The U.S. Fish and Wildlife Service identified best available information indicating the need to amend the below species’ recovery criteria. Each amendment is recognized as an addendum that supplements the existing recovery plan.

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Recovery Plan</th>
<th>Original Recovery Plan Approved</th>
<th>Page(s) Superseded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Lace Cactus (Echinocereus reichenbachii var. albertii)</td>
<td>Recovery Plan</td>
<td>March 18, 1987</td>
<td>24</td>
</tr>
<tr>
<td>Little Colorado Spinedace (Lepidomeda vittata)</td>
<td>Recovery Plan</td>
<td>January 9, 1998</td>
<td>8</td>
</tr>
<tr>
<td>Masked Bobwhite (Colinus virginianus ridgwayi)</td>
<td>Recovery Plan</td>
<td>April 21, 1995</td>
<td>37</td>
</tr>
<tr>
<td>Mexican Long-Nosed Bat (Leptonycteris nivalis)</td>
<td>Recovery Plan</td>
<td>September 8, 1994</td>
<td>33-35</td>
</tr>
<tr>
<td>Navajo Sedge (Carex specuicola)</td>
<td>Recovery Plan</td>
<td>September 24, 1987</td>
<td>10</td>
</tr>
<tr>
<td>Nichol’s Turk’s Head Cactus (Echinocactus horizonthalonius var. nicholii)</td>
<td>Recovery Plan</td>
<td>April 14, 1986</td>
<td>None</td>
</tr>
<tr>
<td>San Marcos & Comal Springs & Associated Aquatic Ecosystems (Revised)</td>
<td>Recovery Plan</td>
<td>February 14, 1996</td>
<td>54-57</td>
</tr>
<tr>
<td>Species Included:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas wild-rice (Zizania texana)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fountain darter (Etheostoma fonticol)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas blind salamander (Typhlomolge rathbuni)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Original Recovery Plan Approved</td>
<td>Page(s) Superseded</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>Texas Poppy Mallow (Callirhoe scabriuscula) Recovery Plan</td>
<td>March 29, 1985</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

For

U.S. Fish and Wildlife Service
Southwest Region
Albuquerque, New Mexico

December 2019

Approved: ____________________________
Regional Director, U.S. Fish and Wildlife Service

Date: ____________________________
DECO 6 2019
Recovery Plan for *Zizania texana* (Texas wild-rice), Fountain Darter (*Etheostoma fonticola*) and Texas Blind Salamander (*Typhlomolge rathbuni*)

https://ecos.fws.gov/docs/recovery_plan/960214.pdf

Original Approved: February 14, 1996
Original Prepared by: San Marcos/Comal Recovery Team and the Austin Ecological Services Field Office

AMENDMENT 1

We have identified best available information that indicates the need to amend recovery criteria for *Zizania texana* (Texas wild-rice), fountain darter (*Etheostoma fonticola*), and Texas blind salamander (*Typhlomolge rathbuni*) since the San Marcos & Comal Springs & Associated Aquatic Ecosystems Recovery Plan (Recovery Plan) was last revised in February 1996. In this modification, we provide delisting criteria where none were provided in the 1996 Recovery Plan and the rationale supporting the recovery plan modification. We recommend ongoing implementation of existing recovery actions to foster and achieve recovery of *Zizania texana*, fountain darter, and Texas blind salamander. The proposed modification is shown as an appendix that supplements the Recovery Plan criteria for these species in Section A found in pages 54 through 57 of the 1996 Recovery Plan.

For
U.S. Fish and Wildlife Service
Southwest Region
Albuquerque, New Mexico

December 2019

BACKGROUND INFORMATION

Recovery plans should be consulted frequently, used to initiate recovery activities, and updated as needed. A review of the recovery plan and its implementation may show that the plan is out of date or its usefulness is limited, and therefore warrants modification. Keeping recovery plans current ensures that the species benefits through timely, partner-coordinated implementation based on the best available information. The need for, and extent of, plan modifications will vary considerably among plans. Maintaining a useful and current recovery plan depends on the scope and complexity of the initial plan, the structure of the document, and the involvement of stakeholders.

