Kendall Warm Springs Dace
(Rhinichthys osculus thermalis)

REVISED RECOVERY PLAN
Original Recovery Plan Completed in 1982

Mountain-Prairie Region
U.S. Fish and Wildlife Service
Denver, Colorado

Approved: [Signature]
Deputy Regional Director, U.S. Fish and Wildlife Service

Date: 10/14/15
Recovery plans delineate such reasonable actions as may be necessary, based upon the best scientific and commercial data available, for the conservation and survival of listed species. Plans are published by the U.S. Fish and Wildlife Service (Service or USFWS), sometimes prepared with the assistance of recovery teams, contractors, State agencies and others. Recovery plans do not necessarily represent the views, official positions or approval of any individuals or agencies involved in the plan formulation, other than the Service. They represent the official position of the Service only after they have been signed by the Regional Director. Recovery plans are guidance and planning documents only; identification of an action to be implemented by any public or private party does not create a legal obligation beyond existing legal requirements. Nothing in this plan should be construed as a commitment or requirement that any Federal agency obligate or pay funds in any one Fiscal Year in excess of appropriations made by Congress for that Fiscal Year in contravention of the Anti-Deficiency Act, 31 U.S.C. 1341, or any other law or regulation. Approved recovery plans are subject to modification as dictated by new findings, changes in species’ status, and the completion of recovery actions.

The literature citation for this document should read:

Additional copies of the draft document can be obtained from:

Wyoming Field Office
U.S. Fish and Wildlife Service
5353 Yellowstone Road, Suite 308A
Cheyenne, Wyoming 82009

Recovery plans can be downloaded from: http://ecos.fws.gov/tess_public/SpeciesRecovery.do
ACKNOWLEDGMENTS

The Service gratefully acknowledges the commitment and efforts of the following recovery team members to the recovery of the Kendall Warm Springs dace. Without their assistance and valuable input, this recovery plan would not have been possible.

Darren Rhea
Wyoming Game and Fish Department

Matt Anderson
U.S. Forest Service

Joe Neal
U.S. Forest Service

Andy Gryska
Alaska Department of Fish and Game

Jon Sjöberg
Nevada Division of Wildlife

Dr. Frank Rahel
University of Wyoming

Dr. Jeannette Haegele
U.S. Geological Survey

Dr. Ken Gerow
University of Wyoming

Chris Keefe
U.S. Bureau of Land Management

Dr. Paul Barrett
U.S. Fish and Wildlife Service

Alex Schubert
U.S. Fish and Wildlife Service

Tyler Abbott
U.S. Fish and Wildlife Service
EXECUTIVE SUMMARY

Current Species Status: The Kendall Warm Springs (KWS) dace (Rhinichthys osculus thermalis) was federally listed as endangered in 1970 under the Endangered Species Preservation Act of 1966. The species has a Recovery Priority Number of 12C indicating that it is a subspecies with a moderate degree of threat and low recovery potential and may be in conflict with development projects. It is endemic to one stream (984 feet in length) that originates from a series of thermal springs and seeps. The stream ends in a waterfall and empties into the Green River in Sublette County, Wyoming. The dace’s entire habitat occurs on property administered by the U.S. Forest Service (USFS), Bridger-Teton National Forest. The number of fish present in the population has never been accurately estimated; however, catch per unit effort data may indicate a possible decline in relative abundance over the last decade.

Habitat Requirements and Limiting Factors: The KWS dace is found in only one small thermal spring-fed stream of fast-flowing waters over cobble and gravel substrate associated with emergent aquatic vegetation. Primary threats at the time of listing were a limited distribution, habitat manipulation, and small population size. Additional threats identified since the time of listing are potential catastrophic habitat loss due to manipulation or pollution of the aquifer that supplies the springs, degradation in habitat quality from potential oil and gas development, and potential non-native species introductions.

