1991 WATER QUALITY SURVEY

Written By CRYSTAL E. LEGAULT

Tests Performed By Shawn Lixey Crystal E. LeGault

TABLE OF CONTENTS

Introduction 1
Water Quality Testing Dates 2
Water Quality Equipment List 3
Methods And Materials 4
Acreage Of Some Pools Tested 5
Brief Facts About Tests 6
Water Quality Tests Performed On All Pools In 1991 8
Water Quality Statistics For 1989, 1990, And 199111
Priority Tests Performed On Selected Pools In 199117
Priority Tests Of 1990 And 199118
Recommendations
Works Cited
Map Of Pools TestedIn Back Of Folder
Map Of Priority PoolsIn Back Of Folder

Water quality testing for the summer of 1991 included two circuits ot testing, the first from 6/10 through 6/28, and the second from 7/15 through 7/18. Twenty five pools and 2 streams were tested on the refuge.

The Hach Drel 2000 water quality kits used in 1990 and 1991 consist of a conductivity meter, pH meter, digital titrator, and spectrophotometer. Six basic tests were performed on all twenty-seven bodies of water.

		Water Areas	Tested	
A-1	F-1	Upper Goose Pen	T-2 East	Driggs River
B-1	G-1	Lower Goose Pen	T-2 West	Spur Pool #1
C-1	H-1	M-2	Delta Creek	Spur Pool #2
D-1	I-1	A-2	Marsh Creek	Spur Pool #3
E-1	J-1	C-2	Stagnant Pool	Spur Pool #4
		Diversion Ditch	C-3	

Basic Tests Performed

Conductivity Meter *temperature (C) *conductivity (mS/cm) *total dissolved solids (mg/L)

Digital Titrator *alkalinity (mg/L)

pH meter *pH

Spectrophotometer *turbidity (NTU)

Eight priority pools were chosen to undergo nine more specific test.

Priority Pools A-1, C-1, D-1, F-1, J-1, M-2, A-2, C-3

Priority Tests

Digital Titrator	Spectrophotometer
*total hardness	*sulfate
*calcium	*tannin & lignin
*magnesium	<pre>*nitrogen ammonia</pre>
*carbon dioxide	*nitrate, low range
	<pre>*nitrate, high range</pre>

The same tests were done in 1990 as well as 1991. In 1989 only conductivity, total dissolved solids, temperature, pH, and alkalinity were performed on selected pools.

WATER QUALITY TESTING DATES 1991

POOL	CIRCUIT #1		CIRCUIT #2
A-1* B-1	6/24 6/13		7/15 , 7/16 7/16
C-1* D-1*	6/13, 6/27 6/13, 6/27		7/16, 7/18 7/16
E-1	6/10		7/16
F-1* G-1	6/13, 6/27 6/13		7/16, 7/18 7/16
H-1 I-1	6/13 6/10		7/16 7/16
J-1*	6/10, 6/26		7/16, 7/18
Upper Goose Pen Lower Goose Pen	6/13 6/13		7/15 7/15
T-2 East T-2 West	6/24 6/24	-	7/15 7/15
M-2*	6/24		7/15, 7/16
C-2 A-2*	6/24 6/24		7/16 7/16
Delta Creek Pool	6/28 6/28		7/17 7/15
Marsh Creek Pool Stagnant Pool	6/28		7/15
Spur Pool #1 Spur Pool #2	6/28 6/28		7/17
Spur Pool #3	6/28		7/17
Spur Pool #4 C-3*	6/28 6/28		7/17 7/15, 7/17
Driggs River Diversion Ditch	6/28 6/28		7/15 7/15

* indicates priority pools

* Hach water quality kits

WATER OBALITY TESTING DATES 1991

- * distilled water
- * water sampling bottle
- * 2-quart milk jugs
- * disposal bottles
- * paper towels
- * pen and paper
- * refuge map
- * waders
- * instruction booklets
- * vehicle

Before beginning any testing read all manuals. Both kits should be checked to insure all batteries are in the machines and all chemicals are present in sufficient amounts. About four gallons of distilled water will be needed for each circuit of testing. Five or six two-quart washed milk jugs will be useful to get priority pool testing water. A vehicle (preferably a truck) is needed, as well as a pair of hip waders.