An amendment involves a substantial rewrite of a portion of a recovery plan that changes any of the statutory elements. The need for an amendment may be triggered when, among other possibilities: (1) the current recovery plan is out of compliance with regard to statutory requirements; (2) new information has been identified, such as population-level threats to the species or previously unknown life history traits, that necessitates new or refined recovery actions and/or criteria; or (3) the current recovery plan is not achieving its objectives. The amendment replaces only that specific portion of the recovery plan, supplementing the existing recovery plan, but not completely replacing it. An amendment may be most appropriate if
significant plan improvements are needed, but resources are too scarce to accomplish a full recovery plan revision in a short time.

Although it would be inappropriate for an amendment to include changes in the recovery program that contradict the approved recovery plan, it could incorporate study findings that enhance the scientific basis of the plan, or that reduce uncertainties as to the life history, threats, or species’ response to management. An amendment could serve a critical function while awaiting a revised recovery plan by: (1) refining and/or prioritizing recovery actions that need to be emphasized, (2) refining recovery criteria, or (3) adding a species to a multispecies or ecosystem plan. An amendment can, therefore, efficiently balance resources spent on modifying a plan against those spent on managing implementation of ongoing recovery actions.

METHODOLOGY USED TO COMPLETE THE RECOVERY PLAN AMENDMENT
Since the revision of the Recovery Plan in 1996, additional studies have been conducted including: (a) annual census surveys of *Zizania texana* (Poole 2012, Bio-West 2017, Hathcock 2018), (b) annual fountain darter sampling by Bio-West (2017), and (c) a capture-mark-recapture local population estimates for Texas blind salamanders at Ezell’s Cave and Rattlesnake Cave (Krejca and Gluesenkamp 2007). These data, combined with recommendations we received from State and local species experts at Texas Parks and Wildlife Department (TPWD) and the Service’s San Marcos Aquatic Resources Center (SMARC) contributed to this Recovery Plan amendment.

ADEQUACY OF RECOVERY CRITERIA
Section 4(f)(1)(B)(ii) of the Endangered Species Act (Act) requires that each recovery plan shall incorporate, to the maximum extent practicable, “objective, measurable criteria which, when met, would result in a determination…that the species be removed from the list.” Legal challenges to recovery plans (see Fund for Animals v. Babbitt, 903 F. Supp. 96 (D.D.C. 1995)) and a Government Accountability Audit (GAO 2006) have also affirmed the need to frame recovery criteria in terms of threats assessed under the five threat factors (ESA 4(a)(1)).

Recovery Criteria
The current recovery criteria for downlisting these three species can be found on pages 53-57 of the revised Recovery Plan (1996). Delisting was considered unattainable at the time the revised Recovery Plan was completed.

Synthesis
We used multiple reputable sources of information on the ecology of *Zizania texana*, fountain darter, and Texas blind salamander in our consideration of establishing criteria for delisting. We incorporated information from published scientific papers on *Zizania texana* habitat; fountain darter feeding ecology, growth rate, reproduction, habitat reliance on mosses and aquatic macrophytes, water temperature and water quality tolerances, and susceptibility to disease and parasites; and Texas blind salamander distribution and abundance. In the past two decades, there have been a handful of comprehensive system-wide surveys of aquatic macrophytes in the Comal River system and the upper San Marcos River system: Bartsch et al. 1999, Hardy et al. 2000, Saunders et al. 2001, Doyle 2001; Hardy and Shoemaker 2004, Owens 2009, Hardy 2009. In addition we have data and annual reports from the EAHCP (TE63663A) and scientists with
section 10(a)(1)(A) permits. There have been three reports by the National Academies of
Sciences reviewing the EAHCP (2015, 2017, 2018). Finally, we used the results of research
conducted by the San Marcos Aquatic Resources Center, TPWD, and Texas State University on
the upper San Marcos River including hydraulic habitat models, results of macrophyte
restoration efforts, and the removal of non-native macrophytes.

AMENDED RECOVERY CRITERIA
Recovery criteria serve as objective, measurable guidelines to assist in determining when an
endangered species has recovered to the point that it may be downlisted to threatened, or that the
species is no longer at risk of extinction and may be delisted. Delisting is the removal of a
species from the Federal Lists of Endangered and Threatened Wildlife and Plants. Downlisting
is the reclassification of a species from an endangered species to a threatened species. The term
“endangered species” means any species (species, sub-species, or Distinct Population Segment)
which is in danger of extinction throughout all or a significant portion of its range. The term
“threatened species” means any species which is likely to become an endangered species within
the foreseeable future throughout all or a significant portion of its range.

