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Meeting outline 

• Motivation for project 
• Milkweed and monarch database 

development 
• Modeling methods 

– MaxEnt 
– Mitigating for sampling bias 
– Environmental variable selection 
– Defining the background 
– Model tuning 

• Results review 
• Discussion 

 Photos by Elissa Buttermore, 
USFWS 2015 

Presenter
Presentation Notes
Purpose of meetingTo provide you all with a fairly in depth understanding of methods, data, resultsTo get your feedback - most interested in hearing suggestions for improvement that can be implemented quicklyWe know the product is imperfect and have a list of potential improvementsHope is that some of these can be implemented next fall and winterAnd that data collection efforts this summer can be used to test the model and provide data to train a better one next winterI will talk for around an hour and try to cover as much as I can. Please interrupt with questions. 



Total Area Occupied by Monarch Colonies 
at Overwintering Sites in Mexico 

 

Presenter
Presentation Notes
Monarchs are in troubleAt its 1996-97 peak, the continent’s eastern monarch population was estimated at more than 1 billion butterflies. This year, the Mexican overwintering population numbered only about 56.5 million butterflies, gathered on fewer than 3 acres. 



Western Monarch Thanksgiving Count 

Presenter
Presentation Notes
Western monarchs too, show at least a 50% decline since the late 90s



Photo: The Xerces Society/Carly Voight 

In the fall and winter, monarchs are found clustering in hundreds 
of coastal California groves 

Western Monarch Overwintering Habitat 
 



Presenter
Presentation Notes
The Service’s strategy focuses in three priority geographic areas: Texas and Oklahoma which is key for monarchs first generation of spring breeding habitat, America’s “Corn Belt”  important for summer breeding, and key areas of the range for the western population. You can see from this map the advantage of leveraging I-35 as an anchor point for both our conservation and engagement strategies as it lines up perfectly with the monarch’s central flyway.In addition to the three priority geographic areas, there is much monarch work being accomplished in the Northeast, Southeast and Mountain-Prairie Regions.



Dingle et al. 2005 
 
Distribution of western  
monarchs throughout 
the year 



Stephens and Frey 2010 

We understand general regional patterns in monarch natal habitat suitability, 
but higher resolution maps would be very useful 

Yang et al. 2015 

Monarch Natal Habitat 

Presenter
Presentation Notes
Specifically, where are monarchs breeding in the western US?Monarchs caterpillars sequester cardenolides from milkweed, making them toxic to predators as larvae and adults27 species in the genus AsclepiasMilkweeds grow in rangelands, agricultural areas, riparian habitats, wetlands deserts, prairies, open forests, roadsides, and gardensStevens & Frey (2010) developed a model of probable monarch breeding areas based on milkweed availability for monarchs at the appropriate time of the year and climatic suitability.  The areas in grey are the suggested breeding areas.



The need for a habitat suitability model 
• Identification of priority monarch areas needed 

for efficient use of limited funds 

• We know that geographic features, climate 
variability, and milkweed availability influence 
monarch habitat distribution 

• Species distribution models can quantify these 
relationships and help us prioritize landscapes 

 

Presenter
Presentation Notes
Milkweed is not homogenous across the landscapeEffect of large landscape features (mountains and deserts) on� monarch movements is unknown�



Project objectives 
• Consolidate existing 

western milkweed and 
monarch records 
 

• Collect new data for 
milkweed and monarchs 
(2015-2020) 
 

• Compile geospatial data 
layers that may influence 
milkweed & monarch 
distributions 



Objectives, continued 
• Produce coarse-scale 

models that predict 
important regions for 
key milkweed species 
and for monarchs 
themselves.  
 

• Use models to help 
prioritize landscapes 
and to guide surveys 
that can refine next 
year’s models 
 

• An iterative process 

Presenter
Presentation Notes
The plan is not to come up with perfect models for this year, but build the best possible given available data, then use these to prioritize next year’s activities, including more systematic sampling.Part of the SHC wheel (show SHC wheel) In this case, not only modeling monarchs but also their host plant, milkweed, since their successful reproduction is so dependent on this. Also it would be helpful to know if a refuge or eother potential milkweed site is identified ashighly suitable or marginal for a particular species when planting there



Primary Objectives 

Build a database to house the large, and growing, collection of milkweed 
and monarch breeding observation records held by The Xerces Society.  
 