Once the pool to be tested is reached and the waders have been put on, take a water sampling bottle and the conductivity meter (and a two-quart milk jug if a priority pool), then walk out into the pool until a water depth of about two feet is reached. Wait until the silt and sediment clear away from the area then take the water sampling bottle and rinse with pool water. Fill by holding the bottle upside down and pushing into the water. When the bottle is about halfway between the sediment and surface turn the bottle right side up until it is filled (this way only water from beneath the surface is collected, fill the milk jug with water in the same manner). The water bottle (and jug) can then be thrown to shore. Follow the instructions in the guide to the conductivity meter and perform the temperature, conductivity, and total dissolved solids tests while in the two feet depth of water. Remember to keep accurate records of test results.

Once out of the pool pick up the filled water sampling bottle (and milk jug if priority pool), put the conductivity meter away, and set up the Hach kits on the tailgate (if it is a truck). Alkalinity, turbidity, and pH tests are performed in the field. Put all water with chemicals added into disposal bottle, never dump any chemicals on the ground.

If the pool was one of the priority pools, take the two-quart milk jug of water back to the lab at headquarters and perform the total hardness, calcium, magnesium, carbon dioxide, sulfate, tannin & lignin, nitrogen ammonia, nitrate 1r, and nitrate hr tests. Do not rinse any chemicals down the sink, put them in disposal bottles. Priority testing should be performed the same day as the water was collected, do not run tests on water stored overnight.

a be checked to insure all batteries are in the machines upo before beginning any beseing read all mount

service constitute of white to read

. Lies for in a system · trophic

olution to

-luding . . 112 1S THE STATE

CALENCE

stern what is

1100/ 22101-00

acres	S			100 C
acres	s · · ·			
acres	S			
acres	5			
acres	S			
acres	5			
acres	S			
acres	5			
acres	S			
acres	5			
acres	5			
ceek l	Poo1	950	acres	
		_		
	acres acres acres acres acres acres acres acres acres acres acres acres acres acres acres acres	acres acres	acres acres	acres acres

Alkalinity

A-1 259 acres

Alkalinity is defined as the quantitative capacity of water to react with hydrogen ions to a preselected pH endpoint. Alkalinity commonly results from carbon dioxide and water attacking sedimentary carbonate rocks and dissolving out some of the carbonate to form bicarbonate solutions (Cole, 1975).

Carbon Dioxide

Carbon dioxide is a common nutrient needed in large quantities for cell development. The daily and seasonal carbon flow in a system can be used to estimate the maximum production at higher trophic levels (Goldman & Horne, 1983).

Conductivity

Electrolytic conductivity is the capacity of ions in a solution to carry electrical current. Current is carried by inorganic dissolved solids such as chloride, nitrate, sulfate, phosphate, sodium, calcium, magnesium, iron, and aluminum.

Nitrogen and Ammonia

Nitrogen occurs in freshwater systems in several forms including dissolved molecular nitrogen, nitrates, and nitrites. Ammonia is a biologically active nutrient that is present in most waters as a normal degradation product of nitrogenous organic matter (WRFSL, 1984).

pН

pH is a measure of hydrogen ion activity in a water sample.

Sulfate

The sulfate form of sulfur is found almost everywhere in natural waters (WRFSL, 1984).

Tannin & Lignin

Lignin is the skeletal material of leaves.

Temperature

Temperature was recorded in degrees C.

Total Hardness

Water hardness is a measure of metallic ions dissolved in water. Calcium and magnesium are the primary factors, but metals such as iron and manganese may be present (Cole, 1975).

Turbidity

VIEST HICK

Turbidity is the lack of transparency caused by suspend which can be stirred up from the bottom, by dissolved materials leaching from plants, and also by algal growth (Doepke, 1991). A top layer of mud can be easily resuspended by wind and thus causes a high turbidity which can restrict submerged macrophytes and the fish feeding off the bottom fauna (Dokulit, Metz, & Jewson, 1980).

Alkalinicy is decided as the quantitative capacity of

Total Dissolved Solids

The dissolved solids in natural waters primarily consists of carbonate, bicarbonates, chlorides, sulfates, and phosphates, but may also include nitrates of calcium and potassium.

a presenacted pH endpoint. Alkalinity componi

Calcium & Magnesium

Calcium is the predominate compound in most interior waters, magnesium is usually the second most abundant. These two elements make up most of the total hardness.

