2001 USGS Vernal Pool Inventory and Monitoring

Wallkill Ríver NWR

description of data

ERNAL POOL SURVEYS
The Egg Mass Count data sheet has the grid on the back to map out the site and egg mass locations. You need to Xerox two of these data sheets per site per visit. You can Xerox them onto Rite-in-the-Rain paper (some provided) or regular paper, depending on the weather. One data sheet is for Observer 1 and the other is for Observer 2. Below are descriptions on how to fill out this data sheet. Observer 1 begins the egg mass count and "Other Organisms" observations, while Observer 2 fills out the first half of the front page of the data sheet (until the "Other Organisms" section) and the "Vernal Pool Habitat Description and Location Data Sheet" (described below). Once Observer 1 is finished with the egg mass count and "Other Organisms" sections, Observer 2 then conducts the survey in the pond.

When you first get to the site, it is important that both Observers have the same site map drawn onto their data sheets. This will make the comparison of egg mass locations afterward much easier. It is also extremely helpful to draw landmark features on the site map, such as large fallen trees and islands, before the survey is conducted. Observer 1 should start at the North End of the Pond and circumnavigate the pond in a clockwise fashion. After Observer 1 is finished, then Observer 2 will follow suit. If the pond is large (e.g., $>40 \mathrm{~m}$ length or width), Observer 1 can start clockwise and Observer 2 can start counterclockwise to save time.

Egg mass counts are best conducted during the day when the sun is out ($9 \mathbf{a m}-\mathbf{3} \mathbf{~ p m}$). When it is darker out, it is harder to see into vernal pools, particularly those that are stained by tannic acid from decaying leaves. Use polarized glasses to conduct egg mass counts so that you can see into the water better. We will use a visual/tactile method to count egg masses, using eyes and hands (cupping under the egg mass) to count and feel the egg masses in the pond. Another method that works for wood frog egg masses is to use a twig to lightly touch the top of an egg mass and jiggle it once to determine individual egg masses. Another method is to purchase a white slotted spoon that you could hold underneath the egg masses in order to see them better. However, it is extremely important not to disturb the egg masses during the survey. Observers must walk very slowly through the entire pond. Most egg masses are near the edges of the ponds, but egg masses can also be in the middle of ponds, particularly shallow ponds.

Egg mass counts should be conducted at SIX vernal pool sites per refuge. Each site should be visited three times in the season every two weeks. Switch the roles of observers after each site. For example, if Al Zelley is Observer 1 at Sally Pool, then he should be Observer 2 at the next pool surveyed.

The Double-Observer Independent method we are using is a means to obtain detection probabilities for each observer, thus providing adjusted population estimates for the number of egg mass areas in the pools (Cook and Jacobson 1979, Nichols et al. 2000). With two counts at a site, we are also able to calculate the mean \# of egg masses and the error associated with the mean at the site. Once both Observers are finished collecting the egg mass data at a site, Observer 1 and 2 need to get together to determine 1) How many total egg masses were counted by each observer, and 2) how many EGG MASS AREAS were missed by one or other of the Observers (see below for details). After you are done doing this, you may put labeled wire flags for the egg mass areas around the edge of the vernal pool.

VERNAL POOL HABITAT DESCRIPTION AND LOCATION DATA SHEET

OBSERVER:
DATE: \qquad
LOCALITY: \qquad SITE: \qquad
DETAILED DIRECTIONS TO SITE:

UTM ZONE: \qquad UTM DATUM: \qquad ELEVATION: \qquad $\square \mathrm{m} \square \mathrm{ft}$

LENGTH

UTM E: \qquad UTM N: \qquad UTM E: \qquad UTM N: \qquad
WIDTH
UTM E: \qquad UTM N: \qquad UTM E: \qquad UTM N: \qquad
UTM E: \qquad UTM N: \qquad UTM E: \qquad UTM N: \qquad
POOL MAX. LENGTH: \qquad m POOL MAX. WIDTH: \qquad m POOL MAX. DEPTH: \qquad cm

WATER CHEMISTRY (optional): pH : \qquad Conductivity (units): \qquad DO (units): \qquad WATER COLOR: \square Clear \square Stained \qquad
POND TYPE:
\square Natural, if so then: $\square_{\text {temporary }} \square_{\text {semiperm/permanent }} \quad \square_{\text {beaver flowage }} \square_{\text {oxbow }} \square_{\text {other: }}$ \qquad \square Artificial, if so then: \square borrow/gravel pit \square roadside ditch \square farm pond \square impoundment \square other: \qquad Estimated age of pond: $\square_{\leq 5 \mathrm{yrs}} \square \geq 5 \mathrm{yrs}$.Unknown
FISH PRESENT: \square No \square Yes Species:
WETLAND CLASS: $\square_{\text {forested }} \square_{\text {shrub }} \square_{\text {marsh }} \square_{\text {meadow }} \square_{\text {none (open water) }}$
Classify by dominant form that covers 30% or more of the pool water surface
SITE TYPE: \square upland-isolated (not part of larger wetland)
\square bottomland-isolated (part of a river or lake floodplain)
\square wetland complex (associated with a larger wetland complex)
For the following, rank the proportion of pond area in which each vegetation type occurs:
$0=0 \%$ (absent), $1=1-10 \%$ (rare), $2=>10-50 \%$ (common), $3=>50 \%$ (abundant)
IN POND PHYSICAL HABITAT: Abundance of Sticks \qquad Abundance of Logs \qquad ($>10 \mathrm{~cm}$ diameter)

IN POND VEGETATION: SAV \qquad Moss \qquad Grass \qquad Sedge/Rush \qquad Shrub \qquad Tree \qquad Other \qquad

SUBSTRATE TYPES: Estimate \% types composing jottom surface (must add up to 100\%)
Silt/Clay \qquad Mud \qquad Sand \qquad Gravel \qquad Pebble \qquad Cobble \qquad Boulder \qquad Leaf Litter \qquad Other \qquad
HABITAT AROUND POOL: Estimate \% of each within 165 feet or 50 m of pool, excluding cover directly over pool (estimates should total 100%):
\qquad \% Woodland (check most dominant type). If some of habitat is woodland, is the overstory:

Hardwood (> 75\% deciduous)
Heavy (>50\% canopy cover of trees/shrubs $>6 \mathrm{ft}$. tall)
Softwood (> 75\% evergreen)
Moderate (< 50\% canopy cover of trees/shrubs < 6 ft . tall)
\square Mixed (all others)
\% Open (check most dominant type)
AgricultureFields/Meadow/Marsh
\square Other: \qquad \% Residential/Urban/Suburban
\square \% Road $\quad \square^{\text {Paved }} \square^{\text {Dirt/Gravel }}$
\qquad \% Other: \qquad

DISTANCE TO FOREST FROM WATER'S EDGE: \qquad $\square \mathrm{m} \square \mathrm{ft}$.

DISTANCE TO NEAREST ROAD: \qquad \square^{m} m ft .

ROAD CONDITIONS AT NIGHT: \square Light Traffic (< 10 cars) \square Heavy Traffic (> 10 cars)

NOTES:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

LOCALITY: \qquad SITE:

OTHER ORGANISMS:

SPECIES	\# Adults	Chorus Code	\# Mated Pairs	\# Spermato- phores	\# Egg Masses	\# Tadpoles Larvae	\# Juveniles Spotted sal. SS
Blue-spotted sal. BS							
Jefferson sal. JS							
Marbled sal. MS							
Red-spotted newt RN							
Four-toed sal. FS							
Wood frog WF							
Spring peeper SP							
Gray tree frog GTF							
Green frog GF							
Leopard frog LF							
Pickerel frog PF							
American toad AT							
Fowler's toad FT							
Eastern spadefoot ES							
Painted turtle							
Spotted turtle							
Wood turtle							
Blanding's turtle							
Snapping turtle							
Fairy shrimp							
Fingernail clam							
Amphibious snail							

NOTES:

OBSERVER: \qquad \square $\square \square$ 2 DATE: \qquad TIME BEGIN: \qquad TIME END: OBSERVER 2 \qquad W S
Total \# Egg Masses OBSERVER 1 S \qquad
Areas Missed of Total \qquad W \qquad S W S

Area

DATA FIELDS ON EGG MASS COUNT DATA SHEET

LOCALITY: Name of Refuge or Park (e.g., Great Bay NWR, Acadia National Park)
SITE: Name of specific pond being surveyed (e.g., Beech Pool \# 1, Ken's Pond)
DATE: Write out Month, DD, YYYY (e.g., March 22, 2001)
SKY CODE: The sky codes are located on your clipboard. Do not conduct surveys if sky codes are 6 or above!! The codes are as follows:

Code Sky Condition

$0 \quad$ Clear or few clouds ($<20 \%$ of sky)
1 Partly cloudy or variable (20-50\% of sky)
2 Cloudy or overcast (>50\% of sky)
3 Fog
4 Mist
5 Showers or light rain
6 Heavy rain
7 Sleet/Hail
8 Snow
WIND CODE: The Beaufort Wind Scale is on your clipboard. Do not conduct surveys if wind codes are 6 or above!! The codes are as follows:

Code	mph	Indicators of Wind Speed
0	<1	calm, smoke rises vertically
1	$2-3$	light air movement, smoke drifts
2	$4-7$	light breeze, wind felt on face, leaves rustle
3	$8-12$	gentle breeze, leaves/twigs in constant motion, raises dust
4	$13-18$	moderate breeze, small branches move
5	$19-24$	fresh breeze, small trees begin to sway
6	$25-31$	strong breeze, large branches move
$7+$	>31	strong winds

PREVIOUS DAY PRECIPITATION: Check one of the boxes as to whether precipitation did (Yes) or did not (No) occur in the past 24 hours.
SUBSTRATE TEMPERATURE: Collect substrate temperature at two locations (one shade, one sun) $1-2 \mathrm{~cm}$ above the ground one foot of the water's edge.
WATER TEMPERATURE: Collect water temperature at two locations (one shade, one sun) within the pool one foot from the shore at a depth of 2 cm . For substrate and water temperatures, check box as to whether Centigrade or Fahrenheit scale was used.
POOL MAXIMUM DEPTH: Install a dowel rod ($5 / 8^{\prime \prime} \times 48^{\prime \prime}$) where you estimate it to be the deepest part of the vernal pool. Each time you visit the site, wade out to the dowel rod to record the water depth at that location. Record in centimeters using meter stick.
WATER LEVEL: Check whether the vernal pool is full, $3 / 4$ full, $1 / 2$ full, $1 / 4$ full, or less than $1 / 4$ full/dry. You will be able to gauge this by knowing the site's water extent or by looking for water marks or moss growing at the base of trees or the extent of area near the water covered by damp mud or darkened, dried crinkled leaves.
OTHER ORGANISMS: Each Observer fills out this section during his/her egg mass count survey. For Invertebrates listed in the Table at the bottom, simply place a checkmark in the Table to indicate whether adults or larvae were present. Please include in the Notes section any other invertebrates that were seen at the pool (consult "A Field Guide to the Animals of Vernal

Pools"). For Amphibian and Reptile species, record the number of adults, mated pairs, spermatophores, egg masses, tadpoles/larvae, and juveniles you observe for each of the species listed in the Table. For Chorus Code 3, simply record 3. For Chorus Codes 1 and 2, record the Chorus Code and include an Abundance Count in parentheses following it. For e.g., if you hear a chorus code of 2 and estimate 6 spring peepers calling, write down 2(6).

Chorus Code Description

0	No amphibians calling.
1	Individuals can be counted, calls not overlapping. Assign this number when individual males can be counted, and when the calls of individuals of the same species do not overlap. For the Abundance Count, record the number of individual frogs of each species calling.
2	Calls distinguishable, some simultaneous calling. This code is assigned when there are a few males of the same species calling simultaneously. However, with a little work, individual males can still be distinguished. The exact number of individuals may not be determined, but a reliable estimate of the number of individuals can be determined based on the location of the calls and/or by differences in the voices calling. Therefore the Abundance Count, is an estimate of the number of individuals calling.
3	Full chorus, calls continuous and overlapping. This value is assigned when there are so many males of one species calling that all the calls sound like they are overlapping and continuous. There are too many overlapping calls to allow for any reasonable count or estimate, therefore an Abundance Count is not recorded.

OBSERVER: Write your full first name and last name (e.g., Kate O'Brien). Check the box to indicate whether you are Observer 1 or Observer 2.
DATE: Write out Month DD, YYYY (e.g., March 22, 2001). NOTE: It is critical that egg mass counts occur on the same day.
TIME BEGIN: Use the 24 hour clock (e.g., use $13: 20=1: 20 \mathrm{pm}$). Write down the time the egg mass count survey begins. Begin and end times only cover the time actually spent searching for and counting egg masses and recording other organisms, not time spent collecting habitat or environmental data.
TIME END: Use 24 hour clock (e.g., use $15: 00=3: 00 \mathrm{pm}$)
GRID SPACING: Indicate the distance in meters between the lines on the grid. This necessitates measuring the maximum length and width of the pond BEFORE you begin the survey, so that you have a more accurate site map. Indicate the direction North with an N and arrow on the map.
SPECIES: For species acronyms, use those in Species Column in "Other Organisms" section. AREA: As you circumnavigate around and in the pond, label each area where egg masses are found with Letters (e.g., A, B ,..). When egg masses are grouped together within 1 m of each other, consider these within the same letter grouping.
\# EGG MASS (E) OR SPERMATOPHORES (S): Record the number of egg masses or spermatophores you observe in each area.

STAGE: Use Gosner (1960) to stage the embryos into the following stages (1,2,3):

Stage	Description
1	Preneural fold, Gosner stages 1-12
2	Neural fold to Pre-tail bud, Gosner stages 13-17
3	Tail bud and beyond, Gosner stages >17

DEAD: Dead embryos are white in appearance. Use the following categories to document \% mortality of eggs in the egg mass area: $0=0 \%, 1=1-10 \%, 2=>10-50 \%, 3=>50 \%$.

AFTER BOTH OBSERVERS HAVE CONDUCTED THE EGG MASS COUNTS, FILL IN THE AREA AT THE TOP OF THE MAP GRID. Count up the TOTAL NUMBER OF EGG MASSES counted by each Observer, and Count up the NUMBER OF AREAS MISSED by each of the Observers. For example, if Observer 1 mapped out Areas A, B, and C, with 5, 42 and 101 egg masses, respectively, but Observer 2 only mapped out Areas A and B, with 40 and 95 egg masses, you need to write the following:

OBSERVER 1
148
0/3
Total \# Egg Masses
Areas Missed of Total

135

OBSERVER 2

1/3

DATA FIELDS FOR "VERNAL POOL HABITAT DESCRIPTION AND LOCATION DATA SHEET"

This data sheet only needs to be filled out once per site at the beginning of the field season. Observer 2 can fill out this data sheet while Observer 1 is surveying the pond for egg masses.

OBSERVER: Write your full first name and last name (e.g., Laurie Wunder).
DATE: Write out Month DD, YYYY (e.g., March 29, 2001).
LOCALITY: Name of Refuge or Park (e.g., Great Bay NWR, Acadia National Park)
SITE: Name of specific pond being surveyed (e.g., Beech Pool \# 1, Ken's Pond)
DETAILED DIRECTIONS TO SITE: Describe the specific geographic location of the site.
Use air distance in two directions (e.g., 5 km N and 7.5 km W) of a map landmark that likely will not change. For example, " 500 m NW from American Holly Drive 0.2 km W of gate entrance."
UTM ZONE: Record Zone in which site occurs (e.g., Zone 18S).
UTM DATUM: Record Datum you are using to locate site (e.g., NAD27, NAD83)
ELEVATION: Record elevation of site. Check if units are meters or feet.
UTM COORDINATES: Take Coordinates at the water's edge at points that represent the maximum Length and Width of the Site. You may also want to take a few more coordinates if the site is particularly complex.
UTM EASTING: e.g., 342325 (six digits)
UTM NORTHING: e.g., 4702503 (seven digits)
POOL MAXIMUM LENGTH: Record using a meter tape (e.g., 14.2 m). If you record in ft ., be sure to cross of m and write $f t$ instead.
POOL MAXIMUM WIDTH: Record using a meter tape (e.g., 5.5 m)

