Natural Resources Library

Alaska Regional Office National Park Serwiced with

ANADROMOUS FISH INVENTORY

SUMMARY VOLUME

Prepared For

Fish and Wildlife Service
by
Arctic Environmental Information and Data Center
University of Alaska, Anchorage
September 1975

ARLIS

Alaska Resources
Library \& Information Services
Anchorage, Alaska

Anadromous. Fish Inventory

	RS	$\therefore \mathrm{CS}$	KS	SS	PS	AC
Arctic NWR		20			20	453
Noatak NAR	125	590			200	280
Selawik NWR		282	35		120	197
Yukon Flats NWR		1,135	891	631		
Koyukuk NWR	-195	833	593	495	45	195
Yukon Delta NWR	570	1,237.5	833	725	730	472
Togiak NWR	768	546	257	404	259	148
Iliamna NRR	1,878	1,269	1,157	889	903	775
Coastal NWR					-	
Total	3,536	5,912.5	3,766	3,144	2,277	2,520

$$
\begin{array}{llllll}
3,536 & 5,912.5 & 3,766 & 3,144 & 2,277 & 2,520
\end{array}
$$

A䠄HS

Alaska Resources

Key Area Summary

Anadromous Fish Inventory

$R S \quad \underline{C S} \quad \underline{K} \quad \because S S \quad \underline{A C}$

Arctic NWR 116
Noatak NAR $10 \quad 330$

Selawik NWR 21.9
$105 \quad 7$
Yukon Flats NWR 448 448
Koyukuk NWR 425340
$\begin{array}{llllll}\text { Yukon Delta } & \text { NWR } & 15 & 634 & 399 & 289\end{array}$
Togiak NWR 338
274
103.112

43
Iliamna NRR 993
645
193
256
555
28
Coastal NWR

Total
1,356
$2,975 \quad 1,483$
657
1,141
151

Anadromous Fish Inventory

SS
PS

AC

Yukon Flats NWR $\quad(110,000)(20,000)$.

Koyukuk NWR
215,000
Yukon Delta NWR $\quad(1,875,000) *(128,000) *$

Togiak NWR	132,448	111,912 $(250,000)$	8,246	1,505 $(12,000)$	15,462
Iliamna NRR	$8,240,594$	2,364	14,369		502,500

Coastal NWR

Count Total	$8,373,092$	412,989	22,615	1,505	517,962	20,097
Total IncI. Estimate	$(2,769,5 \cdots)$	$(225,615)$	$(12,000)$			

* Yukon River only
**Nushagak River only

Average Annual Subsistence Harvest (1963-1972)

Anadromous Fish Inventory

$\underline{R S} \quad \underline{C S} \quad \underline{K S} \quad \underline{S S} \quad \underline{A C}$

Arctic NWR

Noatak NAR		11,614	-			14,097
Selawik NWR		4,448				
Yukon Flats NWR		10,623	2,178			
Koyukuk NWR		9,245	2,896			
Yukon Delta NWR		14,721	47,705	3,556	min.	
Togiak NWR		195,695	2,967	2,259	481	
Iliamna NRR	107,800	9,550	5,202	3,730	2,300	
Coastal NWR						

Total 108,285 261,078 60,948 | | 9,545 | 2,781 | 14,097 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Anadromous Fish Inventory

Secor	$\%$ RS	CS	KS	SS	PS	AC
Arctic NWR						
Noatak NAR						
		82,868	2		48	3,065
Selawik NWR						
Yukon Flats N	WR	861	1,444	52		
Koyukuk NWR	min.	1,875	3,839	min.	min.	
Yukon Delta	WR min.	163,882	128,948	55,988		
Togiak NWR	157,749	119,958	24,223	19,377		
Iliamna NRR	7,164,775	497,762	87,113	63,570	744,084	
Coastal NWR	$(1,264,839)$	$(1,557,742)$	$(5,796)$	$(63,913)$	$(8,558,359)$	
Subtotal*	7,322,524	867,206	245,569	138,987	795,936	
Total **	$(8,587,363)$	$(2,424,948)$	$(251,365)$	$(202,900)$	$(9,354,295)$	

