

WATERFOWL SURVEY FEFORT 1506

 INNOKO NATIONAL WTLDLIFE REFUQE:

Frepared by
Michael F. Smith

KEY WORDS:
survey, waterfowl, brimody density, habitatg stratificationg bamcing.

INNOKO NATTONAL WILDLTFE REFUGE F. O. BOX E9

MEGRATH, ALASKA $996 E 7$

```
November 3. 159E
```


A R R

Alaska Resources
Library \& Information Services
Anchorese Alasisa

WATERFOWL SURVEY REFORT $198 E$

 INNOKO NATIONAL WILDLIFE REFUGEIrtroduction

Waterfowl nesting corditions an the Immoki in 1986 were much improved over the flacding ard late sprimg of 1985 Light
 throughout the Irmoko basim. This, coupled with a dry May ard Jume, allowed good corditions for successful nestimg and Matchirg.

Ereeding Eair Survey

The armual spring breeding pair survey, comducted by persormel from Waterfowl Irivestigations in Jurieau, was completed on 31 May 1986 . As expected, this survey showed a marked irorease over 1985 duck populatiors. Total ducks observed were up 106% over the 1985 survey. Additiarially, 1996 populations were $\Xi 7 \%$ nigher than the nine-year mean for this survey (Table i): major duck species ericourtered (irs order of abundance) were pirtaily wigeor, greermwinged tealy shoveler, scaup ard mallard.

Duck Erood Surveys
Methods

Eraod survey sampling methods are described in the Refupe Inventory Flam \#E, and fallow stardard techriques far bradd surveys. Ths basic sampling uritis is a 1 -square-mile sectiont All lakes within each sample urit are surveyed or foot or by cancre.

Nineteen eighty-six was the second year randomly-selected sample units were surveyed, and the fimst year that e brogd surveys were canducted; ore early survey, ard come late survey. The sample urits were selected in 1985 usirg the following method:

Townships were randomly selected using computer-gemerated rumbers. Them a section im the township was ramdomly selected in the same mammer. If the section contained surface water and was accessible by boat or float plane (withiri mile), it was included; otherwise, it was rejected and the process was repeated from the first step of

Table 1. Haterfoml breading pair population survey, Stratus 5-Imoko Basin. A comparison of population indices 1978-1986.

selecting a towriship. Tawriships were selected with replacement. Fifty sectians were selected to ersure that enough sample areas would be available because all may rict be as accessible as the map would indicate. A target of 34 sections was selected in 1985 because that represerited 1% of the acreage in the Irmoke (Stratum 5) portion of the Alaska-Yukor Waterfowl Ereeding Fopulation Survey. If mare than 34 sq. mi. carr be sampled withir the time frame, mare will be selected.

In additior to the usual methods, a helicapter bracd survey was conducted during the second brad court on 7 sample urits, E of which had already beer dore or foot. All lake edges were searched similar to the grourd survey. Ir, addition, the middle of large, vegetated lakes were searched mare irtensively with the helicapter.

Results ard Discussion
Twa bracd surveys were corducted in 1986; the first was E4 June - 1 July, and the secand was 29 July - 4 August. Twenty-seven urits were surveyed during the first period, and 34 during the second. We hoped to sample 46 plots during each survey. This was an optimistic gaal which we were rot sure could be accomplished with presert logistics ard persommel. We still do rot know, since the refuge $c-185$ crashed 25 June, E days into the first survey. No orie was injured but the program suffered a lagistical set-back. Most of the plots were done by boat after this irciderit.

A very large iricrease ir duck production was abserved this year over 1785 . This was expected because last year's flogd left much resting habitat cavered with water well irito June. Tables E and 3 summarize the data collected in the first and secand braad surveys, respertively. Using the secand brood crunt (because it is mast-representative), the average number af brocds/water bady in 1986 was Q. B. In 19日5, Q. 1 bracds/water body were observed. This is a 780% iricrease. Table 4 expresses the same data as broods/sq. mi. for the secand brad survey. Ir 1986 , there were $B_{0} 1$ broads/sq.mi., while ir 1785 anly 1.0 broods/sq.mi. were abserved-a 710% ircrease.