A-1*	<u>TEST #1</u>	<u>TEST #2</u> -	B-1		TEST #2
Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	126 62.8 21.6 7.69 39 21	132.6 66.3 23.6 8.26 49 10	Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	74.6 37.3 21.9 7.15 46 18	77.4 38.7 24.7 7.48 28 9
C-1*	TEST #1	TEST #2	D-1*	TEST #1	TEST #2
Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	107.8 53.9 21.5 8.84 45 15	124.0 62 23.1 8.52 54 9	Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	84.4 42.2 22.1 8.58 36 19	80.9 40.4 22.7 8.02 28 6
E-1	TEST #1	TEST #2	F-1*	TEST #1	TEST #2
Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	89.3 44.5 24.5 7.58 22 8	104.9 52.4 22.3 9.02 42 13	Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	101.9 50.9 19.7 7.96 50 25	94.4 47.2 23.2 9.35 38 9
G-1	TEST #1	TEST #2	H-1	TEST #1	TEST #2
Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	140.1 67.6 20.9 8.16 61 13	156.6 78.3 22.2 7.69 65 20	Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	155.8 77.9 21.2 7.60 69 22	133.9 66.7 23.0 9.02 60 12
I-1	TEST #1	TEST #2	J-1*	TEST #1	TEST #2
Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	122.9 61.4 22.4 7.30 55 31	103.6 52.1 25.1 8.77 45 16	Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	126.3 63.1 23.4 7.54 48 16	127.3 63.6 23.4 9.01 53 13

* indicates priority pools

JRTPI

UGP	<u>TEST #1</u>	TEST #2		Hallas	
Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	114.2 57.2 22.2 7.41 47 22	132.4 66.2 23.4 8.40 50 13	Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	90.4 45.1 23.4 8.11 38 14	127.1 54.0 27.6 8.77 48 11
T-2 EAST	TEST #1	TEST #2	T-2 WEST	TEST #1	TEST #2
Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	36.1 18 22.2 7.00 4 15	35 17.5 23.4 7.09 9 12	Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	23.5 11.7 22.2 6.97 7 9	23.3 11.7 27.4 7.21 8 5
M-2*	TEST #1	TEST #2	C-2	TEST #1	TEST #2
Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	77 38.5 22.1 7.61 29 10	82.6 41.4 25.8 8.26 29 12	Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	99.2 49.6 24.3 7.94 39 17	103.2 51.6 24.3 9.16 45 22
A-2*	TEST #1	TEST #2	DELTA CREEK	TEST #1	TEST #2
Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	140.9 72 23.5 8.09 55 38	151.0 75.8 25.7 8.08 60 18	Ccn. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	160.2 80.2 26.6 7.55 60 32	202 101 23.8 7.72 70 36
MARSH CREEK	TEST #1	TEST #2	STAGNANT P.	TEST #1	TEST #2
Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	50.6 25.3 21.9 7.10 15 25	47.0 43.5 26.0 6.99 15 16	Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	91.9 45.8 21.9 7.28 49 127	95.8 48.5 21.5 6.57 not done 115

* indicates priority pool

SPUR POOL #1	TEST #1	TEST #2	SPOR FOOL 42	<u></u>		
Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	156.1 78.1 26.1 7.52 54 46	160.7 80.3 24.1 7.23 69 42	Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	151.8 75.8 27.0 7.57 46 28	147 73.5 25.1 7.78 61 18	And and a second s
SPUR POOL #3	TEST #1	TEST #2	SPUR POOL #4	TEST #1	TEST #2	
Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	111.2 55.9 26.8 7.77 43 10	112.9 56.5 25.1 7.96 52 9	Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	70.2 35.1 26.6 7.23 19 5	70.7 35.3 22.8 7.35 27 15	
C-3*	TEST #1	TEST #2	DRIGGS R.	<u>TEST #1</u>	TEST #2	
Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	104.8 52.4 26.1 8.40 42 13	115.0 57.5 25.1 9.26 37 14	Con. (mS/cm) TDS (mg/L) Temp. (C) pH Alk. (mg/L) Turb. (NTU)	140.5 70.3 19.6 7.56 45 41	141.6 70.7 16.4 7.37 55 14	
DIVERSION DIT	CH TEST #1	TEST #2			27	
Con. (mS/cm)	139.9	140.1			\$5	

con. (mo/cm)	139.9	140.1
TDS (mg/L)	70.1	70.1
Temp. (C)	20.5	17.7
рĤ	7.50	7.33
Alk. (mg/L)	47	48
Turb. (NTU)	34	13