* excludes Coastal NWR
** includes Coastal NWR

Project Summary Anadromous Fish Inventory Update System

Without question, in a report of this magnitude, additional data remains which could be incorporated into this study. Also revisions of some figures might be required in response to more recent data which finalize previous prelininary statistics. Particularly subsistence, commercial and sport harvests, values and effort for recent years have not been formally published and could be collected with little additional effort. Aerial escapements counts for the past two to three years are available, but have not been formally published. These also could be obtained.

Bibliographies are quite complete, but a number of informal departmental reports exist which are not included. These studies are often internal management documents which contain valuable data but whose existence is not widely known. The incorporation of this unpublished or limited distribution information would increase the value of the bibliographies.

Additional data exist on escapement counts since only the maximum observed escapement for each year was recorded in this study. Additional early and late run escapement counts exist but are considered of small value to the main purpose of this inventory.

Information not included in the original inventory but of potential value would be data concerning timing of the spawning run of various species. This timing is variable between species and between areas of the state and would be extremely valuable in formulating management decisions and rationales.

A critical review of this inventory by Alaska Department of Fish and Game management biologists at the regional leve1, particularly for the 1:250,000 scale mylar overlays would be extremely valuable. It is important that this be done by regional field personnel who are intimately knowledgeable about the particular areas and would be able to refine data presented on these mylars.

Personal knowledge of the fisheries of many of these areas is rare and extremely valuable.

An annual incorporation of data which become available each year would entail approximately one-half man month of work each year spread over a twomonth period to allow for the accumulation of various reports and information. The ideal two-month period this annual update would probably be between April 15 and June 15 prior to the summer field season, andyet the previous year's data should be available in final form.

1. Species lists - Species inhabit these refuges which have both resident and anadromous forms, or the degree of anadromy is inadequately understood. The extent of migration of these species needs to be studied to understand the movement of fish populations and stocks from salt water into and through many of the larger river drainages. Particularly, this comment relates to several species of whitefish, Arctic char, Dolly Varden, rainbow and Arctic smelt and inconnu. Tagging studies will most probably be required to determine the migratory habits of these species and the extent that these populations inhabit and traverse the proposed refuge areas.
2. Commercial history - Lacking for commercial history is an adequate documentation of effort expended and amount of gear fished. Any past records which could provide this information should be sought out and compiled.
3. Subsistence history - Required here is an understanding of the changing patterns of subsistence, the degree of dependence upon subsistence and the various methods of subsistence harvest. In many cases an adequate accoutning of the number of fish harvested for subsistence is unavailable.
4. Sport history - Documentation needs to be made of the changing use of an area by various sport fishing interests. Much of this information has never been published and exists in the personal recollections of various Alaska Department of Fish and Game personnel who have worked in particular areas over a number of years.
5. Habitat - Study is required particularly on habitat for species other than salmon generally, and for all species in the headwaters of many of the larger drainage systems. An adequate understanding of anadromous fish
utilization of headwaters is particularly lacking.
6. Key spawning and rearing areas - This section is one of the most poorly studied and documented of this inventory. The identification of key areas is, in many cases, quite subjective and, where rivers are highly turbid, open to considerable question. A standard method for the evaluation of spawning and rearing areas needs to be formulated and utilized commonly by the various fishery management agencies. This would clarify the subjective valuations of spawning and rearing areas. Particularly important is the question of what values? From a commercial standpoint, more fish menas higher value as opposed to a unique stock standpoint where a small population in one drainage might be particularly valuable from the standpoint of being an isolated, unique population of that particular species. In many cases, the spawing populations have not been adequately observed or enumerated on these rivers, so the identification of key areas is extremely tenuous.
7. Run and escapement data - Although aerial escapement counts are relatively easy to obtain, their value from a management standpoint is questionable due to variations in timing of runs and problems in visibility from an aircraft. In addition, aerial counts are prone to irregularity due to difficult weather conditions, stream turbidity, and in the chance coincidence of the survey flight with escapement or spawning peaks. Such escapement counts were found by the Fisheries Research Institute of the University of Washington to seldom exceed 20 percent of the escapement monitored by counting towers or weirs in the Kvichak River, Tagging studies could be more effective for population estimates in some of the larger rivers where establishment of weirs or towers is neither economical nor feasible. In addition to the use of some of the newer sonar and sonic fish counting devices might increase the knowledge of escapement in the more turbid river systems.
8. Commercial harvest - Study meeds to be made of more adequate ways for portraying effort and the fishing intensity which a stock, species or spawning run encounters. In addition, harvest data should be collected, where possible, by smaller statistical subdistricts so that apportionment of the catch may be made to individual segments of the fishery.
9. Subsistence harvest - Adequate monitoring of subsistence harvest is not available. Particularly data is lacking for species other than salmon. These can be extremely significant, as in the case of the Arctic char subsistence harvest in the Togiak River drainage system.
10. Sport harvest - Study needs to be made of more effective methods of collecting sport fishery data. The effect of this fishery, though minor in many areas, warrants a more complete understanding. An effective method of compiling sport harvest data and effort is essential to this end.