The data indicate that there was a 7812% increase in broods from 1985 to 1986 , but only a 106% irorease ir breeding pairs. This may not be as strarge as it seems. Many ducks must have stayed on the Irroko breeding grounds long erough to be counted in the spring survey, but were not able to rest in 1985 because of the flaading.

Table 2. Early brood survey sumary, Inmoko National Wildife Refuge, 1986,
Stratum: 5
Ponds Sampled: 235
1/4-mile sections of strears/rivers: 93.8
Total Hater Bodies: $\quad 328.3$.
Plots: 27 Randon Plots
Dates: 24 Jure -1 July
Total miles of river/stream: 23.45
Broed Count: First

	CLA5S I		CLASS II		CLASS II]		BROCDY HENS	TOTAL BRODOS	$\begin{aligned} & \text { AV. } \\ & \text { SIZE } \end{aligned}$	BRCODS PER WATER BODY
Sprcies	BROUDS	AV. SITE	brand	AV.SIZE	BROSDS	AV. SIIE				
Mallard	3	5.7	0	0.0	0	0.0	1	3	5.7	0.0
Higeon	10	6.8	1	7.0	0	0.0	7	11	6.8	0.03
G.4. Teal	3	2.7	0	0.0	0	0.0	5	3	2.7	0.00
Shoveler	7	7.6	1	6.0	0	0.0	6	8	7.4	0.02
Pintail	26	4.8	3	5.9	0	0.0	11	29	4.8	8.10
Subtotal	49	5.5	5	5.6	0	0.0	30	54	5.5	6. 15
Scaup 5pp. Goldeneye Bufflehead H. W. Scoter S. Scoter	1	8.6	0	0.0	0	0.0	0	1	8.0	0.06
Subtotal	1	8.0	0	0.6	0	0.0	0	1	8.0	0.06
Unid. Duck	1	3.0	0	0.0	0	0.0	0	1	3.6	0.00
Total	51	5.6	6	5.8	0	8.0	30	57	5.5	0.15

Table 3. Late brood survey sumary (including troods found off the plot/ Innoko National Wildiife Refuge, 1986

| Stratun: 5 | | Plats 34 Randosi plots |
| :--- | :--- | :--- | :--- |
| Ponds Sampled: 276 | | Dates: 29 July -4 August |
| $1 / 4$-aile sections of streas5/rivers: | 86.8 | Total miles of river/streans: 21.7 |
| Total Hater Bodies: 362.8 | | Bread Count: Second |

	CLASS I		CLASS II		CLASS III		BROCDY HERS	TOTAL BRODS	$\begin{aligned} & \text { AN. } \\ & \text { SIIE } \end{aligned}$	bRTODS PER WATER BODY
SPECIES	BATODS	AV. SIIE	BRDODS	AV. SIIE	bronis	AV. SIZE				
Mallard	1	1.8	5	4.2	5	4.2	5	16	3.9	0.84
Higem	7	3.75	35	5.1	2	5.3	13	58	4.8	0.16
6.H. Teal	7	5.3	27	3.3	8	3.8	17	59	3.8	6. 16
Shoveler	2	4.5	16	3.0	7	4.4	10	35	3.5	0.69
Pintail	5	5.75	36	3.7	17	4.1	10	68	3.9	0.18
Subtotal	23	4.8	120	3.9	39	4.1	55	236	4.0	0.65
Scaup spp. Eoldeneye	10	4.7	17	6.6	2	5.5	0	29	5.75	0.08
Bufflehead	1	7.0	0	8	0	0	0	1	7.0	0.003
U. W. Scoter	1	2.0	0	0	0	0	0	1	2.0	0.003
S. Scoter	1	6.8	2	3.5	0	0	0	3	4.3	0.008
Subtotal	13	4.7	19	6.3	2	5.5	0	34	5.5	0.69
Unid. Duck	6	3.25	10	2.6	0	0	1	18*	3.0	0.65
Total	40	4.7	149	4.6	41	4.2	56	288	4.2	0.80

[^0]Table 4. Late brood survey, sumarized by one-square-iale sample units.

Plot Mallard Wigeon \begin{tabular}{lllllll}
Greerrwing

Shoveler \& Pintail \& Scaup \& Scoter \& | Uniden- |
| :---: |
| tified | \&

\end{tabular}

E									
3									0
4	5	3	3			3	2		16
5	1	1	3	1					6
9	1	1			1				3
10									0
11			1						1
12									0
13	2	1	2	1	5	1		1	13
14				-					0
15	2	1	2	1	1				7
16			1						1
17			1		1	1		1	4
19		2	1	1	1	2			7
20		1		1			1		3
29				1					1
27		4	1	2	7	1			15
28		1	2	2	4			1	10
29									0
36			1	3	8	3			24
31		3	3	3		1		1	11
32		7	3		1	2			13
33	1				8	2			14
34			2	2	2	1		3	10
36			4						4
37		6	3	3	1	1		1	15
38		4	3	2	3			3	15
39			1				1		3
40		1							1
41			1						1
42	1	2	8	3	2	3			19
43		1							1
45	1	16	12	7	11	6		7*	60
46		1	1	1	7				10
TOTAL (34)	14	56	59	34	63	27	4	19	276

* Pre Bufflehead brood irciuded in Unidentified group to save space in the table.

Comparing Tables E and 3 , it can be seen that the first survey recorded arly one-fifth the number of broads counted an the second survey. The purpose of daing z counts is to catch bath the early and late nesting ducks. Unforturately, the first survey was about 1 week too early. Figure 1 shows the date of hatch by week of the year for the 6 major duck species. The first survey took place on the twenty-sixth week (es Jurie - 1 July), and the second on the thirty-first week (30 July - 5 August). It was hoped that the first survey would give a good estimate of dabbler production, because they mormally nest earlier, ard the second would estimate diver production and latemesting dabblers: a good brood survey should be timed to commerce about one week after the peak of hatch for the first survey, ard after the last hatching date for the late survey. As car be seen in Figure 1, if pirtails and scaup were all we were interested ing these survey dates would have sufficed. For wigeor, green-winged teal and mallards, the first survey should have been a week or two later. This would rot have been possible this year, since white-frorted goose banding began towards the latter part of the twerth-seventh week, 7 July. In 1987 y we will attempt to hold off about 1 week before we begir the first survey. This will of course depend on the phenalogy and banding time tables.

Regardess of problems with the first count, the second court did well at sampling bath divers and dabolers. The second count alone, if timed properly, would suffice at samplimg cur duck populatior. The second count was particularly good at samplirg scaup. The peak of hatch for this species was the twerity-seventh week, and remained strong through the twenty-ninth week (Fig. i). Evern with this late survey, only 4 scoter broods were observed. Scoters have never beer, Gbserved in large mumbers on the Immoc, particularly with brocds. However, with no late surveys being dore, it was possible that scoters had rot yet hatched at the $t i m e$ of survey. It seens now that scoters are not an imporiant breeder on the Imoko. A few more years of late surveys remain before comfirming that, however. One problem with this survey being so late is that many dabblers, especially pintails ard shovelers, were Class III's at the same time that moltirn ducks were in aburdance. It is possible to separate Class IIJ"s from molters, but requires diligence in observation and additional training For less-experienced seasonals.

Figure la. Estimated hatching dates, by Julian week, on the Innoko National Wildife Refuge. Julian week 22 was May 28 - June 3 in 1986.

Figure 1b. Estimated hatching dates, by julian week, on the Innoko National Wildlife Refuge. Julian week 22 was May 28 - June 3 in 1986.
\% of Brood Hatched
Widgeon

Figure 1c. Estimated hatching dates, by Julian week, on the Innoko National Wildiife Refuge. Julian week 22 was May 28 - June 3 in 1986.
\% of Brood Hatched Green-Winged Teal

Figure ld. Estimated hatching dates, by Julian week, on the Innoko National Wildife Refuge. Julian week 22 was May 28 - June 3 in 1986.

\% of Brood Hatched
 Northern Shoveler

Figure le. Estimated hatching dates, by Julian week, on the Innoko National Wildife Refuge. Julian week 22 was May 28 - June 3 in 1986.

Figure 1f. Estimated hatching dates, by Julian week, on the Innoko National Wildlife Refuge. Julian week 22 was May 28 - June 3 in 1986.

\% of Brood Hatched
 Scaup

The mumber arad relative percentages af duck braads abserved in the secomd ramdom survey are listed ir the folldwirg tablé

Species \qquad

Firitail
Greeri-wirged teal
Wi near
Shaveler
Scaup
Mallard
Sccters
Eufflehead

Total
*Eighteer urideritified bracds were mat iricluded irithis table.

This survey, if used as ar, irdex gf refuge duck productior, from year-to-year, will suffice for that purpose. ThiE year's 8.1 bragds/ sq. mi. will be a goud basis ori which to judqe mext year's productiorg if the same raridom samples are surveyed. A shortcomimg of the currenert simple ramodar samplimg method is rigted when an attempt is made ta estimate total praductior gr, the refuge by extrapolatirg broads/sq.min to the ersire wetlard acreage. The problem is that our samplimg scheme urider-samples extemsive areas of small lakes ard streams because of imaccessibility. These areas are typically muskeg arid upper reaches of small streams where productivity is usually low. This carn cause a bias ir averestimatirg the population and production of waterfawla

Ar attempt was made this year to stratify the sample areas. based or, rumbers of browds gbserved, iroto high, medium, arad low strata. We ther used color-irifra red phatos arad LaridSat data arad divided the refuge irta these strate. Figure E shows these divisioms. Although rearly half the refuge is wetlara, approximately $B Q \%$ af this area is law-dersity waterfowl habitat. Meary bracd dersity from high to low strata rariges from 16. 75 bragds/sq. mi. ta 1. Es briogds/sq. mi (Table S). Using Table 5 as a guide ir ariattempt to estimate total duck praduction for the refuge, we fird arn incorsistericy. The simple raridom survey, without

 extrapalatirg withim each strata ard addirg them up orly gives about 8 , gubu braods produced ar the refuges arly Gre-third af the E4, Buba. The lawer rumber probably mare

Table 5. Couparison of brood data collected in 3 possible strata, based on observed brood censity and a conbination of all strata (siaple rapdon survey). Imoko National Wilolife Refuge, 1986

Strata	Square miles of Habitat	Sample Units Withir Strata	Man Eroods/sq. mi.	$\begin{gathered} \text { Confidence interval } \\ \text { at . } 89 \text { level } \\ +\ldots \\ \hline \end{gathered}$	
High	165	12	16.75	5.37	32
Hevium	440	14	5.42	2.18	40
Low	2300	8	1.85	0.58	48

accurately represerts reality, sirce the random sample is biased towards higher dersity habitat. Corfiderce irtervals are so noticeably large that meither of the figures can be taker seriousiy for the time being, ard are orly presented here as ball park figures. We will cortimue ta refire this survey ir the future while relying on the Index as cur most ifflomem art produet derived from it.