Recovery Strategy: The recovery strategy is to maintain a viable population at KWS at its one known location in the wild and to establish at least two refugia populations. Recovery actions are designed to protect the species’ habitat and increase the knowledge of the species’ genetics, life history, population dynamics, the relationship of the dace to its environment, and its responses to identified threats.

Recovery Goal: The ultimate goal of this revised recovery plan is to minimize the threats to the KWS dace to the point that protection under the Endangered Species Act (ESA; 16 U.S.C. 1531 et seq.) is no longer required and the KWS dace can be delisted.

Recovery Objectives: The recovery objectives for the KWS dace are to reduce and/or remove threats to the species and its habitat, to ensure a population persists at KWS, to establish at least two captive refugia populations, and to obtain an increased understanding of the relationship of the KWS dace to its physical, chemical, and ecological environment. The accomplishment of these objectives is intended to provide reasonable assurance for the continued survival of the species even if ESA protections are removed.

Recovery Criteria: The ESA requires recovery plans to include “objective, measurable criteria” which, when met, would result in the determination…that the species be removed from the list.” Recovery criteria describe discrete targets with standards for measurement to determine that species have achieved recovery objectives and may be delisted. Developing precise measurable criteria for recovery of KWS dace is challenging because many of the largest potentially devastating threats to the species have not yet manifested and are currently not affecting the population. However, the threats could manifest at any time and could cause a drastic reduction
in population levels or extinction of the dace in a short time period. Many of the recovery actions in this recovery plan will allow for future development of more specific criteria.

The KWS dace will be considered ready for reclassification from Endangered to Threatened when all of the below criteria are realized:

(1) The population of KWS dace and its habitat are shown to be protected by the effective implementation of a no drilling zone (e.g., buffers, administratively unavailable areas, withdrawals, etc.) that significantly reduces the threats associated with the introduction of toxins (petroleum products or fracking fluids) to its habitat by oil and gas extraction activity that could intercept the spring recharge zone that supplies water to its habitat. These protections should be assured through formal inclusion as regulatory mechanisms in an approved land management plan or other regulatory means.

(2) The population of KWS dace and its habitat are shown to be protected by the effective implementation of a no drilling zone (e.g., buffers, administratively unavailable areas, withdrawals, etc.) that significantly reduces the threats associated with manipulation of the spring’s flow (and associated hydrologic regime) or thermal regime by interception of the water table from oil and gas exploration activities in the spring’s recharge zone. These protections should be assured through formal inclusion as regulatory mechanisms in an approved land management plan or other regulatory means.

(3) The naturally-occurring KWS dace population is experiencing a stable or increasing trend in relative abundance over a five-year period as indicated by Catch per Unit Effort (CPUE) survey methodologies or other methods as determined by the Recovery Team.

(4) A captive KWS dace population is established and successfully propagated and maintained in at least one location, including complete documentation of propagation methods and hatchery requirements. The captive population will consist of the number of individuals and pairs that will ensure the maintenance of long-term genetic diversity and integrity necessary for long-term species viability as documented in the best available scientific information.

The KWS dace (Rhinichthys osculus thermalis) will be considered recovered and ready for removal from the list of endangered and threatened wildlife (delisted) when all of the additional criteria listed below are realized:

(1) The population of KWS dace and its habitat are shown to be protected from present and foreseeable threats to the point where listing is no longer required through implementation of activities including stewardship, protection of groundwater in the spring recharge zone, and ensuring adequate regulatory enforcement. These protections should be assured through formal inclusion as regulatory mechanisms in an approved land management plan or other regulatory means.
(2) The naturally-occurring KWS dace population is experiencing a stable or increasing trend in relative abundance over a ten-year period as indicated by Catch per Unit Effort (CPUE) survey methodologies or other methods as determined by the Recovery Team.

(3) Necessary administrative measures are implemented to ensure flows are maintained. Suitable flows and water quality in the KWS stream are determined through recovery tasks and assured through formal inclusion as regulatory mechanisms in an approved land management plan or other regulatory means.