\qquad
11. First value $=$ salmon

Second value $=$ other anadromous species combined
ogoslof National i] drife Refuge

Chamisso National Wildife Refuge

Cape Newenham National Wildlife Refuge

Clarence Rhode National Wildlife Refuge
1

No Data
Nata

No Data

No Data
No Data
No Data
No Data
No Data

Existing Refuges ${ }^{1}$ (continued)

Proposed Refuges ${ }^{1}$ (continued)

1
 Proposed Refuges (continued)

Ytkon Delta National $W^{*} d i f e$ Refuge	Togiak National Wildife Refuge	Iliamna National Resource Range	Alaska Coastal National Wildife Refuges
18, 868,799	5,999,700	8,470,000	44,000
2,003,000 (1963-72)	269,573 (1963-72)	8,759,827 (1963-72)	
1,620	870	$\therefore \quad 2,642$	
$\begin{aligned} & 4,096 \\ & 1,268 \end{aligned}$	$\begin{array}{r} 23234 \\ \because \quad 148 \end{array}$	$\begin{array}{r} 6,096 \\ 830 \end{array}$	
$\sqrt{6}, 956(1963-72)^{4}$	$\begin{aligned} & 11,374 \text { (1963-72) } \\ & \text { Arctic char } \\ & 100,000 \text { (estimate) } \end{aligned}$	128,582 (1963-72)	
$503^{3}(1964-73)^{6}$	$19^{3}(1964-73)$	3753 (1964-71)	
$551{ }^{3}(1964-73)$	125^{3} (1963-73)	1,344 ${ }^{3}$ (1964-71)	
$894^{2}(1964-73)$	64^{2} (1964-73)	$3,836^{2}(1963-73)^{7}$	
348,818 7,064 $0.1963-72)$ $1967-73)$	343,111 (1963-72)	8,55 7,304 (1963-72)	11,450,649 (1963-72)
\$771,940 (1964-73)	\$366,781 (1963-71)	\$5,687,141 (1963-72)	
\$ 3,456 (1967-73)	-		

State of Alaska ${ }^{1,8}$
wide
375,296,000
$17,481,867^{9}$. (1963-75)

Not Available

Not Available
$75)^{98(1970-74)}$
$2,130^{3}(1966-74)$
$3,695^{3}(1966-74)$
$21,621^{2}$ (1970-74)

246,385,584 lbs. (1963-73)
$\$ 46,944,366$ (1963-73)