POOL MAXIMUM DEPTH: Install a dowel rod ($5 / 8^{\prime \prime} \times 48^{\prime \prime}$) where you estimate it to be the deepest part of the vernal pool. Each time you visit the site, wade out to the dowel rod to record the water depth at that location. Record in centimeters using meter stick.
WATER LEVEL: Check whether the vernal pool is full, $3 / 4$ full, $1 / 2$ full, $1 / 4$ full, or less than $1 / 4$ full/dry. You will be able to gauge this by knowing the site's water extent or by looking for water marks or moss growing at the base of trees or the extent of area near the water covered by damp mud or darkened, dried crinkled leaves.
WATER CHEMISTRY (OPTIONAL): All of the water quality measurements are optional. However, if you have water testing equipment, it is strongly recommended that you record at least the following variables. Below are recommended procedures, but go ahead and use whatever water testing equipment you have. I will request information about your water testing equipment at the end of the field season.
$\mathbf{p H}$: An aliquot of water from the vernal pool will be collected in a glass or plastic beaker. pH of the water will be measured using a portable pH meter and a high performance glass combination electrode immediately after sample collection. The electrode will be calibrated prior to sample measurement using buffers of pH 4.0 and 7.0 (or 7.0 and 10.0 if conditions necessitate) and calibration will be documented. pH data (in standard pH units) will be recorded on the data sheet.
CONDUCTIVITY (Specific Electrical Conductance): Conductivity is typically recorded as microsiemens $/ \mathrm{cm}$ at $25^{\circ} \mathrm{C}$. An aliquot of pool water will be collected in a glass or plastic beaker. Conductivity of the water sample will be measured using a portable conductivity meter, calibrated prior to measurement, immediately after sample collection. Accuracy of the measurement will be checked by measuring the conductivity of a known standard and will be documented.
DISSOLVED OXYGEN: Measure as mg / L. The amperometric method of DO measurement will be used, which allows the determination of DO concentration with a temperaturecompensating meter that works with a polarographic membrane-type sensor (e.g., YSI). The instrument will be calibrated with the air-calibration chamber in water method before sample measurement, and the DO and temperature sensors will be immersed directly into the pool to allow equilibration.
WATER COLOR: Check whether the water is clear or stained (tea-colored) from organic matter (e.g., humic acids).
EXTRA SPACES ARE AVAILABLE FOR ADDITIONAL WATER QUALITY MEASURES POND TYPE: Record whether the origin of the pond is Natural, Artificial, or Unknown. Then check boxes to specify type of natural or artificial pond. If an artificial pond, check box that best corresponds to estimated age of pond (\leq or ≥ 5 years old).
FISH PRESENT: Record if fish are absent (No) or present (Yes). Record species observed. WETLAND CLASS: Classify wetland by vegetation in tallest class that covers 30% or more of the pool as being forested, shrub, marsh, meadow, or open water. Check box that best applies.
SITE TYPE: Classify site type by whether it is upland-isolated, bottomland-isolated, or part of a wetland complex. Check box that best applies.
IN POND PHYSICAL HABITAT: Record abundance categories ($0=0 \%, 1=1-10 \%, 2=$ $>10-50 \%, 3=>50 \%$) for each of the following:

Abundance of Sticks
Abundance of Logs

IN POND VEGETATION: Record abundance categories $(0=0 \%, 1=1-10 \%, 2=>10-50 \%, 3$ $=>50 \%$) for each of the following:

Submerged Aquatic Vegetation (SAV)
Moss
Grass
Sedge/Rush
Shrub
Tree
SUBSTRATE TYPES: Estimate \% types composing bottom surface (must add up to 100\%)
Silt/Clay
Mud/Organic Muck
Sand ($1-2 \mathrm{~mm}$)
Gravel (3-32 mm)
Pebble ($33-64 \mathrm{~mm}$)
Cobble ($65-256 \mathrm{~mm}$)
Boulder/Bedrock ($>256 \mathrm{~mm}$)
Other
HABITAT AROUND POOL: Estimate \% of each within 50 m (165 ft) of pool, excluding cover directly over pool (estimates should total 100%):
Woodland - record whether hardwood, softwood, mixed, and overstory type (heavy, moderate)
Open - record whether agriculture, fields, other
Residential/Urban/Suburban
Road - record whether paved or dirt/gravel
Other - record what other habitat types are present
DISTANCE TO FOREST FROM WATER'S EDGE: Record distance from water's edge to forest in either m or ft (check box which applies).
DISTANCE TO NEAREST ROAD: Record distance to nearest road in either m or ft (check box which applies)
ROAD CONDITIONS AT NIGHT: Record whether nearest road to site experiences light (< 10 cars) or heavy (> 10 cars) traffic at night.
NOTES: Include any observations about the site you think pertinent.

FIELD EQUIPMENT

Data sheets
Two Egg Mass Count data sheets per site (need 6 total per site; 3 egg mass counts per site spaced 2 weeks apart)
One Vernal Pool Habitat Description and Location data sheet per site
Pencils (2)
Clipboards (2)
Polarized Sun Glasses (2)
50 m fiberglass tape (1)
Thermometer (1)
Dowel Rod (1 per site)
Hammer or Rubber Mallet (to pound in dowel rod) (1)
Gosner (1960) Stage descriptions on Rite-in-Rain paper (1)
Field Guide to the Animals of Vernal Pools
Reptiles and Amphibians Eastern/Central North America, Peterson Field Guides
Protocol Write-up (1)
Compass (1)
Watch (1)
Meter stick (1)
GPS Unit/PLGR (1)
Water Testing Equipment (1)

VERNAL POOL HABITAT DESCRIPTION AND LOCATION DATA SHEET
\qquad Kevin Holcomb Date: $\quad 4 / 20 / 2001$
\qquad DETAILED DIRECTIONS TO SITE:
\qquad

UTM ZONE: 18 T UTM DATUM: \qquad elevation: \qquad 122区 $\mathrm{m} \square$ ft
*450 LENGTH
\qquad UTME: 0535241 UTM N: \qquad 4559498 UTM ह: 0535777 UTMN: \qquad 4559558 \#452 WIDTH
\#451 \qquad UTME:0535768 \qquad UM E: 0535751 UTM N: \qquad 4559544 UTM E: \qquad UTM N: \qquad UTM E: \qquad UTM N: \qquad POOL MAX. LENGTH: \qquad 58 m POOL MAX. WIDTH: \qquad 17 m POOL MAX. DEPTH: \qquad 45 cm WATER LEVEL: $\boxtimes_{\text {FULL }} \square_{3 / / \text { FULL }} \square_{1 / 2 \text { FULL }} \square_{1 / 4 \text { FULL }} \square_{<1 / 1 / \text { OR DRY }}$

WATER CHEMISTRY (optional): pH : \qquad Conductivity (units): \qquad DO (units): \qquad WATER COLOR: $\boxtimes_{\text {Clear }} \square_{\text {Stained }}$ \qquad
\qquad
\qquad POND TYPE:
【 Natural, if so then: \square temporary semiperm/permanent \square beaver flowage \square oxbow \square other: \qquadArtificial, if so then: \square borrow/gravel pit \square roadside ditch \square farm pond \square impoundment \square other: \qquad Estimated age of pond: $\square \leq 5$ yrs. $\varnothing \geq 5 \mathrm{yrs}$.Unknown
FISH PRESENT: $\chi_{\text {No }} \square_{\text {Yes Species: }}$ \qquad WETLAND CLASS: $\boxtimes_{\text {forested }} \square_{\text {shrub }} \square_{\text {marsh }} \square_{\text {meadow }} \square_{\text {none (open water) }}$
Classify by dominant form that covers 30% or more of the pool water surface
SITE TYPE:upland-isolated (not part of larger wetland)
A bottomland-isolated (part of a river or lake floodplain)wetland complex (associated with a larger wetland complex)
For the following, rank the proportion of pond area in which each vegetation type occurs: $0=0 \%$ (absent), $1=1-10 \%$ (rare), $2=>10-50 \%$ (common), $3=>50 \%$ (abundant)IN POND PHYSICAL HABITAT: Abundance of Sticks \qquad 2 Abundance of Logs \qquad (> 10 cm diameter)

IN POND VEGETATION: SAV \qquad Moss \qquad Grass \qquad 3 Sedge/Rush \qquad Shrub \qquad 2 Tree \qquad 2 Other \qquad

SUBSTRATE TYPES: Estimate \% types composing bottom surface (must add up to 100\%)
Silt/Clay 10 Mud 50 Sand \qquad Gravel \qquad Pebble \qquad Cobble \qquad Boulder \qquad Leaf Litter 40 Other \qquad

HABITAT AROUND POOL: Estimate \% of each within 165 feet or 50 m of pool, excluding cover directly over pool (estimates should total 100%):
90% Woodland (check most dominant type). If some of habitat is woodland, is the overstory:
Q Hardwood (> 75\% deciduous)
\square Heavy ($>50 \%$ canopy cover of trees $/$ shrubs $>6 \mathrm{ft}$. tall)Softwood (> 75% evergreen)
Moderate (<50\% canopy cover of trees/shrubs < 6 ft . tall)
\square Mixed (all others)
10% Open (check most dominant type)
\square Agriculture
(Fields/Meadow/Marsh
\square Other: \qquad
\% Residentia/Urban/Suburban
\square \% Road \square Paved \square Dirt/Gravel
\qquad \% Other: \qquad

DISTANCE TO FOREST FROM WATER'S EDGE: $\quad 0 \quad \square \mathrm{~m} \square \mathrm{ft}$.
DISTANCE TO NEAREST ROAD: 72.5 区 $\mathrm{m} \square^{\mathrm{ft}}$.

NOTES:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Wallkill hiver Nuth ScericLates Rd (North) \#1. 4/20/2001

Observer \#1	observer \#2
	DO (1)
$B(14)$	$A A(4)$
$C(1)$	$V, \omega, x, 1, z(18)$
0	(3)
	$S O(1)$
	T
	$T(2)$

$\varepsilon \quad(10)$
$F(12)$
F (4)
4 (8)
[(6)
$\quad(49) \quad C, O, E, F, G, H, I, J, K, L, M, N$,
O, P, Q
K (6) (5) R, U,
L (1)
(1) $\varepsilon \varepsilon$
m (1)
(1) B
(3)
(3) A

Total \# Egg Masses \qquad W \qquad S OBSERVER 2
\qquad
\qquad S

Areas Missed of Total \qquad W \qquad S \qquad
w \qquad s

GRID SPACING IS
m BETWEEN LINES INDICATE DIRECTION NORTH ON MAP (USE ARROW)

Area \#Egg Mass Stage Dead Area \# Egg Mass Stage Dead Area \#Egg Mass Stage Dead

locality: Wallkill River NWR site: Scenic hakes Rd (North) \#1
Date: \qquad Sky Code: \qquad Previous Day Precipitation? YES NO Substrate Temp.: $57^{\circ}-78^{\circ}$ Water Temp.: $49^{\circ} 57 \quad \square{ }^{\circ} \mathrm{C} \square{ }^{\circ} \mathrm{F}$ Pool Max. Depth: 45 cm Water Level: \square FULL $\square 3 / 4$ FULL $\square^{1 / 2}$ FULL $\square 1 / 4$ FULL $\square<1 / 4$ OR DRY OTHER ORGANISMS:

SPECIES	\# Adults	Chorus Code	\# Mated Pairs	\# Spermato- phores	\# Egg Masses	\# Tadpoles Larvae	\# Juveniles
Spotted sal. SS							
Blue-spotted sal. BS							
Jefferson sal. JS							
Marbled sal. MS							
Red-spotted newt RN							
Four-toed sal. FS							
Wood frog WF	2						
Spring peeper SP							
Gray tree frog GTF							
Green frog GF							
Leopard frog LF							
Pickerel frog PF							
American toad AT							
Fowler's toad FT							
Eastern spadefoot ES							
Painted turtle							
Spotted turtle							
Wood turtle							
Blanding's turtle							
Snapping turtle							
Fairy shrimp							
Fingernail clam							
Amphibious snail							

NOTES:

Locality: Waltlill River Null SITE: \qquad \#1 Date: \qquad $4 / 20 / 01$ Sky Code: 1 Wind Code: \qquad Previous Day Precipitation? \square YES \square NO Substrate Temp.: $57^{\circ}-28^{\circ}$ Water Temp.: $49^{\circ}-57^{\circ} \square{ }^{\circ} \mathrm{C}$ \& ${ }^{\circ} \mathrm{F}$ Pool Max. Depth: $4 / 5 \mathrm{~cm}$ Water Level: $\not \subset$ FULL $\square 1 / 4$ FULL $\square 1 / 2$ FULL $\square 1 / 4$ FULL $\square<1 / 4$ OR DRY OTHER ORGANISMS:

SPECIES	\# Adults	Chorus Code	\# Mated Pairs	\# Spermato- phones	\# Egg Masses	\# Tadpoles Larvae	\# Juveniles Spotted sal. SS
Blue-spotted sal. BS							
Jefferson sal. JS							
Marbled sal. MS							
Red-spotted newt RN							
Four-toed sal. FS							
Wood frog WF							
Spring peeper SP							
Gray tree frog GTF							
Green frog GF							
Leopard frog LF							
Pickerel frog PF							
American toad AT							
Fowler's toad FT							
Eastern spadefoot ES							
Painted turtle							
Spotted turtle							
Wood turtle							
Blanding's turtle							
Snapping turtle							
Fairy shrimp							
Fingernail clam							
Amphibious snail							

NOTES:

tocaurr: Hallhyl/ River Nub sirs: \qquad
Date: \qquad Sky Code: \qquad Wind Code: \qquad Previous Day Precipitation?
Substrate Temp.: 68 95 Water Temp: $9570^{\circ} \square{ }^{\circ} \mathrm{C} \square{ }^{\circ} \mathrm{F}$
Pool Max. Depth: $24 / \mathrm{cm}$ Water Level: \square FULL $\square 3 / 4$ FULL $\square 1 / 2$ FULL $\square 1 / 4$ FULL $\square<1 / 4$ OR DRY OTHER ORGANISMS:

NOTES:
1000^{+}Tadpoles in cater of 1001
no los masses

Total \# Egg Masses
W \qquad S W \qquad S

Areas Missed of Total \qquad W \qquad S \qquad W \qquad S

GRID SPACING IS m BETWEEN LINES INDICATE DIRECTION NORTH ON MAP (USE ARROW)

Area \#Egg Mass Stage Dead Area \#Egg Mass Stage Dead

Locality: walkill river NwAsite: Scenic lakes - North Date: $5 / 9 / 01$ Sky Code: \qquad 0 Wind code \qquad Previous Day Precipitation?

Substrate Temp.: \qquad 62 45 Water Temp: \qquad 65 70° \square ${ }^{\circ} \mathrm{C} \quad{ }^{\circ} \mathrm{F}$

Pool Max. Depth: \qquad 24 cm

Water Level; \square FULL \square $3 / 4$ FULL \square $1 / 2$ FULL $\mathbb{Q}^{1 / 4}$ FULL $\square<1 / 4$ OR DRY OTHER ORGANISMS:

SPECIES	\# Adults	Chorus Code	\# Mated Pairs	\# Spermato- phores	\# Egg Masses	\# Tadpoles Larvae	\# Juveniles
Spotted sal. SS							
Blue-spotted sal. BS							
Jefferson sal. JS							
Marbled sal. MS							
Red-spotted newt RN							
Four-toed sal. FS							
Wood frog WF							
Spring peeper SP							
Gray tree frog GTF							
Green frog GF	P						
Leopard frog LF							
Pickerel frog PF							
American toad AT							
Fowler's toad FT							
Eastern spadefoot ES							
Painted turtle							
Spotted turtle							
Wood turtle							
Blanding's turtle							
Snapping turtle							
Fairy shrimp							
Fingernail clam							
Amphibious snail							

Notes: 1,000 Tadpoles in this pool.

Joshua Glock

observer: 设echeat G-lork $\square 1 \square 2$ date: $5 / 4 / 01$ time begin: 100 time end: 125 Total \# Egg Masses OBSERVER 1 W \qquad S OBSERVER 2

Areas Missed of Total \qquad W \qquad S — W \qquad S

Area \# Egg Mass Stage Dead Area \#Egg Mass Stage Dead Area \#Egg Mass Stage Dead

Wallkill River NWR - Tract \#22 4/20/2001 Vernal Pool Scenic Lakes Rd - North

Wallkill River NWR - Tract \#22 4/20/2001 Vernal Pool Scenic Lakes Rd - North

Wallkill River NWR - Tract \#22
4/20/2001 Vernal Pool
Scenic Lakes Rd - North

Wallkill River NWR - Tract \#22
4/20/2001 Vernal Pool
Scenic Lakes Rd - North

Wallkill River NWR - Tract \#22
4/20/2001 Vernal Pool
Scenic Lakes Rd - North

Wallkill River NWR - Tract \#22 4/20/2001 Vernal Pool Scenic Lakes Rd - North

Wallkill River NWR - Tract \#22 4/20/2001 Vernal Pool Scenic Lakes Rd - North

Wallkill River NWR - Tract \#22 4/20/2001 Vernal Pool Scenic Lakes Rd - North

Wallkill River NWR - Tract \#22 4/20/2001 Vernal Pool Scenic Lakes Rd - North

Wallkill River NWR - Tract \#22
 4/20/2001 Vernal Pool Scenic Lakes Rd - North

Wallkill River NWR - Tract \#22
4/20/2001 Vernal Pool
Scenic Lakes Rd - North

Wallkill River NWR - Tract \#22 5/9/2001 Vernal Pool Scenic Lakes Rd - North

VERNAL POOL HABITAT DESCRIPTION AND LOCATION DATA SHEET
observer: \qquad Kevin Holcomb DATE: \qquad Locality: Wallfill River NWR site: Sceac bales \quad U. P. \# 2 (South) DETAILED DIRECTIONS TO SITE:
Scenic Lakes Rd - From Parking Area walk South

UTM ZONE: \qquad 187 UTM DATUM: \qquad ELEVATION: \qquad 116 \& m \square ft

LENGTH
UTME: 0535674 UTM N: \qquad 4559404 UTME: 535685 UTMN: \qquad 4559378

WIDTH
UTM E: \qquad 535627 TM N: \qquad 4559386 UTM E: \qquad 535691 UTM N: \qquad 4559391 UTME: \qquad UTM N: \qquad UTME: \qquad UTM N: \qquad POOL MAX. LENGTH: \qquad 15.5 m POOL MAX. WIDTH: \qquad 13 m POOL MAX. DEPTH: \qquad 60 cm WATER LEVEL: $\boxtimes_{\text {FULL }} \square_{3 / 4 \text { FULL }} \square_{1 / 2 \text { FULL }} \square_{1 / 4 \text { FULL }} \square_{<1 / 4 \text { OR DRY }}$

WATER CHEMISTRY (optional): pH : \qquad Conductivity (units): \qquad DO (units): \qquad WATER COLOR: $\mathbb{X}_{\text {Clear }} \square_{\text {Stained }}$ \qquad
\qquad
\qquad POND TYPE:Natural, if so then: \square temporary \square semiperm/permanent \square beaver flowage \square oxbow \square other: \qquadArtificial, if so then: \square borrow/gravel pit \square roadside ditch \square farm pond \square impoundment \square other: \qquad Estimated age of pond: $\square \leq 5 \mathrm{yrs}$ 姘 $\geq 5 \mathrm{yrs}$.

Unknown
FISH PRESENT:Yes Species: \qquad WETLAND CLASS: $\square_{\text {forested }} \square_{\text {shrub }} \square_{\text {marsh }} \square_{\text {meadow }} \square_{\text {none (open water) }}$
Classify by dominant form that covers 30% or more of the pool water surface
SITE TYPE:upland-isolated (not part of larger wetland)bottomland-isolated (part of a river or lake floodplain)
wetland complex (associated with a larger wetland complex)
For the following, rank the proportion of pond area in which each vegetation type occurs:
$0=0 \%$ (absent), $1=1-10 \%$ (rare), $2=>10-50 \%$ (common), $3=>50 \%$ (abundant)IN POND PHYSICAL HABITAT: Abundance of Sticks \qquad 3 Abundance of Logs \qquad ($>10 \mathrm{~cm}$ diameter)

IN POND VEGETATION: SAV \qquad Moss \qquad Grass \qquad 'Sedge/Rush \qquad 2 Shrub \qquad Tree \qquad Other \qquad

SUBSTRATE TYPES：Estimate \％types composing bottom surface（must add up to 100\％）
Silt／Clay 25 Mud 15 sand \qquad Gravel 5 Pebble \qquad Cobble 10 Boulder \qquad Leaf Litter $4 / 5$ Other \qquad
HABITAT AROUND POOL：Estimate \％of each within 165 feet or 50 m of pool，excluding cover directly over pool（estimates should total 100% ）：
45% Woodland（check most dominant type）．If some of habitat is woodland，is the overstory：
【 Hardwood（＞75\％deciduous）【 Heavy（ $>50 \%$ canopy cover of trees $/$ shrubs >6 ft．tall）
\square Softwood（＞75\％evergreen）Moderate（＜ 50% canopy cover of trees $/$ shrubs $<6 \mathrm{ft}$ ．tall）
\square Mixed（all others）
50 \％Open（check most dominant type）Agriculture
区
Fields／Meadow／MarshOther： \qquad
\qquad \％Residentia／Urban／Suburban \％Road Paved $\boldsymbol{\square}$ Dirt／Gravel
\qquad \％Other： \qquad

DISTANCE TO FOREST FROM WATER＇S EDGE： \qquad \square m ft ．

DISTANCE TO NEAREST ROAD： \qquad （ ${ }^{m}$ \square ft ．
ROAD CONDITIONS AT NIGHT：Light Traffic（＜10 cars）\square Heavy Traffic（＞ 10 cars） NOTES：
\qquad
\qquad
\qquad工
\qquad
\qquad
\qquad
\qquad
\qquad
wallkill hiver NuR Scerichates U.P. \#2 (south) $4 / 20 / 2001$
obserwer \#1
$A(1)$
B (1)
C (3)
0 (1)
obsevver \#2

C(1)
B (1)
A
(3)
(1)

Total \# Egg Masses	W	S	W	
Areas Missed of Total	W	S	S	S

GRE SPACING IS
m BETWEEN LINES
INDICATE DIRECTION NORTH ON MAP (USE ARROW)

Area \#Egg Mass Stage Dead Area \#Egg Mass Stage Dead Area \#Egg Mass Stage Dead

Date:

\qquad Sky Code: 2 Wind Code: \qquad Previous Day Precipitation? \square \square^{YE} ES Substrate Temp.: $61^{\circ} 62^{\circ}$ Water Temp.: $58^{\circ}-59^{\circ} \square{ }^{\circ} \mathrm{C}$ 有 F Pool Max. Depth: $60 \quad \mathrm{~cm}$ Water Level: \square FULL $\square 1 / 4$ FULL $\square 1 / 2$ FULL $\square 1 / 4$ FULL $\square<1 / 4$ OR DRY OTHER ORGANISMS:

Total \# Egg Masses OBSERVER 1 W
\qquad S OBSERVER 2
S
W S

Areas Missed of Total \qquad W \qquad S \qquad W \qquad S

GRID SPACING IS
m BETWEEN LINES INDICATE DIRECTION NORTH ON MAP (USE ARROW)

Area \#Egg Mass Stage Dead Area \#Egg Mass Stage Dead Area \#Egg Mass Stage Dead

Date:
 Sky Code: 2 Wind Code: \qquad Previous Day Precipitation? \square YES 区 NO Substrate Temp.: 61 62 Water Temp.: $58-59 \square{ }^{\circ} \mathrm{C} \boxtimes{ }^{\circ} \mathrm{F}$ Pool Max. Depth: GO_ cm Water Level: XX FULL $\square 1 / 4$ FULL $\square 1 / 2$ FULL $\square 1 / 4$ FULL $\square<1 / 4$ OR DRY OTHER ORGANISMS:

SPECIES	\# Adults	Chorus Code	\# Mated Pairs	\# Spermato- phores	\# Egg Masses	\# Tadpoles Larvae	\# Juveniles Spotted sal. SS
Blue-spotted sal. BS							
Jefferson sal. JS							
Marbled sal. MS							
Red-spotted newt RN							
Four-toed sal. FS							
Wood frog WF							
Spring peeper SP							
Gray tree frog GTF							
Green frog GF							
Leopard frog LF							
Pickerel frog PF							
American toad AT							
Fowler's toad FT							
Eastern spadefoot ES							
Painted turtle	I						
Spotted turtle							
Wood turtle							
Banding's turtle							
Snapping turtle							
Fairy shrimp							
Fingernail clam							
Amphibious snail							

NOTES:

Wallkill hiver NWR Scerichalkes - South $5 / 9 / 2001$

observer \#1	$\frac{\text { dbercer \#2 }}{\text { A (6) }}$
B 1	A (6)
$C 1$	$3(1)$
0	1

observer: Levi tatami b $1 \square 2$ date: 5/4/2001 time begin: 130 time end: 200
Total \# Egg Masses OBSERVER 1 \qquad
\qquad W \qquad S OBSERVER 2

Areas Missed of Total \qquad W \qquad S W \qquad S
m BETWEEN LINE
INDICATE DIRECTION NORTH ON MAP (USE ARROW)

Area \#Egg Mass Stage Dead Area \# Egg Mass Stage Dead Area \#Egg Mass Stage Dead
$\frac{A}{B} \frac{3}{3} \frac{?}{?}$
$\frac{C}{1}=\frac{3^{t}}{?}=$
$\frac{D}{\frac{C}{1}} \frac{3^{t}}{3^{t}}=$ \qquad

Locality: Wallioll hider Nus site: Saqichalles - South Date: $5 / 9 / 0001$ Sky Code: 0 Wind Code: 1 Previous Day Precipitation? \square YES $\square{ }^{\text {No }}$ Substrate Temp.: 7465 Water Temp.: $6963 \square{ }^{\circ} \mathrm{C} \square^{\circ} \mathrm{F}$ Pool Max. Depth: 44 cm Water Level: \square FULL $\square \%$ FULL $\square / 1 / 2$ FULL $\square 1 /$ FULL \square < $1 / 4$ OR DRY OTHER ORGANISMS:

SPECIES	\# Adults	Chorus Code	\# Mated Pairs	\# Spermato- phores	\# Egg Masses	\# Tadpoles Larvae	\# Juveniles
Spotted sal. SS							
Blue-spotted sal. BS							
Jefferson sal. JS							
Marbled sal. MS							
Red-spotted newt RN							
Four-toed sal. FS							
Wood frog WF	L						
Spring peeper SP							
Gray tree frog GTF							
Green frog GF	C						
Leopard frog LF							
Pickerel frog PF							
American toad AT							
Fowler's toad FT							
Eastern spadefoot ES							
Painted turtle							
Spotted turtle							
Wood turtle							
Branding's turtle							
Snapping turtle							
Fairy shrimp							
Fingernail clam							
Amphibious snail							

Joshua, G look
 Total \# Egg Masses WW W \qquad S — W \qquad S Areas Missed of Total \qquad W \qquad S \qquad W W S GRID SPACING IS m BETWEEN LINES INDICATE DIRECTION NORTH ON MAP (USE ARROW)

Locality: walk: ll river NWR sire: scenic Lakes - south Date: S $9 / 01$ Sky Code: Θ Wind Code: 1 Previous Day Precipitation? $\square \mathrm{YES}_{\square}$ No Substrate Temp.: 74 65 Water Temp.: 69 Lb ${ }^{\circ} \square^{\circ}{ }^{\circ} \square^{\prime}{ }^{\prime}{ }^{\circ}$ Pool Max. Depth: $44 _\mathrm{cm}$ Water Level: \square FULL $\square \%$ FULL $\square 1 / 2$ FULL $\square 1 / 4$ FULL $\square<1 / 4$ OR DRY OTHER ORGANISMS:

SPECIES	\# Adults	Chorus Code	\# Mated Pairs	\# Spermato- phores	\# Egg Masses	\# Tadpoles Larvae	\# Juveniles Spotted sal. SS
Blue-spotted sal. BS							
Jefferson sal. JS							
Marbled sal. MS							
Red-spotted newt RN							
Four-toed sal. FS							
Wood frog WF							
Spring peeper SP							
Gray tree frog GTF							
Green frog GF	Xp						
Leopard frog LF							
Pickerel frog PF							
American toad AT							
Fowler's toad FT							
Eastern spadefoot ES							
Painted turtle							
Spotted turtle							
Wood turtle							
Blanding's turtle							
Snapping turtle							
Fairy shrimp							
Fingernail clam							
Amphibious snail							

Walkill River NWR - Tract \#22 4/20/2001 Vernal Pool Scenic Lakes Rd - South

Wallkill River NWR - Tract \#22 4/20/2001 Vernal Pool Scenic Lakes Rd - South

Wallkill River NWR - Tract \#22 4/20/2001 Vernal Pool Scenic Lakes Rd - South

Wallkill River NWR - Tract \#22 4/20/2001 Vernal Pool Scenic Lakes Rd - South

Wallkill River NWR - Tract \#22
4/20/2001 Vernal Pool
Scenic Lakes Rd - South

Wallkill River NWR - Tract \#22 4/20/2001 Vernal Pool Scenic Lakes Rd - South

Wallkill River NWR - Tract \#22
 4/20/2001 Vernal Pool
 Scenic Lakes Rd - South

Wallkill River NWR - Tract \#22
4/20/2001 Vernal Pool
Scenic Lakes Rd - South

Wallkill River NWR - Tract \#22 5/9/2001 Vernal Pool Scenic Lakes Rd - South

Wallkill River NWR - Tract \#22 5/9/2001 Vernal Pool Scenic Lakes Rd - South

Wallkill River NWR - Tract \#22 5/9/2001 Vernal Pool Scenic Lakes Rd - South

Wallkill River NWR - Tract \#22 5/9/2001 Vernal Pool Scenic Lakes Rd - South

Wallkill River NWR - Tract \#22

 5/9/2001 Vernal Pool Scenic Lakes Rd - South

Wallkill River NWR - Tract \#22 5/9/2001 Vernal Pool Scenic Lakes Rd - South

Wallkill River NWR - Tract \#22
 5/9/2001 Vernal Pool
 Scenic Lakes Rd - South

VERNAL POOL HABITAT DESCRIPTION AND LOCATION DATA SHEET observer: Kevin Holcomb date: 4/20/2001 locality: Wallbill River Nuke site: wood Duck Nature Tla.-l DETAILED DIRECTIONS TO SITE:
, From At. 565 Walk south on Wood Duck Nature Trail Vip en east side of trail USM ZONE: \qquad $18 T$ UTM DATUM: \qquad ELEVATION: \qquad $1 / 3$ \& m \square ft
\#454 UTME: 0534910 LIMN: 4560135 UTME: 0534940 UTMN: \qquad 4560119 \#45 \# 455 wiTH UTM E: \qquad
 \qquad UTME: 0534923 UTM N: \qquad UTM E: \qquad UTM N: \qquad UTM E: \qquad UTM N: \qquad POOL MAX. LENGTH: $42,5 \mathrm{~m}$ POOL MAX. WIDTH: \qquad m POOL MAX. DEPTH: \qquad 57 cm WATER LEVEL: $\otimes_{\text {FULL }} \square_{3 / 4 \text { FULL }} \square_{1 / 2 \text { FULL }} \square_{1 / 4 \text { FULL }} \square_{<1 / 4 \text { OR DRY }}$

WATER CHEMISTRY (optional): pH : \qquad Conductivity (units): \qquad DO (units): \qquad WATER COLOR: $\otimes_{\text {Clear }} \square_{\text {Stained }}$ \qquad
\qquad
\qquad POND TYPE:Natural, if so then: \square temporary \square semipern/permanent \square beaver flowage \square oxbow \square other: \qquad Artificial, if so then: \square borrow/gravel pit \mathbb{X} roadside ditch \square farm pond \square impoundment \square other: \qquad Estimated age of pond: $\square \leq 5 \mathrm{yrs}$. $\geq 5 \mathrm{yrs}$.Unknown
FISH PRESENT: \square Yes Species: \qquad WETLAND CLASS: \nless forested $\square_{\text {shrub }} \square_{\text {marsh }} \square_{\text {meadow }} \square_{\text {none (open water) }}$
Classify by dominant form that covers 30% or more of the pool water surface SITE TYPE:upland-isolated (not part of larger wetland)bottomland-isolated (part of a river or lake floodplain)
E wetland complex (associated with a larger wetland complex)
For the following, rank the proportion of pond area in which each vegetation type occurs: $0=0 \%$ (absent), $I=1-10 \%$ (rare), $2=>10-50 \%$ (common), $3=>50 \%$ (abundant)

IN POND PHYSICAL HABITAT: Abundance of Sticks \qquad Abundance of Logs \qquad (> 10 cm diameter)

IN POND VEGETATION: SAY \qquad Moss 2 Grass \qquad 'Sedge/Rush \qquad Shrub \qquad Tree \qquad Other \qquad

SUBSTRATE TYPES: Estimate \% types composing bottom surface (must add up to 100\%)
Silt/Clay \qquad Mud 5 Sand \qquad Gravel \qquad Pebble \qquad Cobble \qquad Boulder \qquad Leaf Litter 95 Other \qquad
HABITAT AROUND POOL: Estimate \% of each within 165 feet or 50 m of pool, excluding cover directly over pool (estimates should total 100\%):

72\% Woodland (check most dominant type). If some of habitat is woodland, is the overstory:
【 Hardwood (> 75\% deciduous)
(Heavy ($>50 \%$ canopy cover of trees $/$ shrubs $>6 \mathrm{ft}$. tall)
\square Softwood (> 75\% evergreen)
\square Moderate ($<50 \%$ canopy cover of trees/shrubs $<6 \mathrm{ft}$. tall) Mixed (all others)
5% Open (check most dominant type)
Agriculture
(Fields/Meadow/Marsh
\square Other: \qquad
___ \% Residential/Urban/Suburban
\qquad \% Road
Paved \mathbb{X} Dirt/Gravel
\qquad \% Other: \qquad

DISTANCE TO FOREST FROM WATER'S EDGE: $\quad \square \quad \square \mathrm{m} \square \mathrm{ft}$. DISTANCE TO NEAREST ROAD: $290 \quad \chi^{\mathrm{m}} \square^{\mathrm{ft}}$.
ROAD CONDITIONS AT NIGHT: \square Light Traffic (< 10 cars) Heavy Traffic (> 10 cars)

NOTES:

wallkill River NwR
woodouck Nature Tra.l
4/20/2001

SITE: WDNO Nat Tail
Date: 4/00/01 Sky Code: 2 Wind Code: 1 1 Previous Day Precipitation? \square YES 7 No Substrate Temp.: 5960 Water Temp.: $64^{\circ} 63^{\circ} \square^{\circ} \mathrm{C}$ Do Pool Max. Depth: 57 cm Water Level: \square FULL $\square \%$ FULL $\square 1 / 2$ FULL $\square 1 /$ FULL $\square<1 / 4$ OR DRY

OTHER ORGANISMS:

SPECIES	\# Adults	Chorus Code	\# Mated Pairs	\# Spermato- phores	\# Egg Masses\# Tadpoles Larvae	\# Juveniles Spotted sal. SS	
Blue-spotted sal. BS							
Jefferson sal. JS							
Marbled sal. MS							
Red-spotted newt RN							
Four-toed sal. FS							
Wood frog WF							
Spring peeper SP							
Gray tree frog GTF							
Green frog GF	l						
Leopard frog LF							
Pickerel frog PF							
American toad AT							
Fowler's toad FT							
Eastern spadefoot ES							
Painted turtle							
Spotted turtle							
Wood turtle							
Blanding's turtle							
Snapping turtle							
Fairy shrimp							
Fingernail clam							
Amphibious snail							

NOTES:

observer: Hears thleomb $\square 1 \square 2$ date:
Total \# Egg Masses \qquad W S \qquad w \qquad $\$$

Areas Missed of Total \qquad W \qquad S \qquad w \qquad S

locality: LhNu/R SITE: who Duck Nature Tia. Y
Date:
 Sky Code: 2 Wind Code: \qquad Previous Day Precipitation? \qquad YES \& NO
Substrate Temp.: 59 Go Water Temp.: $64-63 \square{ }^{\circ} \mathrm{C}$ 区 ${ }^{\circ} \mathrm{F}$
Pool Max. Depth: $\quad 57 \mathrm{~cm}$ Water Level: 区 FULL $\square 3$ FULL $\square 1 / 2$ FULL $\square 1 / 4$ FULL $\square<1 / 4$ OR DRY OTHER ORGANISMS:

SPECIES	\# Adults	Chorus Code	\#Mated Pairs	\# Spermato- phones	\# Egg Masses	\# Tadpoles Larvae	\# Juveniles Spotted sal. SS
Blue-spotted sal. BS							
Jefferson sal. JS							
Marbled sal. MS							
Red-spotted newt RN							
Four-toed sal. FS							
Wood frog WF							
Spring peeper SP							
Gray tree frog GTF							
Green frog GF							
Leopard frog LF							
Pickerel frog PF			\ddots				
American toad AT							
Fowler's toad FT							
Eastern spadefoot ES							
Painted turtle							
Spotted turtle							
Wood turtle							
Blanding's turtle							
Snapping turtle							
Fairy shrimp							
Fingernail clam							
Amphibious snail							

NOTES:

OBSERVER: Michael Flock ${ }_{10} 1$ Date: $4 / 20 / 01$ TIME BEGIN: 14.45 TIME END: 1535

 Total \# Egg Masses W \qquad SW \qquad S

Areas Missed of Total \qquad W \qquad S \qquad W \qquad s
GRID SPACING IS

Area \#Egg Mass Stage Dead Area \#Egg Mass Stage Dead Area \#Egg Mass Stage Dead

Wallkill River NwR $5 / 9 / 2001$ observer \#/

A (3)
$B(1)$
C(1)
0 (1)
wood Duck Natore Tra.l
observer \#2

A (1)
3 (1)
c (1)
0 (1)

Locality: Wallfil/ fiver NWR sire:_ Woos! Duck tray

 Date: $5 / 9 / 01$ Sky Code: 0 Wind Code: 1 Previous Day Precipitation? \square YES \square NO Substrate Temp.: 68 80 Water Temp.: 65 -66 $\square{ }^{\circ} \mathrm{C}$ 区 ${ }^{\circ} \mathrm{F}$ Pool Max. Depth: 6/_cm Water Level: \square FULL $\square 1 /$ FULL $_{\square 1 / 2 \text { FULL } \square 1 / 4 \text { FULL } \square<1 / 4 \text { OR DRY }}$ OTHER ORGANISMS:| SPECIES | \# Adults | Chorus Code | \# Mated
 Pairs | \# Spermato-
 phones | \# Egg Masses\# Tadpoles
 Larvae | \# Juveniles
 Spotted sal. SS | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |
| Blue-spotted sal. BS | | | | | | | |
| Jefferson sal. JS | | | | | | | |
| Marbled sal. MS | | | | | | | |
| Red-spotted newt RN | | | | | | | |
| Four-toed sal. FS | | | | | | | |
| Wood frog WF | | | | | | | |
| Spring peeper SP | | | | | | | |
| Gray tree frog GTF | | | | | | | |
| Green frog GF | | | | | | | |
| Leopard frog LF | | | | | | | |
| Pickerel frog PF | | | | | | | |
| American toad AT | | | | | | | |
| Fowler's toad FT | | | | | | | |
| Eastern spadefoot ES | | | | | | | |
| Painted turtle | | | | | | | |
| Spotted turtle | | | | | | | |
| Wood turtle | | | | | | | |
| Blanding's turtle | | | | | | | |
| Snapping turtle | | | | | | | |
| Fairy shrimp | | | | | | | |
| Fingernail clam | | | | | | | |
| Amphibious snail | | | | | | | |

NOTES:
 Total \# Egg Masses \qquad S \xrightarrow{W} S

Areas Missed of Total \qquad W \qquad S \qquad
— W S

GRID SPACING IS

m BETWEEN LINES
INDICATE DIRECTION NORTH ON MAP (USE ARROW)

Area \#Egg Mass Stage Dead Area \#Egg Mass Stage Dead Area \#Egg Mass Stage Dead

Locality: walkill river nor site: wood Duck token) Date: $5 / 9 / 01 \quad$ Sky Code: \square Wind Code: $\frac{1}{\square}$ Previous Day Precipitation? \square YES \square NO
Substrate Temp. -8 Water Temp.: $65 \quad 66 \square{ }^{\circ} \mathrm{C}{ }^{\circ}{ }^{\circ} \mathrm{F}$
Pool Max. Depth: $6=1 \mathrm{~cm}$ Water Level: FULL \square \%FULL $\square 1 / 2$ FULL $\square 1 / 4$ FULL $\square<1 / 4$ OR DRY OTHER ORGANISMS:

SPECIES	\# Adults	Chorus Code	\# Mated Pairs	\# Spermato- phores	\# Egg Masses	\# Tadpoles Larvae	\# Juveniles Spotted sal. SS
Blue-spotted sal. BS							
Jefferson sal. JS							
Marbled sal. MS							
Red-spotted newt RN							
Four-toed sal. FS							
Wood frog WF							
Spring peeper SP							
Gray tree frog GTF							
Green frog GF							
Leopard frog LF							
Pickerel frog PF							
American toad AT							
Fowler's toad FT							
Eastern spadefoot ES							
Painted turtle							
Spotted turtle							
Wood turtle							
Blanding's turtle							
Snapping turtle							
Fairy shrimp							
Fingernail clam							
Amphibious snail							

NOTES:

 Total \# Egg Masses W SAreas Missed of Total \qquad W \qquad S
m BETWEEN LINES
INDICATE DIRECTION NORTH ON MAP (USE ARROW)
GRID SPACING IS \quad m BETWEEN LINES

Area \#Egg Mass Stage Dead Area \#Egg Mass Stage Dead Area \#Egg Mass Stage Dead $5 \frac{\frac{A}{4}}{\frac{1}{D}-\frac{1}{1}-\frac{3}{3}-\frac{1}{3}-\frac{1}{3}-\infty}$

Wallkill River NWR - Tract \#86 4/20/2001 Vernal Pool Wood Duck Nature Trail

Wallkill River NWR - Tract \#86 4/20/2001 Vernal Pool Wood Duck Nature Trail

Wallkill River NWR - Tract \#86 4/20/2001 Vernal Pool Wood Duck Nature Trail

Wallkill River NWR - Tract \#86 5/9/2001 Vernal Pool Wood Duck Nature Trail

Wallkill River NWR - Tract \#86 5/9/2001 Vernal Pool Wood Duck Nature Trail

Wallkill River NWR - Tract \#86 5/9/2001 Vernal Pool Wood Duck Nature Trail

Wallkill River NWR - Tract \#86 5/9/2001 Vernal Pool Wood Duck Nature Trail

VERNAL POOL HABITAT DESCRIPTION AND LOCATION DATA SHEET
\qquad DATE: $\quad 4 / 22 / 2001$ locality: wallkill River NoR site: \qquad DETAILED DIRECTIONS TO SITE:
\qquad V.P. on East side of $R \neq R$ UTM ZONE: $18 T$ UTM DATUM: \qquad ELEVATION: \qquad 125 ه m ft
\# 459 LENGTH
\qquad UM : \qquad 4566827UtMe: UTMN: 4566781 \#461 WIDTH
\#458 UTM : 0538132 UTMN: \qquad 4566812 UTM E: 0538162 UTMN: \qquad 4566289 H460 UTME: \qquad UTM N: \qquad TM E: \qquad UTM N: \qquad
 WATER CHEMISTRY (optional): pH : \qquad Conductivity (units): \qquad DO (units): \qquad WATER COLOR: $\boldsymbol{X}_{\text {Clear }} \square_{\text {Stained }}$ \qquad
\qquad
\qquad POND TYPE:Natural, if so then: \square temporary \square semiperri/permanent \square beaver flowage \square oxbow \square other: \qquad \X Artificial, if so then: \square \square borrow/gravel pit \quad roadside ditch \square farm pond \square impoundment \square other: \qquad Estimated age of pond: $\square_{\leq 5 \mathrm{yrs}}$. 她 $\geq 5 \mathrm{yrs}$.Unknown
FISH PRESENT: $\square_{\text {No }} \square$ Yes Species: \qquad WETLAND CLASS: $\square_{\text {forested }} \not \square_{\text {shrub }} \square_{\text {marsh }} \square_{\text {meadow }} \square_{\text {none (open water) }}$
Classify by dominant form that covers 30% or more of the pool water surface
SITE TYPE: \searrow upland-isolated (not part of larger wetland)bottomland-isolated (part of a river or lake floodplain)wetland complex (associated with a larger wetland complex)
For the following, rank the proportion of pond area in which each vegetation type occurs: $0=0 \%$ (absent), $1=1-10 \%$ (rare), $2=>10-50 \%$ (common), $3=>50 \%$ (abundant)
\qquad Abundance of Logs \qquad ($>10 \mathrm{~cm}$ diameter)

IN POND VEGETATION: LAV \qquad Moss \qquad Grass \qquad 'Sedge/Rush \qquad 2 Shrub \qquad Tree \qquad Other \qquad

SUBSTRATE TYPES: Estimate \% types composing bottom surface (must add up to 100\%)
Silt/Clay \qquad Mud 25 Sand \qquad Gravel \qquad Pebble \qquad Cobble \qquad Boulder \qquad Leaf Litter 25 Other \qquad
HABITAT AROUND POOL: Estimate \% of each within 165 feet or 50 m of pool, excluding cover directly over pool (estimates should total 100%):
\% Woodland (check most dominant type). If some of habitat is woodland, is the overstory:

| \boxtimes Hardwood ($>75 \%$ deciduous) | \boxtimes Heavy ($>50 \%$ canopy cover of trees $/$ shrubs $>6 \mathrm{ft}$. tall) |
| :--- | :--- | :--- |
| \square Softwood ($>75 \%$ evergreen) | \square Moderate ($<50 \%$ canopy cover of trees $/$ shrubs $<6 \mathrm{ft}$. tall) |
| \square Mixed (all others) | |

45% Open (check most dominant type)Agriculture
[Fields/Meadow/Marsh
\square Other: \qquad

\qquad
\% Residential/Urban/Suburban
5% Road Paved \backslash Dirt/Gravel
_ \% Other: \qquad

DISTANCE TO FOREST FROM WATER'S EDGE: $\qquad$$\mathrm{m} \square \mathrm{f}$ DISTANCE TO NEAREST ROAD: $150 \square \mathrm{~m} \square \mathrm{ft}$ ROAD CONDITIONS AT NIGHT: \boxtimes Light Traffic (<10 cars) \square Heavy Traffic (>10 cars) NOTES:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

LOCALITY: W/ARWR

Sky Code: \qquad
SITE:

Date: $4 / 22 / 01$ Wind Code: \qquad Previous Day Precipitation? \square YES \square NO Substrate Temp.: $63^{\circ} 60^{\circ}$ Water Temp.: $65^{\circ} 63^{\circ} \square{ }^{\circ} \mathrm{C}{ }^{\circ} \mathrm{F}$ Pool Max. Depth: $27 \ldots \mathrm{~cm}$ - Water Level: \square FULL $\square \frac{1 / 4}{}$ FULL $\square 1 / 2$ FULL $\square 1 / 4$ FULL $\square<1 / 4$ OR DRY OTHER ORGANISMS:
\(\left.$$
\begin{array}{|l|l|l|l|l|l|l|l|}\hline \text { SPECIES } & \text { \# Adults } & \text { Chorus Code } & \begin{array}{l}\text { \# Mated } \\
\text { Pairs }\end{array} & \begin{array}{c}\text { \# Spermato- } \\
\text { phores }\end{array} & \text { \# Egg Masses }\end{array}
$$ \begin{array}{l}\# Tadpoles

Larvae\end{array}\right]\)| \# Juveniles |
| :--- |
| Spotted sal. SS |

NOTES:

observer: Hess Holconth ot $1 \square$ Total \# Egg Masses \qquad W \qquad s

Areas Missed of Total \qquad W \qquad S

4 (23) TIME BEGIN: $\angle P M$ TIME END: Zion) $O M$ OBSERVER 2
\qquad
W \qquad S
\qquad S
SANG IS

Area \#Egg Mass Stage Dead Area \#Egg Mass Stage Dead Area \#Egg Mass Stage Dead

locality: WRNWR

Date: $4 / 27 / 01$ Sky Code: 2 Wind Code: 1
SITE: Polling
Wind Code: 1 \square Previous Day Precipitation? \square YES NO Substrate Temp.: $63^{\circ}-60^{\circ}$ Water Temp.: $65^{\circ} 63^{\circ} \square{ }^{\circ} \mathrm{C}$ 原 ${ }^{\circ} \mathrm{F}$ Pool Max. Depth: 27 cm Water Level: \square FULL $\boldsymbol{\chi}^{3 / 4}$ FULL $\square 1 / 2$ FULL $\square 1 / 4$ FULL $\square<1 / 4$ OR DRY OTHER ORGANISMS:

SPECIES	\# Adults	Chorus Code	\# Mated Pairs	\# Spermato- phones	\# Egg Masses	Tadpoles Larvae	\# Juveniles
Spotted sal. SS							
Blue-spotted sal. BS							
Jefferson sal. JS							
Marbled sal. MS							
Red-spotted newt RN							
Four-toed sal. FS							
Wood frog WF							
Spring peeper SP							
Gray tree frog GTF							
Green frog GF							
Leopard frog LF							
Pickerel frog PF							
American toad AT							
Fowler's toad FT							
Eastern spadefoot ES							
Painted turtle							
Spotted turtle							
Wood turtle							
Blanding's turtle							
Snapping turtle							
Fairy shrimp							
Fingernail clam							
Amphibious snail							

NOTES:

OBSERVER: Tom Spendentioing $1 \square 2$ DATE: $4127 / 0$ OBGERVER 1
Total \# Egg Masses \qquad W \qquad S

Areas Missed of Total \qquad W \qquad S

TIME BEGIN: $12: 30$ TIME END: $1: 1 / 5 \mathrm{fm}$ OBSERVER 2
\qquad S

GRID SPACING IS m BETWEEN LINES INDICATE DIRECTION NORTH ON MAP (USE ARROW)

Area \#Egg Mass Stage Dead Area \#Egg Mass Stage Dead Area \#Egg Mass Stage Dead

Wallkill River NWR - Tract \#47 4/27/2001 Vernal Pool Paling

Wallkill River NWR - Tract \#47 4/27/2001 Vernal Pool Paling

Wallkill River NWR - Tract \#47 4/27/2001 Vernal Pool Paling

Wallkill River NWR - Tract \#71
 4/27/2001 Vernal Pool "Wallkill Farms"

Wallkill River NWR - Tract \#71 4/27/2001 Vernal Pool "Wallkill Farms"

Wallkill River NWR - Tract \#71 4/27/2001 Vernal Pool "Wallkill Farms"

Wallkill River NWR - Tract \#71

4/27/2001 Vernal Pool "Wallkill Farms"

Wallkill River NWR - Tract \#71
 4/27/2001 Vernal Pool "Wallkill Farms"