(4) Captive KWS dace populations are established and successfully propagated and maintained in at least two locations, including complete documentation of propagation methods and hatchery requirements. Captive populations will consist of the number of individuals and pairs that will ensure the maintenance of long-term genetic diversity and integrity necessary for long-term species viability as documented in the best available scientific information.

(5) Non-native species, if present, are controlled within the KWS ecosystem and are not causing declining trends in relative abundance of the KWS dace population there. Additionally, develop and implement a management strategy to monitor the site for the presence of non-native species and promptly take action to address any concerns from any non-native species for which presence has been verified. This management strategy should be formally adopted by incorporation as a regulatory mechanism in an approved land management plan or other regulatory means.

Total Estimated Cost of Recovery (in $thousands)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>ACTION</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y01</td>
<td>22 3 2 3.01 30 810 2 4 1 14 4</td>
<td>895.01</td>
</tr>
<tr>
<td>Y02</td>
<td>22 3 2 3.01 30 182 2 4 1 14 4</td>
<td>267.01</td>
</tr>
<tr>
<td>Y03</td>
<td>22 3 2 3.01 30 182 2 4 1 14 3</td>
<td>266.01</td>
</tr>
<tr>
<td>Y04</td>
<td>20 - - 3.01 20 177 2 - 1 11 2</td>
<td>236.01</td>
</tr>
<tr>
<td>Y05</td>
<td>20 - - 3.01 20 177 2 - 1 7 2</td>
<td>232.01</td>
</tr>
<tr>
<td>Y06-20</td>
<td>105 - - 45.15 150 2655 30 - 15 - 30</td>
<td>3030.15</td>
</tr>
<tr>
<td>Total¹</td>
<td>211 9 6 60.2 280 4183 40 12 20 60 45</td>
<td>4926.20</td>
</tr>
</tbody>
</table>

Estimated Date of Recovery

If the recovery actions are accomplished on schedule, full recovery of the KWS dace can be achieved by the year 2035. However, it should be recognized that the recovery program may change over time or the timeframe to achieve the recovery actions may take longer than expected.

¹ Although future yearly costs may vary, some actions may need to be repeated indefinitely. Total cost is estimated for the next 20-year time period.
The consistent use of terminology is important when discussing the KWS dace. The following definitions will be used in this Recovery Plan:

Captive Population: population established outside of or within historic range in aquaria, pools, ponds, streams, or springs at a dedicated rearing facility.

Historic range: a geographic area where the best scientific information indicates a species historically occurred

Native: a species within its historic range

Non-native: a species outside its historic range. Although no non-native fishes are currently known to inhabit KWS, any fish present in KWS other than KWS dace would be considered “non-native”.

Population: all individuals occurring in a specified area, having a common ancestry or are potentially able to interbreed (Pianka 1978)

Refugia population: populations established for the primary purpose of preventing extinction of the species from the United States. They must be in a facility that can maintain them for the long-term, can maintain genetic characteristics of the source population, and is secure.

Stakeholders: people or agencies with an interest or concern in something. For the KWS dace recovery plan, this may include the recovery team, U. S. Fish and Wildlife Service, U.S. Forest Service, U.S. Geological Survey, Wyoming Game and Fish Department, research institutions, or other, as of yet, unidentified constituencies.

Viable population: a population containing an adequate representation of all age classes and cohorts, and having evidence of reliable annual recruitment.

Wild population: a population established within the historic range in a natural habitat at a location that is not a dedicated rearing facility.
1.0 BACKGROUND

1.1 Brief Overview

Entity listed: *Rhinichthys osculus thermalis*
Classification: Endangered
January 4, 1974 (39 FR 1171) – “grandfathered” the KWS dace into the ESA.