* indicates priority pool

ALKALINITY (mg/L)					
	1989	<u>1990, #1</u>	<u>1990, #2</u>	<u>1991, #1</u>	<u>1991, #2</u>
A-1*	48	39	47	39	49
B-1	44	52	49	46	28
C-1*	54	63	53	45	54
D-1*	45	52	38	36	28
E-1	61.8	65	46	22	42
F-1*	63	56	45	50	38
G-1	84	62	68	61	65
H-1	90	79	71	69	60
I-1	61	72	68	55	45
J-1*	87		65	48	53
Upper Goose Pen		54		47	50
Lower Goose Pen		46	32	38	48
T-2 East	15	13	14	4	9
T-2 West			· . ·	7	8
M-2*	49	41	64	29	29
C-2	61	41	41	39	45
A-2*	70	45	59	55	60
Delta Creek Pool	140	60	110	60	70
Marsh Creek Pool	77	9	30	15	15
Stagnant Pool		16	7	49	
Spur Pool #1		84	64	54	69
Spur Pool #2		78	52	46	61
Spur Pool #3		62	44	43	52
Spur Pool #4		35	26	19	27
C-3*		36	78	42	37
Driggs River		85	67	45	55
Diversion Ditch		61	61	47	48

* indicates priority pool
- indicates no information available

CONDUCTIVITY (mS/cm)	L	and a second			
	1989	<u>1990, #1</u>	<u>1990, #2</u>	<u>1991, #1</u>	<u>1991, #2</u>
A-1*	129.0	80.6	122.3	126	132.6
B-1	113.7	71.8	74.8	74.6	77.4
C-1*	124.2	119.0	128.3	107.8	124.0
D-1*	99.0	75.6	85.9	84.4	80.9
E-1	146.0	88.8	93.0	89.3	104.9
F-1*	140.5	118.5	114.1	101.9	94.4
G-1	174.6	139.5	144.3	140.1	156.6
H-1	186.3	157.9	148.7	155.8	133.9
I-1	137.5	130.4	147.3	122.9	103.6
J-1*	177.7	123.3	125.8	126.3	127.3
Upper Goose Pen		97.3	125.1	114.2	132.4
Lower Goose Pen		95.9	94.2	90.4	127.1
T-2 East	39.0	29.8	25.8	36.1	35
T-2 West				23.5	23.3
M-2*	109.7	71.7	74.7	77	82.6
C-2	133.3	88.4	91.8	99.2	103.2
A-2*	188.8	116.9	119.4	140.9	151.0
Delta Creek Pool	187.5	142.2	230.0	160.2	202
Marsh Creek Pool	64.4	50.6	51.9	50.6	47.0
Stagnant Pool		33.5	33.8	91.9	95.8
Spur Pool #1		145.2	162.9	156.1	160.7
Spur Pool #2		142.9	156.2	151.8	147
Spur Pool #3		109.5	118.9	111.2	112.9
Spur Pool #4		67.9	73.6	70.2	70.7
C-3*		113.4	164.7	104.8	115.0
Driggs River		133.8	133.9	140.5	141.6
Diversion Ditch		129.4	137.1	139.9	140.1

*indicates priority pool

-indicates no information available

	Maria	油小	1000	24 55	1000
THE PARTY	NEWSTOR	Contraction of		CONTRACTOR OF	and and the

pH					
	1989	<u>1990, #1</u>	1990, #2	<u>1991, #1</u>	<u>1991, #2</u>
A-1*	8.0	8.48	7.65	7.69	8.26
B-1		7.16	8.26	7.15	7.48
C-1*	8.25	9.06	7.57	8.84	8.52
D-1*	8.25	8.21	8.62	8.58	8.02
E-1	8.3	7.14	7.67	7.58	9.02
F-1*	8.2	7.32	7.36	7.96	9.35
G-1	8.25	8.02	8.27	8.16	7.69
H-1	8.0	7.39	8.60	7.60	9.02
I-1		8.13	7.95	7.30	8.77
J-1*	8.25	8.27	8.79	7.54	9.01
Upper Goose Pen		7.77	7.48	7.41	8.40
Lower Goose Pen		8.38	8.98	8.11	8.77
T-2 East	7.0	7.18	7.51	7.00	7.09
T-2 West				6.97	7.21
M-2*		8.22	8.35	7.61	8.26
C-2		8.24	8.34	7.94	9.16
A-2*	8.0	7.75	8.18	8.09	8.08
Delta Creek Pool		6.78	7.64	7.55	7.72
Marsh Creek Pool		7.08		7.10	6.99
Stagnant Pool		6.67		7.28	
Spur Pool #1		7.73	7.65	7.52	7.23
Spur Pool #2		7.77	7.82	7.57	7.78
Spur Pool #3		7.87	7.38	7.77	7.96
Spur Pool #4		7.08	7.38	7.23	7.35
C-3*	8.5	8.36	7.84	8.40	9.26
Driggs River	7.5	7.55	7.48	7.56	7.37
Diversion Ditch		7.27	7.39	7.50	7.33

* indicates priority pool
 - indicates no information available

For Tests Perfor

WATER

TEMPERATURE (C)	5				
	1989	<u>1990, #1</u>	<u>1990, #2</u>	<u>1991, #1</u>	<u>1991, #2</u>
A-1*	25.1	25.5	23.2	21.6	23.6
B-1	23.3	23.2	23.6	21.9	24.7
C-1*	25.9	23.7	22.9	21.5	23.1
D-1*	27.1	21.8	24.0	22.1	22.7
E-1	25.1	21.6	24.6	24.5	22.3
F-1*		16.6	24.3	19.7	23.2
G-1	29.9	19.9	25.4	20.9	22.2
H-1	28.9	17.3	22.3	21.2	23.0
I-1	24.1	16.1	23.3	22.4	25.1
J-1*	27.2	24.5	22.4	23.4	23.4
Upper Goose Pen		24.7	23.0	22.2	23.4
Lower Goose Pen		24.2	23.8	23.4	27.6
T-2 East	21.3	25.0	24.8	22.2	23.4
T-2 West				22.2	27.4
M-2*	20.1	22.7	23.1	22.1	25.8
C-2	20.7	24.1	23.0	24.3	24.3
A-2*	19.4	23.3	22.7	23.5	25.7
Delta Creek Pool	23.1	21.9	24.1	26.6	23.8
Marsh Creek Pool	23.3	23.4	26.9	21.9	26.0
Stagnant Pool		22.0	24.9	21.9	21.5
Spur Pool #1		20.3	20.6	26.1	24.1
Spur Pool #2		22.8	24.5	27.0	25.1
Spur Pool #3		22.9	24.2	26.8	25.1
Spur Pool #4		22.6	24.7	26.6	22.8
C-3*		23.1	23.3	26.1	25.1
Driggs River	·	13.9	17.8	19.6	16.4
Diversion Ditch		14.4	18.9	20.5	17.7

* indicates priority pool
 - indicates no information available

C1.4 For Tests

TOTAL DISSOLVED SO	LIDS (mg/L	1			
	<u>1989</u>	1990, #1	<u>1990, #2</u>	<u>1991, #1</u>	<u>1991, #2</u>
A-1*	65.5	40.1	60.9	62.8	66.3
B-1	56.8	36.1	37.3	37.3	38.7
C-1*	62.3	59.6	64.1	53.9	62
D-1*	49.5	37.8	42.9	42.2	40.4
E-1	73.0	91.5	46.5	44.5	52.4
F-1*	70.2	57.4	56.8	50.9	47.2
G-1	87.3	69.5	71.9	67.6	78.3
H-1	93.0	55.1	74.2	77.9	66.7
I-1	69.8	55.8	73.7	61.4	52.1
J-1*	88.8	64.0	62.9	63.1	63.6
Upper Goose Pen		48.6	62.5	57.2	66.2
Lower Goose Pen		47.9	47.0	45.1	54.0
T-2 East	19.3	14.8	12.8	18	17.5
T-2 West				11.7	11.7
M-2*	54.8	35.9	37.4	38.5	41.4
C-2	67.7	44.1	46.0	49.6	51.6
A-2*	94.4	58.5	59.9	72	75.8
Delta Creek Pool	94.1	71.1	115.2	80.2	101
Marsh Creek Pool	32.2	25.2	25.7	25.3	43.5
Stagnant Pool		16.8	16.8	45.8	48.5
Spur Pool #1		72.7	81.7	78.1	80.3
Spur Pool #2		71.7	78.0	75.8	73.5
Spur Pool #3		54.8	59.6	55.9	56.5
Spur Pool #4		33.9	36.8	35.1	35.3
C-3*		56.7	82.4	52.4	57.5
Driggs River		66.9	67.2	70.3	70.7
Diversion Ditch		64.8	67.7	70.1	70.1

BELLOTER

* indicates priority pool
- indicates no information available

WATER QUALITY STATISTICS FOR 1989, 1990, For Tests Performed On All Pools

TURBIDITY (NTU)					
	1989	<u>1990, #1</u>	<u>1990, #2</u>	<u>1991, #1</u>	<u>1991, #2</u>
A-1*			18.0	21	10
B-1		9.0	12.0	18	9
C-1*		7.0	11.0	15	9
D-1*		11.0	7.0	19	6
E-1		21.0	14.0	8	13
F-1*		41.0	23.0	25	9
G-1		12.0	14.0	13	20
H-1		21.0	11.0	22	12
I-1		21.0	38.0	31	16
J-1*		15.0	12.0	16	13
Upper Goose Pen		15.0	21.0	22	13
Lower Goose Pen		13.0	12.0	14	11
T-2 East		23.0	12.0	15	12
T-2 West				9	5
M-2*		11.0	9.0	10	12
C-2		. 16.0	11.0	17	22
A-2*		27.0	19.0	38	18
Delta Creek Pool		28.0	69.0	32	36
Marsh Creek Pool		24.0	22.0	25	16
Stagnant Pool		37.0	50.0	127	115
Spur Pool #1		69.0	67.0	46	42
Spur Pool #2		34.0	31.0	28	18
Spur Pool #3	· · ·	10.0	5.0	10	9
Spur Pool #4		13.0	4.0	5	15
C-3*		22.0	27.0	13	14
Driggs River		17.0	14.0	41	14
Diversion Ditch	-	21.0	16.0	34	13

indicates priority pool
indicates no information available

PRIORITY TESTS PERFORMED ON SELECTED POOLS IN 1

Arranged By Test Performed

	TOTAL H	ARDNESS	CALC	IUM	MAGNES	IUM
	TEST #1	TEST #2	TEST #1	TEST #2	TEST #1	TEST #2
A-1	58	65	42	52	6	13
C-1	57	60	32	37	25	23
D-1	49	45	32	30	17	15
F-1	51	52	35	37	16	15
J-1	65	70	46	50	19	20
A-2	92	85	62	60	30	25
M-2	60	58	36	32	24	26
C-3	72	68	57	49 (15	19

;	CARBO	DN D	IOXID	<u>E</u>	SULF	ATE	TANNIN &	LIGNIN
	TEST	#1	TEST	#2	TEST #1	TEST #2	TEST #1	TEST #2
A-1	49		51		0.0	0.0	2.8	2.6
C-1	32		32		0.0	0.0	1.6	1.6
D-1 F-1	12 29		19 26		0.0	0.0	0.5	1.3
J-1	21		23		1.0	1.0	0.4	1.2
A-2	37		41	* * * *	0.0	0.0	1.1	1.2
M-2	24		28		1.0	1.0	0.7	2.2
C-3	36		20		0.0	0.0	1.0	0.8

	NITROGEN	AMMONTA	NITRATE	, LR	N	ITRATE,	HR
	TEST #1	TEST #2	TEST #1	TEST #2	Т	CEST #1	TEST #2
A-1	0.04	0.04	0.10	0.01		1.2	0.3
C-1	0.07	0.07	0.04	0.03		1.1	0.2
D-1	0.00	0.15	0.04	0.01		0.5	0.4
F-1	0.07	0.03	0.01	0.07		0.1	0.5
J-1	0.00	0.00	0.04	0.01		0.3	0.7
A-2	0.00	0.21	0.03	0.02		0.8	0.6
M-2	0.04	0.01	0.03	0.02		0.7	0.7
C-3	0.15	0.12	0.02	0.01		0.1	0.2

Arranged By Test Performed

TOTAL HARDNESS			
	1990	<u>1991, Test #1</u>	1991, Test #2
A-1 C-1 D-1 F-1 J-1 A-2 M-2 C-3	52 110 114 94 73 88 64 95	58 57 49 51 65 92 60 72	65 60 45 52 70 85 58 68
CALCIUM			
	1990	<u>1991, Test #1</u>	<u>1991, Test #2</u>
A-1 C-1 D-1 F-1 J-1 A-2 M-2 C-3	41 62 34 52 57 62 46 76	42 32 35 46 62 36 57	52 37 30 37 50 60 32 49
MAGNESIUM			
	1990	<u>1991, Test #1</u>	<u>1991, Test #2</u>
A-1 C-1 D-1 F-1 J-1 A-2 M-2 C-3	11 48 80 42 16 26 18 19	6 25 17 16 19 30 24 15	13 23 15 15 20 25 26 19
CARBON DIOXIDE			
	1990	1991, Test #1	1991, Test #:
A-1 C-1 D-1 F-1 J-1 A-2 M-2 C-3	37 45 11 37 23 38 -25 42	49 32 12 29 21 37 24 36	51 32 19 26 23 41 28

Arranged By Test Performed

CIT PARP			
<u>SULFATE</u>	1990	1991, Test #1	1991, Test #2
A-1 C-1 D-1 F-1 J-1 A-2 M-2 C-3	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 1.0 1.0 0.0 1.0 0.0	0.0 0.0 0.0 1.0 0.0 1.0 0.0
TANNIN & LIGNIN	1990	1991, Test #1	<u>1991, Test #2</u>
A-1 C-1 D-1 F-1 J-1 A-2 M-2 C-3	3.4 0.9 0.6 0.9 0.4 1.0 0.7 0.9	2.8 1.6 0.5 0.3 0.4 1.1 0.7 1.0	2.6 1.6 1.3 2.1 1.2 1.2 2.2 0.8
NITROGEN AMMONIA	1990	1991, Test #1	1991, Test #2
A-1 C-1 D-1 F-1 J-1 A-2	0.05 0.28 0.18 0.02 0.00	0.04 0.07 0.00 0.07 0.00	0.04 0.07 0.15 0.03 0.00
M-2 C-3	0.00 0.05 0.02	0.00 0.04 0.15	0.00 0.21 0.01 0.12
M-2	0.00 0.05	0.00 0.04	0.21 0.01

PRIORITY TEST OF 1990 AND 1991

Arranged By Test Performed

NITRATE, HIGH RANGE		
<u>1990</u>	<u>1991, Test #1</u>	<u>1991, Test #2</u>
A-1 1.5	1.2	0.3
C-1 0.3	1.1	0.2
D-1 0.7	0.5	0.4
F-1 0.2	0.1	0.5
J-1 0.9	0.3	0.7
A-2 0.7	0.8	0.6
M-2 0.7	0.7	0.7
C-3 0.5	0.1	0.2

Recommendations

The usefulness of the water quality statistics for the purpose of measuring the productivity in the pools is questionable. A search for some guidelines and information which could correlate the tests performed with productivity was started, but yielded few results. Many suggestions were encountered which may lead to a better way to measure productivity such as measuring invertebrates or the dissolved oxygen levels in the pools. A further search by a person more knowledgeable in the area of water quality and production is strongly recommended.

A concern about iron boosting the conductivity readings of the pools was voiced. Iron is necessary to photosynthetic plants, it is the metal part of at least two plant chromosomes that function in the transfer of electrons during photosynthesis (Cole, 1975). Philip Doepke, a professor at Northern Michigan University that teaches limnology believes that iron is probably not a major portion of conductivity (1991).

A second concern about the quick changes in turbidity was also discussed. Turbidity can reduce photosynthesis and primary production, it can have an effect on the dissolved oxygen and also modify vision in fish (Wilber, 1983). The rapid changes may be caused by wind, animals and fish stirring up the sediments, waterways which spill into the pools may be more turbid, and the growth of some algae and phytoplankton.

Since almost every pool of water on the refuge is tested, it would probably be a good idea to include the show pools also. Many geese and other birds feed on the show pools, so they may also be of interest. Cole, Gerald A. 1975. <u>Textbook of Limnology</u>. The C. V. Mosby Company, Saint Louis.

- Doepke, Philip. July 1991. Professor of Limnology, Northern Michigan University. Personal interview.
- Dokulit, M., H. Metz, and D. Jewson. 1980. <u>Shallow Lakes</u>. Dr. W. Junk BV Publishers, The Hague.
- Goldman, Charles R. and Alexander J. Horne. 1983. Limnology. McGraw Hill, U.S.A.

Wilber, Charles G. 1983. <u>Turbidity in the Aquatic Environment</u>. Charles C. Thomas, Publisher, U.S.A.

WRFSL Report #84-4. December 1984. <u>Water Quality Criteria:</u> Overview for Park Natural Resource Management.