Collect and incorporate USFWS milkweed field surveys and western 
milkweed and monarch breeding records from a variety of other sources. 
 
Convert data to spatial format to be used in the western milkweed habitat 
suitability model. 
 



How did we get the data? 

• Request for data sent to researchers, herbariums, and other (FWS) 
regional biologists 

• Obtained through agreements with Xerces/FWS 
• Returned FWS field survey forms and other field surveys 
• Downloads from online consortiums and herbariums 
• ArcGIS online web mapping application 
• Social Media 



Main Providers: 
• The Xerces Society 
• US Fish & Wildlife 
• SEINet 
• Bureau of Land Managment 
• US Forest Service 
• National Park Service 
• Consortium of Pacific Northwest 

Herbaria 
• Consortium of California Herberia 
• iNaturalist 
• National Phenology Network 

 
 

• BISON (USGS) 
• OSU Herbarium (Oregon Plant 

Atlas) 
• Journey North 
• Hugh Dingle (UC Davis) 
• Monarch Larva Monitoring 

Project (MLMP) 
• Flickr 
• GBIF 

 



Original Source Data: 

65 Universities 
13 Government agencies 
10 Botanical Gardens 
7 Consortiums 
6 Conservation Organizations 
6 Museums 
5 Research Organizations 
6 Other 
 
 



Major Challenges: 

• 92 input files in dozens of unique formats 
• Cross-walking to new database structure 
• Interpreting data (no explanation of fields) 
• Inconsistent data values 
• Poor or unknown location accuracy 
• Datasets lacking information we sought 
• Duplicates (mostly overlaps between data sources) 
 
 



The Numbers 

Began with a single spreadsheet of ~8,000 records shared by Xerces and 
ended with roughly… 
 

28,000 total records (still many known duplicates to contend with) 
60 data providers  
90 input files 
61% of records are for our target milkweed species and 26% of those 
records have a high enough accuracy level to be used in model 
19% of records for monarch, 24% of those have good accuracy 
Only 12% of the total “good” monarch records indicate breeding 
activity 

 
 















933 Records 



























What’s next? 

• Continue to standardize data 
• Remove duplicates 
• Break up into relational tables (normalize data) 
• Create useful queries for end-users 
• Fill the data gaps 
• Compile notes and document the process 
• Increase number of georeferenced records 
• Share! 

 



Modeling methods 

• MaxEnt, the modeling tool 
• Defining the analysis area for each species 
• Mitigating for sampling bias 
• Environmental covariate selection 
• Model calibration and selection 

 



Species Distribution Modeling Basics 2/
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Moisture 

Ppres = f (climate, soil, etc.)  

Slide credit: Niklaus Zimmermann and Thomas Edwards: IALE 2015 Species Distribution Modeling using R course 

Presenter
Presentation Notes
Change for one of Josh’s maps



MaxEnt, the modeling tool 

"The idea of Maxent is to estimate a target probability 
distribution by finding the probability distribution of 
maximum entropy (i.e., that is most spread out, or 
closest to uniform), subject to a set of constraints that 
represent our incomplete information about the target 
distribution. The information available about the target 
distribution [is]… a set of real-valued variables… and 
the constraints are that the expected value of each 
feature should match its empirical average.” 
 

- Philips et al. 2006 



Why MaxEnt 

• Presence only data 
• Explore complex relationships with 

environment (with user control of allowed 
complexity) 

• Considered good for small data sets 
• Performs well relative to other machine 

learning  models (e.g., Random Forests) when 
they are run with presence/pseudo-absence 
data (Elith et al. 2006) 

• Fairly well documented and studied 
 



Defining the geographic 
background for each species 

• Known to have 
strong effect on 
the model 
outputs 
  

• Using a 
calibrated buffer 
approach 
described in 
VanDerWal 
et al. 2009 

 
 

Fig. 1, VanderWal et al. 2009, Ecological Modelling 



Across 12 species, results improve; 
then plateaued 

Fig. 2, VanderWal et al. 2009, Ecological Modelling 



Similar findings in Iturbide et al. 2015 

And they released 
an R package that 
makes this buffer 
calibration much 
easier! 

Fig. 3, Iturbide et al. 2015, Ecological Modelling 



Example background extent selection with our data 



 
A. eriocarpa 
background and medium 
resolution occurences 



Correction for sampling bias 

• Serious problem in many data sets, 
including ours  

• Fourcade et al. did a particularly thorough 
exploration: 
– Developed 36 artificially biased datasets (3 

species X 4 types of biases X 3 intensity levels) 
– For each, tried 5 different bias correction 

methods 



Mitigating for sampling bias: 
results from Fourcade et al. 2014 



Environmental Covariates 

• Based on expert input and data availability 
• Study domain is conterminous US, west of 

continental divide 
• 25 total in current candidate set 

– (More on selection of best subset for each species 
later) 

• Experimented with 3 resolutions: 90m, 270m, 
and 900m pixels 

• 270 seemed most reasonable given resolution 
of inputs and accuracy of points 



Covariates: PRISM Climate Variables 
Variable name Source Original 

Resolution Time period 

1 Mean Annual temp. PRISM ~900m pixels 30 year avg: 
 1981-2010 

2 Mean Annual precip. PRISM ~900m pixels 30 year avg: 
 1981-2010 

3 Mean precip. of the Warmest Quarter PRISM ~900m pixels 30 year avg: 
 1981-2010 

4 Mean precip. of the Coldest Quarter PRISM ~900m pixels 30 year avg: 
 1981-2010 

5 Mean temp. of the Warmest Quarter PRISM ~900m pixels 30 year avg: 
 1981-2010 

6 Mean temp. of the coldest quarter PRISM ~900m pixels 30 year avg: 
 1981-2010 

7 Max temp. of the warmest month PRISM ~900m pixels 30 year avg: 
 1981-2010 

8 Minimum temp. of the coldest month PRISM ~900m pixels 30 year avg: 
 1981-2010 

9 temp. annual range PRISM ~900m pixels 30 year avg: 
 1981-2010 



Covariates: Land cover, soil, and other 
Variable name Source Original 

Resolution Time period 

10 Topsoil (0-30cm) bulk density SSURGO patched with 
STATSGO varies n/a 

11 Topsoil (0-30cm) clay fraction SSURGO patched with 
STATSGO varies n/a 

12 Topsoil (0-30cm) sand fraction SSURGO patched with 
STATSGO varies n/a 

13 Topsoil (0-30cm) silt fraction SSURGO patched with 
STATSGO varies n/a 

14 Topsoil (0-30cm) pH SSURGO patched with 
STATSGO varies n/a 

15 Slope Derived from 30m DEM 
(3DEP) 30m pixels n/a 

16 Aspect Derived from 30m DEM 
(3DEP) 30m pixels n/a 

17 Compound Topographic Index (CTI) Derived from 90m DEM 
(SRTM) 90m pixels n/a 

18 Distance to water Derived from (NHD) Calculated at 
90m resolution n/a 

19 Reclassified LANDFIRE Existing 
Vegetation Type LANDFIRE 30m pixels 2011 

20 Percent natural within 1 km LANDFIRE 30m pixels 2011 



Covariates: Other Climate Variables 

Variable name Source Original 
Resolution Time period 

21 Mean Actual Evapotranspiration (AET) AdaptWest ~900m pixels 30 year avg: 
 1981-2010 

22 Mean Climatic Water Deficit, 1980-2009 AdaptWest ~900m pixels 30 year avg:  
1981-2010 

23 Mean precip. Seasonality (Coefficient of 
Variation) BIOCLIM ~900m pixels 50 year avg:  

1950-2000 

24 Mean temp. Seasonality (standard 
deviation *100) BIOCLIM ~900m pixels 50 year avg:  

1950-2000 

25 Annual Mean Degree Days ClimateWNA ~900m pixels 30 year avg: 
1961-1990  





Selection of uncorrelated subsets of 
covariates for each species 

• Multicollinearity can lead to unpredictable 
results and make models difficult to 
interpret 

• Did initial runs with all variables to get 
“permutation importance” scores for each  

• Reran with an uncorrelated subset 
– From each correlated group of variables, 

selected the one with highest permutation 
importance 

Presenter
Presentation Notes
However, some argue that multicollinearity is less of an issue for machine-learning methods than for statistical methods (Elith et al. 2011)The contribution for each variable is determined by randomly permuting the values of that variable among the training points (both presence and background) and measuring the resulting decrease in training AUC.  A large decrease indicates that the model depends heavily on that variable.  Values are normalized to give percentages. (MaxEnt tutorial)



Example variable selection: A. eriocarpa 

• water deficit annual: 43.89% 
– degree days 5C: 2.63% 
– tmean annual: 2.16% 
– tmax warmest month: 0% 
– tmean warmest quarter: 0.11% 
– AET annual mean: 0.97% 

• ppt warmest quarter: 12.74% 
• ppt annual: 11.28% 

– tmean coldest quarter: 0% 
– Topsoil pH: 0% 

• temp range: 5.22% 
– temp seasonality: 4.81% 

• LANDFIRE reclass: 5.07% 
• ppt seasonality: 3.64% 

– tmin coldest month: 0.72% 

• aspect: 2.20% 
• slope: 1.62% 
• distance to water: 1.44% 
• topsoil clay fraction: 1.42% 
 
• topsoil silt fraction: 0.09% 
• combined topographic index: 0% 
• ppt coldest quarter: 0% 
• topsoil bulk density: 0% 
• topsoil sand fraction: 0% 

 



Calibrating MaxEnt 

• Two important parameters 
– Regularization Multiplier (RM) 

• Tightness of fit 
– Allowed “Feature Classes” (FCs) 

• Types of mathematical relationships explored by MaxEnt 
– Include Linear, Quadratic, Hinge, Product, and Threshold 

– Numerous recent emphasize the importance of 
tuning/calibrating these parameters 

– ENMeval (Muscarella et al. 2014) now makes it 
relatively easy to do so. 

• For each run, tried 8 FC combos X 9 RMs = 72 models 



 

Example ENMeval calibration outputs for monarch breeding habitat suitability 

Presenter
Presentation Notes
Example ENMeval calibration outputs for A. asperula using only high resolution data points. Each of the 4 panels shows a different model performance metric for the same 48 model settings (8 regularization multiplier values times 6 sets of allowed feature classes). The legends indicate which feature class sets were allowed (L = linear, Q = quadratic, H = hinge, P = product and T = threshold). The upper left panel shows delta AICc (DAICc). There is a dotted line at DAICc = 2 because models below 2 are generally thought to be well supported relative to the others in the set (Burnham & Anderson 2004). The upper right panel shows the AUC score for the test data. The lower left panel shows AUC Diff (the training AUC score - the test AUC score). The lower right panel shows the proportion of test localities left out of a binary version of the model, when the threshold is defined so that all training data points are included. High values of the bottom two metrics both indicate over-fitting.



AUC vs. AUC DIFF: 
Finding overfit models 



Model selection 

• No accepted standard metric. 
• AUC is often used on its own, but does not 

adequately penalize overfitting 
• We are selecting models by 

– First removing anything below a 0.7 AUC 
– Removing models that are in the bottom quadrant 

for any of the three overfitting metrics 
– Sorting those that remain by AUC, and inspecting 

the top several versions (usually very similar) 
 



 

A. eriocarpa 
AUC = 0.71 AUC.diff=0.08, RM=1.5 
  
water deficit annual: 43.0% 
ppt annual: 26.8% 
temp range: 7.3% 
ppt seasonality: 6.0% 
ppt warmest quarter: 4.2% 
slope: 3.9% 
LANDFIRE reclass: 3.1% 
aspect: 2.5% 
Topsoil Clay Fraction: 2.4% 
distance to water: 0.7% 





 

A. fascicularis 
AUC = 0.73 AUC.diff=0.02, RM=2.25 
  
ppt coldest quarter: 23.7% 
tmean coldest quarter: 21.5% 
ppt warmest quarter: 17.8% 
LANDFIRE reclass: 9.7% 
Topsoil Silt Fraction: 7.8% 
ppt seasonality: 6.1% 
Topsoil Bulk Density: 5.5% 
slope: 5.0% 
distance to water: 2.8% 



 

A. speciosa 
AUC = 0.7 AUC.diff=0.03, RM=2.25 
  
tmin coldest month: 23.9% 
tmax warmest month: 16.1% 
ppt warmest quarter: 14.2% 
temp seasonality: 12.6% 
slope: 11.5% 
distance to water: 9.2% 
ppt coldest quarter: 8.3% 
Topsoil Silt Fraction: 4.2% 



Effect of spatial inaccuracy in data 
on species distribution models 

• Graham et al 2008 
– Moved each coordinate with a random number 

drawn from the normal distribution with a 
mean of zero and a standard deviation of 5 km 

– Found MaxEnt was largely unaffected by these 
errors 

– But, many of the errors in the milkweed and 
monarch database could be far greater that 
5km.  

Presenter
Presentation Notes
We evaluated how uncertainty in georeferences and associated locational error in occurrencesinfluence species distribution modelling using two treatments: (1) a control treatment wheremodels were calibrated with original, accurate data and (2) an error treatment where data were firstdegraded spatially to simulate locational error. To incorporate error into the coordinates, we movedeach coordinate with a random number drawn from the normal distribution with a mean of zeroand a standard deviation of 5 km. We evaluated the influence of error on the performance of10 commonly used distributional modelling techniques applied to 40 species in four distinctgeographical regions.3.Locational error in occurrences reduced model performance in three of these regions; relativelyaccurate predictions of species distributions were possible for most species, even with degradedoccurrences. Two species distribution modelling techniques, boosted regression trees andmaximum entropy, were the best performing models in the face of locational errors. The resultsobtained with boosted regression trees were only slightly degraded by errors in location, and theresults obtained with the maximum entropy approach were not affected by such errors.



A. asperula 
AUC = 0.71; AUC.diff=0.05, RM=1.5 
 
ppt seasonality: 32.1% 
ppt coldest quarter: 21.7% 
AET annual mean: 16.3% 
ppt warmest quarter: 9.2% 
tmean warmest quarter: 6.6% 
distance to water: 6.3% 
LANDFIRE reclass: 3.7% 
slope: 3.6% 
Topsoil Silt Fraction: 0.6% 



 

A. cordifolia 
AUC = 0.72; AUC.diff=0.03, RM=1.75 
 
ppt annual: 28.2% 
tmin coldest month: 15.0% 
temp range: 12.9% 
water deficit annual : 11.9% 
ppt warmest quarter: 8.6% 
slope: 6.1% 
Topsoil Silt Fraction: 6.1% 
LANDFIRE reclass: 5.1% 
distance to water: 4.5% 
aspect: 1.5% 



 

Monarch breeding 
AUC = 0.7; AUC.diff=0.06, RM=1.25 
 
 fascicularis model: 41.6% 
 speciosa model: 22.7% 
 tmean warmest quarter: 9.7% 
 AET annual mean: 5.5% 
 ppt warmest quarter: 4.1% 
 eriocarpa model: 3.4% 
 ppt seasonality: 2.9% 
 asperula model: 2.8% 
 slope: 2.5% 
 Topsoil Sand Fraction: 1.5% 
 cordifolia model: 1.3% 
 Topsoil Clay Fraction: 1.1% 
 distance to water: 0.9% 



Potential improvements 
• Near term 

– Can run with different variable subsets 
• Long term 

– More species data -> better models 
– Improve variables 

• Rivers instead of all minor waterways 
• Recent climate variables instead of long-term avgs. 

– Ensemble of model types 
– Model regions separately 
– Finer models of key regions 
– Seasonal suitability models 
– Climate change modeling 



Potential uses 

• Guide surveys 
– For example, speciosa model could be mapped 

with roads and public lands in NV to help 
inform sampling locations this summer 

• Help point to regions of higher potential 
value for restoration 
– This sort of application probably only 

appropriate in CA and PNW with these models 
• Need to be validated, and new runs 

 



Thank you! 



Appendix Slides 



 

Monarch breeding, 
projected across 
large unsampled 
areas 















Model evaluation metrics 

 

Metric Description 

AUC Test Measures goodness of fit. Probability that a randomly-drawn presence has a 
higher score than a randomly drawn background location. Tends to be lower 
for generalist species. 

AUC Diff “The difference between the AUC value based on training localities (i.e. 
AUCTRAIN) and AUCTEST (AUCTRAIN  AUCTEST). If AUCTRAIN < AUCTEST, the 
returned value is zero. Value of AUCDIFF is expected to be positively 
associated with the degree of model  overfitting” (Muscarella et a. 2014) 

ORMTP 
(‘Minimum 
Training 
Presence’ 
omission rate) 

“indicates the proportion of test localities with suitability values (MAXENT 
relative occurrence rates) lower than that associated with the lowest-ranking 
training locality. Omission rates greater than the expectation of zero typically 
indicate model overfitting. 

OR10 (10% 
training 
omission rate) 

indicates the proportion of test localities with suitability values (MAXENT 
relative occurrence rates) lower than that excluding the 10% of training 
localities with the lowest predicted suitability. Omission rates greater than 
the expectation of 10% typically indicate model overfitting 



A. fascicularis 



A. speciosa 



A. asperula 



A. cordifolia 
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