1.2 Description and Taxonomy

The KWS dace adults (Figure 1) range in size from 0.9 to 2.1 inches (23 to 54 millimeters). Breeding males have been characterized as having a bright purple color while females are dull olive green (Hubbs and Kuhne 1937). However, Gryyska (Gryyska, 2006 pers. comm.) only observed the olive-green coloration during his research efforts although he handled many (several thousand) spawning males with nuptial tubercles. It is unknown why there has been an inconsistency in observations of the fish’s breeding coloration.

The KWS dace was originally described as a subspecies of the western dace (*Apocope osculus*) (Hubbs and Kuhne 1937). Later work on the fishes of Wyoming designated the KWS dace as *Rhinichthys osculus thermalis* (Baxter and Stone 1995). The taxonomic certainty of the KWS dace as a distinct subspecies has been discussed by many investigators (Binns 1978; Gould and Kaya 1991; Hubbs and Kuhne 1937; Kaya et al. 1989, 1992; USFWS 1982). Gould and Kaya (1991) and Kaya et al. (1988, 1989, 1992) concluded that the KWS dace is a distinct subspecies.

According to Kaya et al. (1989), the most important morphological difference between the KWS dace and the Green River speckled dace (*R. o. yarrowi*) is pharyngeal teeth. They found that KWS dace lack pharyngeal teeth in at least one minor row in 85 percent of the cases, whereas the geographically closest subspecies of speckled dace lack this characteristic in less than one percent of the cases. Electrophoretic examination of 26 loci for both the KWS dace and Green River speckled dace showed the two subspecies are genetically identical for the loci investigated in this study (Kaya et al. 1989). However, 5 of 12 restriction enzymes revealed polymorphic mitochondrial DNA (mtDNA) in Green River speckled dace, whereas only 1 enzyme showed polymorphic mtDNA in KWS dace. One of the alternative mtDNA in KWS dace was not found in the Green River speckled dace. For two other enzymes, the KWS dace was monomorphic for banding patterns not found in the Green River speckled dace. The differences in mtDNA and pharyngeal teeth indicate both genetic and morphological differentiation between the KWS dace and the adjacent Green River speckled dace. This is noteworthy because the speckled dace found in the upper Green River is geographically closest to the KWS and may have introgressed with KWS dace washed over the falls into the Green River. Hence, the fact that these two are genetically distinct strengthens the case that KWS dace is a legitimate subspecies.
1.3 Distribution and Habitat Use

The KWS dace is confined to one stream approximately 984 feet (300 meters) in length that originates at a series of thermal springs near the base of a bluff. The KWS area is located on the east bank of the Green River in the northwestern Wind River Range, approximately 30 air miles (48.5 kilometers) north of Pinedale, Wyoming (Figures 2, 3, 4, 5, 6). The habitat ends with a waterfall approximately three meters in height that plunges downward to the non-thermal Green River below. The KWS dace are believed to occupy their entire historic range (Kaya et al. 1992; Hubbs and Kuhne 1937). The warm springs themselves remain a constant 85°F (29.4°C) year-round. The stream, fed solely by the warm springs, is 984 feet (300 meters) in length and supports the world’s only population of the KWS dace. The stream temperature is more variable than the warm springs and has been recorded as low as 78°F (25.6°C) in the winter at the point where it cascades over a waterfall into the Green River. The peripheral areas of the stream have been recorded as low as 52°F (11.1°C) in the winter. The warm nature of KWS indicates discharge from a deeply circulating flow system (Mattson 1998). Water emerging from the KWS may be circulating as deep as 2,953 feet (900 meters) indicating that it may be part of a deep regional ground water flow system. Typically, water associated with these systems has long flowpaths and moves slowly with residence times in the aquifer of centuries to millennia (Mattson 1998). Assuming that the springs discharge from a regional flow system, recharge may occur at some distance away from the springs’ sources. This consideration is important when assessing potential impacts of projects on the population and its habitat.
Most adult dace live in or along the main current of the stream, while dace fry are commonly found away from the primary flow. