades and Cahaba valleys have a clay soil，in some places ill drained and little suited to ultivation
The alluvium along the streams is the best soil of the region， but it is of small extent．

\section*{ater resources}

Surface water：－The average annual precipitation in north－ astern Alabama，is 50 to 54 inches．This precipitation is usually so uniformly distributed throughout the year that the surface water supply is ample for all needs，including potable water，water for stock，and water for industrial establishments that require large quantities for steam，coal washing，blast fur－ naces，and other uses．There are a good many large springs in the limestone areas．Hawkins Spring north of Bessemer， which has a flow of \(2,700,000\) gallons daily，is one of the largest． This indicates a considerable underground circulation in the limestone．Springs are less common and smaller in the belt of shale and sandstone，as Shades Valley and the Cahaba coal held．Here，however，a sufficient supply of water for domestic uses can be obtained in wells generally not over 50 feet deep． Ground water．－Three wells， 100 to 150 feet deep，drilled in the Conasauga limestone at Schillinger＇s brewery，in Bir－ mingham，yield 250 gallons of water a minute each and have never shown any signs of exhaustion．Probably this limestone and the other limestones that crop out in the valley would yield abundant water，which would，however，have to be raised by pumping．The structure in the Cahaba coal field and along he Dunnavant syncline is ideal for artesian wells．The Shades and Pine sandstones，which should be good water car－ fiers，crop out along the high ridges and underlie the surface t moderate depths on the flanks or near the axes of the syn－ lines．It seems almost certain that strong flowing wells could be obtained by drilling to the sandstone beds on Patton Creek ear Little Valley Mountain in the Bessemer quadrangle or nywhere along the valley bottom between Oak and Double Oik mountrins from Big Narrows to Dunnavant．The struc－ tural conditions are displayed in structure sections \(A-A^{\prime}\) and P＇ all
Potable and domestic valer．－Potable water is supplied by many springs and by the streams fed by such springs，and permanent supplies of potable water for farm use are obtainable most everywhere from wells less than 50 fed deep．The of the underlying rock formations．The range in quality and
omposition of this water is shown in the accompanying table f analyses．The water from the limestone formations is of course hard water；that from the areas of Floyd shale varie ccording to the location of the well，some being high in hard ess and some low．The analyses of the water of the Allinder and adjoining wells，Nos． 13 to 16，show the highest hardness The differences are probably due to the presence or absence of imestone layers in the vicinity of the wells．Nearly all the sumples from the Pottsville areas are of low hardness；they are freestone waters．
No notable mineral water is known or reported from the Bessemer－Vundiver area．

Approximute anilyees of icaters of the Birmingham district，Ala．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Dutat & & 号 & & & है & 3 & & 喆 & & S \\
\hline & Jana，12， 1918 & \({ }^{1 \times 1}\) & ， & & 12.6 & 40.0 & Trase & & & 150 & \\
\hline & Nor． 14.1018 & \％ & \({ }^{1285}\) & 12.6 & 13.1 & 4 & & 31．0 & & 180 & \\
\hline & & 10 & \({ }_{108}^{108}\) & \％ 9 & \(\underset{\substack{12,9 \\ 7.1}}{\substack{\text { a }}}\) & & \({ }_{\text {Tra }}\) & \％ & & 䞨 & \\
\hline & Nor． 1.1 & & W & 2.5 & 17，8 & & & & 8.2 & & \\
\hline & & \({ }_{100}^{108}\) & & 10．8 & 19.9
8.4 & \({ }_{\text {m }}^{4}\) & Trace & 4 & 6．8． & 178.8
188 & 3 \\
\hline & Jan 12 ，tum & & m & \({ }_{7} / 5\) & a & 5．0 & & 2.4 & 20.3 & H2， 2 & \\
\hline & Nor 14.1 m & ， 1 I & \({ }^{100}\) & 0.9 & 8.4 & \({ }^{3}\) & Tr & 20 & x．0 & 18 & \\
\hline 1 & & \({ }_{\substack{18 \\ 18}}^{1.8}\) & \({ }^{18}\) & 5， & 12.8 & 17．4 & & 2.9 & 50． & 150.8 & \\
\hline & Jan， 17 ，mom & 14 & & Trame & 1.4 & 2.8 & Trame & ． 4 & 2.8 & 6.1 & \\
\hline & Sor，1，110 & m & \({ }^{4}\) & 30.1 & \％．1 & an & & 130.8 & \％n & min & \\
\hline & Jan it． & \％ & cos & & 8i， & \begin{tabular}{c}
10,9 \\
1180 \\
\hline
\end{tabular} & True & & & \％ & \\
\hline & San 11 ，vix & m & 15 & 3.4 & \％． 8 & & & 2.45 & 6． 1 & m． 7 & \\
\hline & Jase 17 ， & ＊ & \({ }^{\text {a }}\) & \({ }^{\mathrm{m}} \mathrm{H}\) & ＂ & \({ }^{29}\) & Tr & c． 6 & ＊． & 30.3 & \\
\hline & Sor 14． & & ＊ & 38 & 2 & \({ }^{6}\) & & & 2.4 & 5 & \\
\hline & Jon & & & 2. & 1. & & & ． & \％3 & \({ }_{7}\) & \\
\hline & xor 14，1912 & me0 & 120 & a． & ※． & \(=\) & & －． & 16 & sob & \\
\hline & & & \(a\) & & & \(=\) & Trae & & ， & ＊ & \\
\hline & 4， & & \％ & \({ }^{18.8}\) & \％． & & 1.5 & & ， & \({ }^{12}\) & \\
\hline & Sor． 14.1 m & 110 & 1＊ & 13.3 & 13．4 & \％ & & \％． 5 & \％ & 38 & \\
\hline & vor & \(\pm\) & 18 & 2.8 & 1.1 & & Trem & 2．85 & \％ & 18 & \\
\hline & ко． 4,101 & & 13 & & & & & 2.2 & & & \\
\hline & 4，1919 & & & & & & \％ & & 10 & 8 & \\
\hline & ¢， & & \％ & i． & He & & & & & 0 & \\
\hline & Nor． 4.1 & & & & & & & & & & \\
\hline & Yor．1． & \({ }_{120}\) & \(\stackrel{\text { m }}{\text { m }}\) & & & & & & 4.3 & & \\
\hline & Juni 17，19 & \％ & & ． 8 & & ， & & 9． & 2． 6 & & \\
\hline & & 13 & a & \({ }^{1.4}\) & \({ }^{11.3}\) & & & & & & \\
\hline & & & & 15．t & ， & & & 0 & & & \\
\hline & Jan 12，1414 & & \％ & & 4. & 8 & & \％ & ， & & \\
\hline
\end{tabular}

 mind waik

Stream flow．－No regular gaging stations have been main－ tained，but the following miscellaneous discharge measurement have been made on streams in the Bessemer and Vandive guadrangles．These mensurements and the data in the accom－ panying table compiled from records at gaging stations on panying adjacent to this area give an indication of the flow that may be expected．
\begin{tabular}{|c|c|c|c|c|}
\hline Date & \({ }^{\text {stroamm }}\) & Tributary io－ & Locality & Dimathrge \\
\hline Jon \({ }^{\text {wion }}\) & Hankion spriog & Valloy Crook & Your mila northent of & senen． \\
\hline \＃ & Csation tiver & Ablama River－ & & \\
\hline mar．ab & & dinoma & do so & 4．17\％ \\
\hline 198 & & & & \\
\hline Abys．s & do． & do- & mol & เร \\
\hline － & Huck Craik & Cahata River & ssituntera & \(m\) \\
\hline 103 & & & & \(\infty\) \\
\hline Nowre 18 & tattie Catata rever． & no． & & \\
\hline － 12 & da．．．． & do． & & \\
\hline －\({ }^{17}\) & do． & do & At fond blow Dehaws mili， & \\
\hline pte \(\pm\) & as & & & 0 \\
\hline 150 & & & & 9 \\
\hline Alue： & & & & \\
\hline & do & \({ }^{4}\) & At arralighum Columbiann & \\
\hline
\end{tabular}

Potential horsepower．－Cahaba River and the larger creeks re capable of developing considerable power for gristmills， awmils，small electric plants，and other uses．Cahaba River in the vicinity of Blocton，about 10 miles southwest of Bes－ emer，would yield 500 net horsepower with a 34 －foot dam and an 80 per cent turbine at ordinary low water．
In this district the flow of Cahaba River is of course smaller and the potential power correspondingly less，though still con－ siderable．A number of gristmills and sawmills utilizing 10 o 40 hossepower have been operated on different streams． Buck Creek at Helena supplies power for running a small electric plant for lighting the town．These plants，however， have developed but an insignificant part of the possible water power of the region．Similar small plants could doubtless be buitt on Cahaba River，Shades Creek，Valley Creek，and other streams．
December， 1925

COLUMMAR SECTIONS

PUTEII-BRECCIATED KETOMA DOLOMTE IN QUARAY OF REDUBLC
TRON \& TEELCO. THOMAS, + MLES NORTHEAST OF WVLAM

AESSEMER AND VANDIVER QUADRANGLES

 MITE, FROM NEWHOPE RIDGE, GORGE OF
BUCK
PELHAM

PLAT \(V\)-CRYTOZOON CF. O. PROLIFRRUM FROM
COPER RIDGE DOLOMTE MOSTELERR COUM. COPPER RIDGE DOLOMITE, MOSTELLER, COLUM.
BINA OADRAGLE, ABOUT 5 MLLE EAST OF
BHELBY

MATE VI,-CAVEANOUS FOSSILIFEROUS CHERT CHARACTERISTIC OF CHEPUL
TEPE DOLOMTE FROM EAT BASEON NEWHOPE RIDGE IN GORGE OF BUCK
CREK BETWENTELENA AND PELHAM

PLATK IX,-OLO QUARRY AT MOUNTAIN TERRACE, IN NORTHEASTERN ENVIRONS OF BIRMINGHAM
LOOKING EAST, SHOWING SAME SUCCESSION AS SHOWN IN PLATE VIII
\(\qquad\)

Showing pontion of bed of volanic ath (bentonit) ana the overinging imetone of Tretion ige. The betomite bed is about to freot above the bottom Contanite) and the overying limettonn of Tienton age. The beato

PLATE XVIII- SLAB OF PEBBLES FROM PARTING BETWEEN BIG SEAM
AND IRONDALE SEAM SHOWN IN PLATE XV
 the imetione caping the tentste vesm at fuyther No. I mine, porthert of
 PUTE XIX- SHALL IN GASPER FORMATION WITH OVERLYING HART
SELE SANDSTONE, REMGAA JUAT EAST OF GATE CITY, NORTH-
EAST ENVIRONSOF BIRMINGHAM The Red Gup failt, on mhich the mownent caung the earn

UTE XII- RED MOUNTAN FORMATION AT BASEOF CUT 20 FEET ABOVE BOTTOM OF THE FOR-
MATIN, TWENTETH STREET CUT AT BUMMIT OF REO MOUNTAN, BIRMINGHAM, LOOKING
EAST

PUTE XIV. BIG SEAM OF IRON ORE, TWENTIETH STRET CUT, RED MOUNTAIN, BIRMINGHAM.

\(\qquad\)

PLATC XX: Quarry at Vanns, 2 MILES NORTH Of TRUSSVILLE AND 16 MILES NORTHEAST

When it is desirable to recognize and map one or more specially developed parts of a formation the parts are called members or by some other appropriate term, such as lentils.

\section*{age of the formations}

Geologic time.-The largest divisions of geologic time are: alled eras, the next smaller are called periods, and the still maller divisions are called epochs. Subdivisions of the Pleiscene epoch are called amges. The age of a rock is expreat by the name of the time division in which it was formed.
The sedimentary formations deposited during a geologic period are called a syssem. The principal divisions of a system are called series. Any nggregate of formations less than a series is called a group.
As sedimentary deposits nceumulate successively the younger rest on the older, and their relative ages may be determined by observing their positions. In many regions of intense disturbunce, howerer, the beds have been overturned by folding or their relations to adjucent beds have been changed by faulting, so that it may be difficult to determine their relative ngee from their present positions at the surface
Many stratiied rocks conttin fossils, the remsins or imprints of plants and animale whieh, at the time the struta were deposited, lived in bodies of water or were washed into them or were buried in surficiul deposits on the land. Such rocks are said to be fossiliferons. A stady of these fossils hiss shown that the forms of life at each period of the earth's history were to a great extent different from the forms at other periods. Only the simpler kinds of marine plants and animals lived when the oldest fossiliferous roeks were deposited. From time to time more complex kinds developed, and as the simpler ones lived on in modified forms life became more varied. But during each period there lived forms that did not exist in earlier times and have not existed since; these are churracleristic types, and they define the age of any bed of rock in which they are found. Other types passed on from period to period and thus linked the systems together, forming a chain of life from the time of the oldest fossiliferous rocks to the present. If two sedimentary formations are geographically so fir apart that it is impossible to determine their relative positions the characteristic fossils found in them may deternine which was deposited first. Fossils are also of value in determining the age of formations in the regions of intense distarbince men-
tioned above. The fosesis found in the strats of difterent ureas tioned above. The fossils found in the strata of different areas, provinces, and continents afford the most effective means of combining local histories into a general earth history.
It is in many places difficult or impossible to determine the age of an igneous formation, but the relative nge of such a formation can in general be sscertuined by olserving whether an associated sedimentary formation of known age is cut by the igneous mass or lies upon it. Similarly, the time at which metamorphic rocks were formel from the original masses may be shown by their relations to adjaeent formations of known age; but the age recorded on the map is that of the original masees and not that of their metumorphism.
Symbols, colors, and patterus.- Wach formation is shown on the map by a distinctive combination of color and pattern and is labeled by a special leter symbol.
Patterns composed of parrullel straight lines are used to represent sedimentary formutions deposited in the sea, in lakee, or in other bodies of standing water. Patterns of dots and circles represent alluvin, ghecial, and eolian formations, Patterns of triangles and shombs are used for igneous formations Metamorphic roeks of unknown origin are represented by short dashes irregularly placed; if the rock is sclise the deshees may be arranged in wavy lines parallel to the structure plane Suitable combination patterns are used for metamorphic formations that are known to be of sectimentary or of igneous orivin. The patterns of each class ure printed in varions colors. The colors in which the patterns of parallel lines are printed indicate age, a particular color being assigned to exch system.
Esch symbol consists of two or nore lettens. The symbol for a formation whose age is known includes the system symbol, which is a capital letter or monograim; the symbols for other formations are composed of small letters.
The names of the geologic time divisions, arrunged in order from youngest to oldest, and the color and symbol assigned to each system are given in the subjoined tuble.

Hell
Hills, valleys, and all other surfice forms have been produced by geologic processes. Most valleys are the result of erosion by the streams that flow through themb (see big. 1), and the alluvial plains that border many streams were built up by the streams; waves cut sea cififs, and waves and currents
build up sand spits and bars. Surfice forms thus constitute part of the record of the hisiory of the earth.

Some forms are inseparably connected with deposition. The hooked spit shown in figure 1 is an illustration. To this class belong beaches, alluvial plains, lava streams, drumlins (smooth oval hills composed of till), and moraines (ridges of drift made at the edges of glaciers). Other forms are produced by erosion. The sea cliff is an illustration; it may be carved from any rock. To this class belong abandoned river channels, glacial furrows, and peneplains. In the making of a stream terrace an alluvial plain is built and afterward partly eroded away. The shaping of a plain along a shore is usually a double process, hills being vorn away (degraded) and valleys filled up (aggraded).
All parts of the land surfice are subject to the action of air, vater, and ice, which slowly wears them down, producing mateial that is curried by streams toward the sea. As this wearing down depends on the flow of water to the sea it can not be carried below sea level, which is therefore called the base-lovel of erosion. Lakes or large rivers may determine base-levels or certain regions. A large tract that is long undisturbed by uplift or subsidence is worn down nearly to base-level, and the fairly even surface thus produced is called a peneplain. If the ract is ufterward uplifted it becomes a record of its former close relation to base-level.

\section*{THE GEOLOGIC MAPS AND SHEETS IN THE FOLIO.}

Areal-geology map. - The map showing the surface areas accupied by the several formations is called an areal-ycology mutp). On the margin is an explanation, which is the key to the map. To ascertain the meaning of any color or pattern and its letter symbol the reader should look for that color, pattern, and symbol in the explanation, where he will find the name and description of the formation. If he desires to find any purticular formation he should examine the explanstion and find its name, color, and pattern and then trace out the areas on the map corresponding in color and pattern. The explanation shows also parts of the geologic history. The names of formations are arranged in columnar form, grouped primarily according to origin-sedimentary, igneons, and metamorphie rocks of unknown origin-and those within each group are placed in the order of age, the youngest at the top. Economic-yeoligy map.-The map representing the distribufion of useful minerals and rocks and showing their relations to the topographic features and to the geologic formations is termed the ceonomic-yeology map. Most of the formations ndicated on the areal-geology map are shown on the economicgeology map by patterns in fuinter colors, but the arcas of productive formations are emphasized by strong colors. A mine symbol shows the location of each mine or quarry and is accoropanied by the name of the principal mineral product mined or quarried. If there are important mining industries or artesian basins in the area the folio includes special maps showing these additional economic features.
Structur-section sheel.-The relations of different beds to one another may be seen in cliffs, canyons, shafts, and other natural and artificial cuttings. Any cutting that exhibits these relations is called a section, and the same term is applied to a diagram representing the relations. The arnangement of the beds or masses of rock in the earth is called structure, and a section showing this arrangement is called a structure section.

a vertican bection be
and a view beyond.
The geologist is not limited, however, to natural and artiicial cuttings for his information concerning the earth's structure Knowing the manner of formation of rocks, after tracing out the relations of the beds on the surface he can infer their relative positions beneath the surface and can draw sections representing the probable structure to a considerable depth. Such a section is illustrated in figure 2.

Fiavnic 3.-Symbols used in semtions to ropresent different kinde of roek.
The figure represents a landscape that is cut off sharply in the foreground on a vertical plane so as to show the underground relations of the rocks. The kinds of rock are indicated
by appropriate patterns of lines, dots, and dashes. These
patterns admit of much variation, but those shown in figure 3 are nsed to represent the commoner kinds of rock.
The plateau shown at the left of figure 2 presents toward the lower land an escarpment, or front, made up of sandstone which forms the cliffs, and shale, which forms the slopes. The broad belt of lower lawd is traversed by several ridges, which as shown in the section, correspond to the outcrops of a folde bed of sandstone that rises to the surface. The upturned edges of this bed form the ridges, and the intermediate valley follow the outcrops of limestone and calcareons shale.
Where the edges of the beile appear at the surface their hickness can be measured and the angles at which they dip below the surface can be observed, and by means of these observations their positions underground are inferred. The direction of the intersection of the surface of a dipping bed with a horizontal plane is called its strikc. The inclination of the bed to the horizontal plane, measured at right angles to he strike, is called its dip.
In many regions the beds are bent into troughs and arches, such as are seen in tigure 2. The arches are called anticlines and the troughs synclines. As the materials that formed the sandstone, shale, and limestone were deposited beneath the seat in nearly flat layers the fact that the beds are now bent and olded shows that forces have from time to time caused the arth's crust to wrinkle along certain zones. In places the beds are broken across and the parts have shoped pa faults ther. Shown in figure 4 .

Frevre 4--Ideal mections of broken and bent strath, sho
faults und (t) a thrust or recerce fault.
At the right of figure 2 the section shows schists that are raversed by igneous rocks. The schists wre mueh contorted, and the form-or arrangement of their masees underground cam not be inferred. Hence that part of the section shows only what is probable, not what is known by observation
The section also shows three sets of formations, distinguished by their underground relations, The uppermost set, seen at the left, is made up of beds of sandstone and shale, which lie in a horizontal position. These beds were laid down under water but are now high above the sea, forming a plateau, and their change of altitude shows that this part of the earth's surface has leen uplifted. The beds of this set are coa-formable-that is, they are parallel and show no break in sedimentation.
The next lower set of formations consists of beds that are folded into arches and troughs. The beds were once continuous, but the crests of the arches have been removed by erosion. These beds, like those of the upper set, are conformable.
The horizontal beds of the platean rest upon the upturned, eroded edges of the beds of the middle set, as shown at the left of the section. The beds of the upper set are evidently younger than those of the middle set, which must have been folded and eroded between the time of their deposition and that of the deposition of the upper beds. The upper beds are unconfornable to the middle beds, and the surface of contact is an unconformily.
The lowest set of formations consists of crystalline schists and igneous rocks. At some period of their history the schists were folded or plicated by preasure and intruded by masses of molten rock. The overlying beds of the middle set have not heen traversed by these intrusive rocks uor bate they been sffected by the pressure of the intrusion. It is evident that considerable time elapsed between the formation of the schisto and the beginning of the deposition of the beds of the midale set, and during this time the schists were metamorphosed, disturbed by the intrusion of igneous manses, and deeply disturbed by the intrusion of igneous manses, and deeply roded. The contact between the middle and lowest sets is two periods of depusition.
The section and landscape in figure 2 ure ideal, but they Illustrate setual relations. The sections on the structurellustrate sctuai relations. The sections on the structure that the section in the tirnwe is related to the landseope- way profile of the surliee in ehach structure section co se. The profile of the surace in each structure section corresponds to the actual slopes of the ground along the section line, and
the depth to any mineral-producing or water-bearing bed the depth to any mine al-producing or water-bearing bed shown may be measured by using the scale given on the map. which contuins hrief descriptions of the sedimentury forman the pula It shows the dometer of the rectas well in the quadrangle. It shows the character of the rocks as well as the thicknees of the formations and the order of their accuumplation, the oldest at the bottom, the youngest at the top. It also indicates intervals of time that correspond to events of uplift and degradation and constutute interruptions of deposition.

\section*{THE TEXT OF THE FOHO.}

The text of the folio states briefly the relation of the area mapped to the general region in whid it is situated; points out the salient natural features of the geography of the area and indicates their significance and their history; considers the cities, towns, roads, railroads, and other human features; describes the geology and the geologic history; and shows the character and the location of the valuable mineral deposit

PUBLISHED GEOLOGIC FOLIOS
```