Revisions to the Lists, including delisting or downlisting a species, must reflect determinations
made in accordance with sections 4(a)(1) and 4(b) of the Act. Section 4(a)(1) requires that the
Secretary determine whether a species is an endangered species or threatened species (or not)
because of threats to the species. Section 4(b) of the Act requires that the determination be made
“solely on the basis of the best scientific and commercial data available.” Thus, while recovery
plans provide important guidance to the U.S. Fish and Wildlife Service (Service), States, and
other partners on methods of minimizing threats to listed species and measurable objectives
against which to measure progress towards recovery, they are guidance and not regulatory
documents.

Recovery criteria should help indicate when we would anticipate that an analysis of the species’
status under section 4(a)(1) would result in a determination that the species is no longer an
endangered species or threatened species. A decision to revise the status of or remove a species
from the Federal Lists of Endangered and Threatened Wildlife and Plants, however, is ultimately
based on an analysis of the best scientific and commercial data then available, regardless of
whether that information differs from the recovery plan, which triggers rulemaking. When
changing the status of a species, we first propose the action in the Federal Register to seek public
comment and peer review, followed by a final decision announced in the Federal Register.

We provide delisting criteria for Zizania texana, fountain darter, and Texas blind salamander,
which will supplement the downlisting criteria included in the current Recovery Plan, as follows:

Downlisting Recovery Criteria

Downlisting criteria will remain the same for Zizania texana, fountain darter, and Texas blind
texana as in the revised Recovery Plan (Service 1996, pp. 53-57).
Delisting Recovery Criteria

Zizania texana

Zizania texana may be considered for delisting when all of the following criteria are met:

1. In the San Marcos River, the long-term daily average discharge exceeds 140 cfs for 50 years including the drought of record, and the minimum daily average flow is not less than 45 cfs. The duration of the minimum daily average flow must not exceed six months and must be followed by three months of 80 cfs or greater.

 Justification: Adequate stream discharge is required to support *Zizania texana* habitat throughout the entire historic range. Due to its limited range (only one river system), the distribution of *Zizania texana* in all parts of its range provides population redundancy and is important for the species to withstand catastrophic events like floods which may scour the river bed and *Zizania texana* stands along with it. The instream flow requirements of *Zizania texana* are related in part to depth of water in the upper San Marcos River.

 The intensity of a drought and its effect on TWR is a combination of factors that include precipitation, temperature, water use, and persistence of drought conditions. Extreme droughts such as those similar to the drought of record are infrequent. For example, the interval from the drought of record to the drought of 2009 is 53 years. Less intense droughts where conditions are drier than “normal” occur more frequently. A long-term daily average of 140 cfs or greater for 50 years provides assurance that the managed aquifer ecosystem can sustain this species through infrequent extreme droughts.

2. A minimum instantaneous flow of 45 cfs is maintained in the San Marcos River as measured by the San Marcos streamflow gage (USGS 08170500) even in a drought of record.

 Justification: River discharge needs to remain above 45 cfs at all times to maintain habitat and prevent damage and destruction of *Zizania* plants on a finer timescale. The hydrologic drought of record considers the entire period of record for measured flows and that extends back to 1929. Criterion 1 together with Criterion 2 address the flow regime that must be exceeded to avoid widespread losses of *Zizania texana*.

3. Water quality is suitable and supportive by meeting these two requirements:

 a. Turbidity, total dissolved solids (TDS), and pH of the San Marcos River are consistently within established 25 to 75 percentile range of the earliest published San Marcos River water quality data (USGS data for upper San Marcos River, various stations) over a period of 5 continuous years. In general, suitable lake and river turbidity values (historic reference conditions) are in the low range for nephelometric turbidity units (NTU less than 1.0). Suitable total dissolved solids and pH values are comparable to those reported by Slattery and Fahlquist (1997) and earlier. The assessment of water quality to determine if these criteria are met will be based on the standard protocols and
procedures of the USGS’s National Field Manual (NFM) for the Collection of Water-Quality Data (USGS 2018). The selection of at least four sampling sites should be representative of the San Marcos River upstream from Cumming’s Dam and water quality measurements from all sites must fall within the respective ranges for levels of turbidity, TDS and pH. The frequency of collection of water quality samples shall be a minimum of once per month and water-quality data shall be collected monthly for at least 5 years.

b. The environmental concentrations of known phytotoxic compounds as surveyed annually in the San Marcos River in *Zizania texana* Segments G through M (see Figure 1) (including dissolved copper, dissolved zinc, and listed U.S. Environmental Protection Agency [EPA] and Texas Department of Agriculture regulated herbicides) are consistently below known adverse effects levels each year for 30 consecutive years.

Justification: Water quality maintenance is important for the viability of the species because all *Zizania texana* populations are found in a relatively short (less than five river-miles) spring ambient river. Additional published water quality data are included in Ogden et al. (1986), and Guyton and Associates (1979).

4. Healthy, self-sustaining, and reproductive populations are established and maintained throughout the historic range. This criterion will be evaluated based on the presence of *Zizania texana* with more than minimum areal coverage and distribution provided in accompanying table of areal extent objectives (Table 1). Healthy for *Zizania texana* means free from disease, free from adverse biological interactions (e.g., free from detrimental levels of epiphytic algae), and free from limiting physical conditions (e.g., inadequate levels of photosynthetically active radiation as investigated by Crawford-Reynolds (2018)). To meet this criterion, the areal coverage by *Zizania texana* for each Upper San Marcos River segment must exceed delisting targets for that segment annually for 30 consecutive years. A population of *Zizania texana* in Segment X is not considered necessary for recovery as: (1) this habitat did not exist until Capes Dam and its mill race were constructed, (2) it has never had any significant stands of *Zizania texana* likely due unsuitable substrates, and (3) the mill race is subject to drying if or when Capes Dam is breached.

Justification: This criterion prescribes the areal coverage objectives for ensuring that sexual reproduction occurs, leading to maintenance of genetic variation within and among *Zizania texana* segments. The ability to withstand more localized stochastic disturbances (resiliency) is enhanced by *Zizania texana* occupation of all of its historic range. For example, if a tree fall in the river results in damage to a stand, *Zizania texana* tillers floating downstream may be able to colonize the area affected and eventually fill available habitat to the extent it is not precluded or excluded by other plants or other factors (e.g., a change in river substrate, such as a sand-small gravel scoured to clay).

5. A minimum of two captive, reproducing *Zizania texana* stocks are maintained in separate geographic locations, until such time when the species is recovered.
Justification: Maintaining captive stocks of *Zizania texana* will ensure that genetic integrity of the species (representation) is preserved for reintroductions or supplementations, should a catastrophic event, such as an extreme drought, eliminate or drastically reduce numbers in the wild. The responsibility for maintaining these stocks need not be the Service’s responsibility.

Table 1. Areal coverage objectives for delisting *Zizania texana* for Upper San Marcos River segments shown in Figure 1.

<table>
<thead>
<tr>
<th>Segment Name</th>
<th>Delisting Target in m²</th>
<th>Delisting Percent of Segment (Occupied Habitat) Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Lake</td>
<td>4,373</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>1,679</td>
<td>35</td>
</tr>
<tr>
<td>B</td>
<td>7,097</td>
<td>35</td>
</tr>
<tr>
<td>C</td>
<td>1,456</td>
<td>10</td>
</tr>
<tr>
<td>D</td>
<td>508</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>620</td>
<td>10</td>
</tr>
<tr>
<td>F</td>
<td>1,695</td>
<td>15</td>
</tr>
<tr>
<td>G</td>
<td>576</td>
<td>5</td>
</tr>
<tr>
<td>X</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>H</td>
<td>413</td>
<td>5</td>
</tr>
<tr>
<td>J</td>
<td>288</td>
<td>5</td>
</tr>
<tr>
<td>K</td>
<td>834</td>
<td>10</td>
</tr>
<tr>
<td>L</td>
<td>851</td>
<td>15</td>
</tr>
<tr>
<td>M</td>
<td>1,472</td>
<td>3</td>
</tr>
<tr>
<td>Total in m²</td>
<td></td>
<td>21,861</td>
</tr>
</tbody>
</table>
Figure 1. *Zizania texana* segments in the Upper San Marcos River. See Table 1 for the areal coverage of *Zizania texana* needed for meeting delisting criteria.

Fountain Darter

The fountain darter may be considered for delisting when the following criteria are met:

1. The long-term daily average discharge in the Comal River exceeds 225 cubic feet per second (cfs) for 50 years including the drought of record, and the minimum daily average flow is not less than 30 cfs. In the San Marcos River, the long-term daily average discharge exceeds 140 cfs for 50 years including the drought of record, and the minimum daily average flow is not less than 45 cfs. The duration of minimum daily average flows in both rivers must not exceed six months and must be followed by three months of 80 cfs or greater.

Justification: The fountain darter occurs only in the Comal River of Comal County, Texas and the upper San Marcos River of Hays County, Texas. Thus, both river systems are considered crucial to the viability of the species. Criterion 1 supports the fullest extent of habitat in both the Comal and upper San Marcos rivers by ensuring the primary
determinant of structure and function of this aquatic ecosystem (its flow regime) is continuously supporting the only two populations of fountain darter. Poff et al. (2010) provided a consensus view of the importance of limiting hydrologic alterations.

2. The populations are equal to or greater than 500,000 individuals in the both the Comal and San Marcos river systems consecutively for 30 years (based on a Service approved sampling design).

Justification: Larger population sizes are better able to adapt to changing environmental conditions over time, and thus more resilient. Large populations help avoid the myriad of negative effects common to small populations such as loss of genetic variation and increased likelihood that random events may result in loss of one or both populations. A population of greater than or equal to 500,000 individuals at the headwater of each spring ecosystem is considered to be: (1) realistic, assuming aquatic habitats are restored to the carrying capacity of Landa Lake and Spring Lake, (2) sustainable, given a stable spring flow regime with adequate submergent aquatic macrophytes, (3) practical, given the areal extent of suitable habitat in each ecosystem, and (4) a population size large enough to maintain genetic variation and avoid adverse effects related to small population size.

3. The mean weekly water temperature is less than or equal to 76 degrees Fahrenheit for 50 years. Water temperature will be measured at eight to ten representative sites including sites in Landa Lake, the Comal River Old Channel, the Comal River New Channel, Spring Lake, and downstream of Spring Lake, in 15 minute intervals using USGS NFM protocols and procedures. The specific locations will be developed by the Service with input by local scientists and river managers.

Justification: Maintenance of water temperature will help each spring ecosystem realize its maximum potential habitat. When fountain darters are present throughout their lake-river system’s historic range, they are less likely to suffer an extirpation or extinction event. Water quality (particularly a higher than average spring-ambient water temperature regime due to low springflow) in 1956 is considered to be an important factor in the extirpation of the fountain darter from the Comal River.

The relation of water quality especially water temperature to fountain darter egg production and mortality of larvae has been researched at the San Marcos Aquatic Resources Center and Texas State University (Bonner et al. 1998).

4. Dissolved oxygen measured as the daily minimum at a height of 15 cm above the river bed in six designated sites (three in Landa Lake and three in Spring Lake) exceeds 4.0 mg/L for 95 percent of the time over 50 years. Additionally, dissolved oxygen as measured above must exceed 2.0 mg/L 100 percent of the time.

Justification: Adequate dissolved oxygen is at the critical to the health of fishes and other aquatic organisms. Impairment of dissolved oxygen could lead to morbidity or mortality of fountain darters or their prey items.
Texas Blind Salamander

Texas blind salamander may be considered for delisting when the following criteria are met for all three management units (see criterion 4).

1. In the San Marcos River, the long-term daily average discharge exceeds 140 cfs for 50 years including the drought of record, and the minimum daily average flow is not less than 45 cfs. The duration of the minimum daily average flow must not exceed six months and must be followed by three months of 80 cfs or greater.

 Justification: This criterion addresses the maintenance of groundwater flow by using San Marcos springflow regime as a surrogate. Aquifer habitat for the Texas blind salamander is limited in geographic scope and the cessation of flow at San Marcos Springs may result in the encroachment of saline groundwater throughout some or all of its current range.

2. Water quality in the range of the Texas blind salamander consistently meets or exceeds established EPA numeric criteria for protection of aquatic life as measured within three Recovery Units located at: Rattlesnake Cave, Diversion Springs, and Johnson's Well. The water quality standards must be met at all three sites annually for 30 consecutive years. See two links that follow:

 https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table
 https://www.epa.gov/wqc/aquatic-life-criteria-and-methods-toxics

 Justification: This criterion provides for the abatement of stressors that may reduce the health and population size of this species. The establishment of three recovery units for the Texas blind salamander will help in conservation planning by maintaining any local variation may have resulted from differences among Purgatory Creeks sites compared to Spring Lake sites and Rattlesnake Cave sites. Recovery for the Texas blind salamander would be discernable if local populations in each recovery unit were large enough and all three recovery units are found to be relatively safe from water quality degradation.

3. All measures identified in the Recovery Plan to remove or minimize local threats are completed or are ongoing to adequately address the identified threat. These measures include addressing the entrapment of Texas blind salamanders into wells by groundwater withdrawal, the destruction or pollution of local recharge features and caves, and holistic control of potential local pollution sources.

 Justification: Wells represent a source of mortality that may reduce the population to critically low levels. Wells are present throughout the known range and with the exception of the Texas State University artesian well near the Aquatic Biology building, no monitoring data are available to understand attrition from this stressor.

4. Healthy populations must exceed 500 individuals annually, for 30 years in all three parts of the species range:
a. Rattlesnake Cave and Rattlesnake Well
b. Spring Lake, Sessom Creek Spring, and Texas State University wells
c. Caves and wells of the Purgatory Creek area

A population is considered healthy if all available information indicates it is free of disease, parasites and other factors that would adversely affect the reproductive and feeding ecology of Texas blind salamanders.

Justification: A population size of 500 or more individuals is adequate to minimize the vulnerabilities common to small populations (Lande and Barrowclough 1987, Lynch and Lande 1998). A population size exceeding 500 is needed to reduce the risks posed by genetic drift, demographic stochasticity and environmental stochasticity.

5. Three captive stocks from Rattlesnake Cave and Well, Spring Lake sites, and Ezells and Purgatory Creek sites are established and maintained for a minimum of 30 years for threatened Texas blind salamanders. Maintenance of captive stocks shall continue after the species is recovered.

Justification: This criterion considers the scarcity of Texas blind salamander populations and helps ensure that a range-wide negative stressor such as a groundwater pollution event does not impact the Texas blind salamanders throughout its limited habitat.

Rationale for Amended Recovery Criteria
All three of these species (Zizania texana, fountain darter, and Texas blind salamander) long term viability depends on continued management. Regarding redundancy, each of these three species is challenged by the fact that only one or a few populations exist. When evaluating species threats and species response to those threats, we must also consider the effect of any existing regulatory mechanisms or conservation effort in ameliorating the impacts of those threats. If long-term management is needed after delisting to ensure that threats are adequately managed into the future, we may not be able to conclude that the threat is adequately addressed until establishment of regulations, continuing management agreements, or some other long-term mechanism to ensure ongoing management and mitigation of the particular threat.

For each of these species, continued management is needed to foster recovery and ensure the likelihood of extinction is reduced such that these species are not likely to become endangered within the foreseeable future. Management efforts on regional and local scales are currently provided by participants in the EAHCP. While the EAHCP participants by themselves are not required to recover these species, they may be able to provide the continued management that leads to recovery goals for one or more of these species.

The recovery criteria need to be objective and measurable. To be objective, criteria must be based on the best available science and free from bias. To be measurable, criteria need to be quantitative or easy to gauge progress and success of conservation efforts. Smith et al. (2018) defined three terms considered important to recovery planning: redundancy, representation, and resiliency (Table 2). Their definitions follow:
Table 2. Select terms related to enhancing recovery chances and decreasing the likelihood of extirpation or extinction. The Three Rs.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundancy</td>
<td>The ability of a species to withstand catastrophic events by spreading risk among multiple populations or across a large area.</td>
<td>Supported by measures maintaining or increasing large habitat patch size in cases of only one population.</td>
</tr>
<tr>
<td>Representation</td>
<td>The ability of a species to adapt to changing environmental conditions over time as characterized by the breadth of genetic and environmental diversity within and among populations.</td>
<td>Positively affected when genetic variation is maintained in the wild. Larger population sizes help protect against loss of genetic diversity.</td>
</tr>
<tr>
<td>Resiliency</td>
<td>The ability of a species to withstand stochastic disturbance; resiliency is positively related to population size and growth rate and may be influenced by connectivity among populations.</td>
<td>Supported by a positive intrinsic rate of growth (λ, lambda). In some cases, fragmentation of habitat (e.g., weirs and dams on a river) can adversely affect connectivity particularly in an upstream direction.</td>
</tr>
</tbody>
</table>

Incorporating these criteria in the current Recovery Plan will help municipal, regional, State and Federal entities by emphasizing the measurable habitat and biological attributes that will inform species status assessments and consideration of changes to the federal status for *Zizania texana*, fountain darter, and Texas blind salamander. The recovery actions in the current Recovery Plan are to inform conservation efforts that manage habitat, increase population sizes, and reduce threats.

The recovery strategy for the species associated with the San Antonio segment of the Edwards Aquifer is to work with stakeholders on a comprehensive management plan that addresses regional issues like groundwater withdrawal, and local issues like stormwater pollution and water recreation impacts.

Regional and local efforts are underway to address the potential loss of habitat due to drought and other factors. Meeting the delisting criteria in this amendment would demonstrate that these species: (a) are able to withstand catastrophic events like severe droughts and flooding, (b) will maintain their potential to adapt to changes in environmental conditions such as introduced nonnative species and altered river channels, and (c) survive stochastic environmental disturbances (e.g., sewage line or water main break).

ADDITIONAL SITE SPECIFIC RECOVERY ACTIONS
Not applicable

COSTS, TIMING, PRIORITY OF ADDITIONAL RECOVERY ACTIONS
Not applicable.
LITERATURE CITED

Bio-West. 2017. Permit report for TE037155-0 to Austin Ecological Services Field Office.

Doyle, R. 2001. Survey of San Marcos River aquatic vegetation - GIS data provided to the Austin Ecological Services Field Office. Baylor University, Waco, TX.

Owens, C. 2009. Results of aquatic vegetation surveys by U.S. Army Corps of Engineers – GIS data provided to Austin Ecological Services Field Office. USACE Lewisville Aquatic Ecosystem Research Facility, Lewisville, TX.

Summary of Public Comments

We published a notice of availability in the Federal Register on August 6, 2019 (84 FR 38288-38291) to announce that the draft amendment for the San Marcos & Comal Springs & Associated Aquatic Ecosystems Recovery Plan (Recovery Plan); specific to Texas wild-rice (Zizania texana), fountain darter (Etheostoma fonticola), and Texas blind salamander (Typhlomolge rathbuni), was available for public review, and to solicit comments by the scientific community, State and Federal agencies, Tribal governments, and other interested parties on the general information base, assumptions, and conclusions presented in the draft amendment. An electronic version of the draft recovery plan amendment was also posted on the Service’s Species Profile website (https://ecos.fws.gov/docs/recovery_plan/Draft%20APG%20RP%20Amendment_San%20Marcos%20and%20Comal%20Springs_1.pdf).

The Service received eight responses to the request for public comments. These included comments from the City of San Marcos, the City of New Braunfels, the Guadalupe River Basin Authority, the San Marcos River Foundation, Texas Parks and Wildlife Department, the Edwards Aquifer Authority, and interested citizens.

Public comments ranged from providing minor editorial suggestions to specific recommendations on the amendment content. We have considered all substantive comments; we thank the reviewers for these comments. Below, we provide a summary of public comments received; however, some of the comments that we incorporated as changes into the revised recovery plan did not warrant an explicit response and, thus, are not presented here.

Comment (1): We received several comments pertaining to flows rates provided in the draft recovery plan amendment. These flow rates differ from those provided in the Edwards Aquifer Recovery Implementation Program Habitat Conservation Plan (EARIP). Some commenters suggested that the proposed delisting criteria are less protective than the minimum flows that the EARIP established, that the EARIP is based on more recent information and that the EARIP has been reviewed by the National Academies of Sciences (NAS).

Response: We have revised the minimum flow thresholds in the final recovery plan amendment to align with the EARIP. We recognize the significant effort made by the EARIP permittees and stakeholders that led to the development of the EARIP and we agree with the commenters that consistency with the EARIP is appropriate. Furthermore, we agree that the EARIP has been thoroughly reviewed by experts both locally and nationally and have made the requested changes.

Comment (2): Two commenters requested temperature monitoring sites downstream of Landa Lake and Spring Lake be included in the water temperature criterion for fountain darter. One commenter requested that the duration of the water temperature criterion be lengthened from 30 years to 50 years to better consider long-term effects of drought.
Response: We have added downstream monitoring locations to the list of temperature monitoring sites for the fountain darter’s and extended the duration of monitoring the water temperature at all sites to 50 years.

Comment (3): One commenter asked that the Service convene a recovery team to review any amendment that is proposed to San Marcos and Comal Springs and Associated Aquatic Ecosystems Recovery Plan with additional new species experts.

Response: There is no planned effort to revise the recovery plan at this time. The Service will coordinate with species experts if recovery plan revisions are considered necessary in the future.

Comment (4): One commenter noted that flooding and localized heavy rains from tropical storms can reduce the amount of Texas wild-rice and recommended that the Service establish a minimum size for Texas wild-rice stocks to ensure genetic diversity in captive stocks.

Response: The Service’s San Marcos Aquatic Resources Center will develop a Texas wild-rice propagation and reintroduction plan in coordination with experts and local partners to ensure genetic diversity of captive propagated plants including minimum size of stocks and recommendations for replanting of propagated plants to maintain diversity in the wild.

Summary of Peer and Partner Review Comments
In accordance with the requirements of the Act, we solicited independent peer review of the draft amendment from qualified experts. Peer review was conducted concurrent with the Federal Register publication. Criteria used for selecting peer reviewers included their demonstrated expertise and specialized knowledge related to Texas wild-rice, fountain darter, Texas blind salamander, and the Edwards Aquifer ecosystem. The qualifications of the peer reviewers are in the decision file and the administrative record for this Recovery Plan amendment.

In total, we solicited review and comment from six peer reviewers. We received comments from two peer reviewers. We considered all substantive comments, and to the extent appropriate, we incorporated the applicable information or suggested changes into the final Recovery Plan amendment. Below, we provide a summary of specific comments received from peer and partner reviewers with our responses; however, we addressed many of the reviewers’ specific critiques and incorporated their suggestions as changes to the final amendment. Such comments did not warrant an explicit response, and as such, are not addressed here. We appreciate the input from all commenters, which helped us to consider and incorporate the best available scientific and commercial information during development and approval of the final Recovery Plan amendment.

Peer Review Comment (1): The wording of the criteria for minimum flow discharge for Texas wild-rice and fountain darter is not clear and is contradictory with statements made elsewhere in the draft amendment regarding flows that are necessary to prevent jeopardy to the species.

Response: We have updated the minimum flow thresholds and clarified the text in the flow criteria for all three species.
Peer Review Comment (2): For the fountain darter criteria, one commenter asked if three monitoring sites will be established in both lakes to log temperature at 15-minute intervals, where the sites will be established, who will maintain the sites and why only sites in lakes were included. We received a second comment on the locations of the temperature logging sites with a recommendation to exclude the Slough Arm because it is not considered prime fountain darter habitat and experiences higher temperatures in the summer, that sampling locations in Spring Lake can be monitored at one location upstream of Spring Lake Dam and downstream of the confluence with the Slough Arm, and that the sites should be approved by the Service.

Response: We have updated Delisting Criterion 3 to include downstream sites. We acknowledge that future discussion with stakeholders is needed to determine specific sampling locations, monitoring plans, and the responsible parties for implementing these actions. However, this recovery plan amendment is limited to developing quantitative recovery criteria for what constitutes a recovered species. The intent of a recovery plan amendment is to replace only a specific portion of the recovery plan, supplementing the existing recovery plan, but not completely replacing it. Changes to other recovery plan content, such as recovery actions and the implementation schedule for those actions are beyond the scope of this amendment.

Peer Review Comment (3): A reviewer asked where and when will dissolved oxygen be measured.

Response: See response to Peer Review Comment 2 above. The Service will work together with interested parties to develop biologically appropriate locations for monitoring dissolved oxygen.

Peer Review Comment (4): One reviewer noted that water quality parameters are not currently being monitored and asked if the Service is now requiring monitoring of water quality parameters.

Response: Through our water quality delisting criterion we are encouraging the monitoring of water quality parameters relevant to the biology of these species. However, recovery plans are not regulatory documents and serve to provide guidance on actions that will promote the recovery of threatened and endangered species. The Service will work together with interested parties to develop a plan for water quality monitoring, as needed.

Peer Review Comment (5): One reviewer suggested that the location of water quality sampling sites for Texas wild-rice should be approved by the Service to ensure they are representative of the longitudinal profile of turbidity.

Response: See response to Peer Review Comment 2 above. The Service will work with interested parties to establish appropriate monitoring sites.