Two mon-random sample areas were surveyed this year to estimate production or draw-down, "puddled" lakes. These lakes are river-commected with a shallow, ureven bottom which creates mumerous, small lakes or puddles wher the river drops in July and August. These are the most productive lakes or the refuge, but are very few ir rumber, tatallirg 5-10 sq. mi. Most are in the Iditarod river area, though some are located on the lower Irmako. Because of their scarcity, they are not represented in the mandom survey, but because of their value, Ξ sample areas totalling 1.14 sq . mi. were selected to track production in these areas. Table ϵ records broods fourd on these sample areas. Here we fourd $E 9.75$ broods/water body, compared to 0.8 brouds/water bady for the raridon survey. Wher worked out by area, "puddled" lakes produced over 180 bracds/sq. mi, while the raridom survey averaged 8.1 brccads/ sq. mi.

Vegetative ard physiggraphic descriptiors were filled cut for each lake surveyed. We hope to use this information to further understand habitat preferemces ard use by waterfowl.

A helicapter brocd survey was conducted on 7 sample urits by Wike Smith on 1 August 1986. The idea of usirg a helicopter was mairily to survey those cut-af-the-way muskeg plots which are very low in productivity and hard to walk. It was also to test sightability of broads from a helicopter. Ir order to do this, E of the sample units surveyed by helicopter were iritially surveyed or foot. One lake Gr flot 19, which was approximately equ ft lang by 75 ft wide, was abserved to have 5 duck broads and about 4 molting shovelers on 3 July. The helicapter survey E days later missed one pintail brocd that had no hen with them Gri the 3Qth, but picked up a wigear, brod not seen on the 30 th . This was a shallow lake where the birds could not dive, and the helicopter was able to hodd them or the water. The malting birds were separated from Class III broads by their behaviar and lack af a decoying her. It was not possible to enumeeadeatetiditaumbemberf of ducklings for any of the broods on this lake. There were simply tog many birds milling around in a small area. The

Table 6. Second brood survey sumary for noprandomly lelected "pudded" lakes, Inmoko National Wildife Refuge, 1985.
Siratuin: 5
Ponds Sampled: 3
1/4-aile sections of streass/rivers: 1.0
Total Hater Bodies; 4

Plots Draw-down lakes 1 and 2
Dates: 1 August and 2 August
Total miles of river/stream: 0.25 Brood Count: Second

	CLASS I		CLAS5 II		CLAS5 III		BRCIDY HENS	TOTAL ERCRDS	AV. SIIE	BROCDS PER WATER BCIM
SPECIES	日RTODS	AN, SIIE	BROMS	AV. SIZE	8ROODS	AV. SIIE				
mallard					1	4.2	2	3	3.9	0.75
Wigeon			13	5.1	2	4.5	2	17	4.8	4.25
6. He Teal	6	5.3	11	3.3	1	3.8	9	27	3.8	6.75
Shoveler	4	4.5	10	3.0	3	4.4	10	27	3.5	6.75
Pintail			16	3.7	8	4.1	11	35	3.9	8.75
Subtotal	10	4.8	50	3.9	15	4.2	34	109	4.0	27. 25

| Scaup spp. | 1 | 4.7 | 2 | 5.5 | 0 | 3 | 5.75 | 0.75 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Goldeneye
Bufflehead
H. W. Scoter
S. Scoter

Subtotal	1	0	2	3	
Unid. Duck	0	4	1	$7 *$	1.75
Total	11	54	18	119	29.75

*Additional Broods added in the total were not classified and so did not fit in any other category.
fact that most broods were found and an additional one picked up, however, would indicate that this techrique may be useful. For high density lakes, a back seat observer would be very useful.

The low-dersity muskeg lakes were a different story. Here the helicopter was excellent. On these plats, no mare than 1 or E broods (and usually mome) could be expected orn ary lake. This type of plat is usually hard to get to, requires a lot of walking, has dargerous bogs, is easy to be disomiented in, ard has few broods, so in-depth observation is nat necessary. Lakes here are generally small; the helicopter noise immediately draws movemert from a duck or brood on the lake it is approaching. This movemert, sirce the lakes are gererally devaid of other life keys the observer into the bracd immediately. The helicapter then moves over for a closer lack and the brocd is idertified. Even if the bird dives, the helicopter allaws you to sit ard wait for it to sumface. The number of individuals in the brood should be enumerated immediately upor sighting and the species identified later. A back seat observer would be useful on these plots also, not so much to court ducks, as to keep track of the lakes and plot bourdaries. Ari example of the efficiency of the helicopter survey or muskeg-type lakes is Flot 41. A crew of 3 tock nearly 8 hours to survey this plot on the first survey; the helicopter survey tack arily 1θ mirutes and fourd are brod. The grourd orew found mone. Admittedly, the ground orew gat last an this plats but that is easy to do in this terrair. Similar plots (Ee and 37) took a ground crew 4-5 hours each while the helicapter survey was completed in 9 mirutes each. All 7 sample urits were surveyed in diverse areas of the refuge in 6 hours by one observer. This was in addition to collecting botary data or the same flight.

Helicopters are very expersive, but very efficient. we could not afford more than a day or two this year. If the money were available, we could not orly increase cur sample sise, ard thus lower our sample variance, but make the survey truely random by being able to reach and sample all urits selected. This techrique is not recommendeds howevers far high and medium duck dersity areas, as grourd observation is more accurate in those areas.

Gogse Ergduction

Standardized gocse productior surveys have rot been established on the Imoko. Hawever, from general surveys and goase bandirg, we have derived the follawing irformation.

The first white-frorited gocse bracds were seer Grivagitchlie Creet. ari 9 Jume 1986. The followirg week, bath Cariada arid white-fronted bracds were seen ari the Mud River. Dri the
 Eut proportiorately few of these are family groups. The Iditarad basir is wide arid flat, ard flagds riearly every year ir, May or even Jurie in late years. Frabably due to this, most geese rest in the higher reaches of streams arid rivers ar, the refuge. Those observed to be good goose riestimg areas are Grouch, No Name, Hather ard Magitchlie Creeks ard the Mud River. Dther suspected riestirg areas are the Dishria, upper Iditarad and Netletria Rivers.

Gagse bragd surveys are difficult to do sirice geese have a habit af corgregatirg after the hatch with Gther family groups arid moltirg, failed ard mor,breeders. This makes it difficult to pick cut individual families arad record bramd sizes. Ar, attempt was made this summer by Calviri Lerisirik ta photograph molters and family groups from the air to determirie if some kirid of photographic iriveritory could be worked Gut. The results are still peridirg. Gacise baridirg begari Gri 7 July ard coritimued through 17 July, with a few birds banded ori El arid 24 July. Iri all, $7 E 9$ geese were barided; 549 white-frorits ard eed Caradas. Two drives which retted about 5 b birds each were accomplished, while the rest were run dowr arid caught with landing rets. Other drives were attempted, but failed ard several drive sites were irivestigated for possible use nest year. Fatsy Martirys black lab, Zephyr, assisted in catching the geese ard was very useful, particularly after the birds had scattered arad were humkered in the grass.

The phemolagy of the malt ari the Irmaka has beem pretty well figured cut over the past several years, ard is as follows: Failed and mom-breedimg white-framts begim the molt firsta Iri ari average year, this is about $E 8$ Jurie - 1 July. They will regair flight capability about 15 July. Failed ard mon-breeding Carada geese begin molting about ome week later 6-B July. Timing af family group maltirg is rot as clear, possibly beceuse the groups are small, more-dispersed, arid therefare less-visible. Malting is tied ta the age af the goslings and would therefore be spread thraugh the morith af July, depending Gr, hatchirg date. Gerierally though, family groups af each species begir molting about 1 week. later thar, their nor-breedimg couriterparts.

Library

U.S. Fish 2 Wildife Service 1011 E. Tudor Road
Anchorage, Alaska 99503

[^0]: *Rditional Broods added in the total ware not classified and so did not fit in any other category.

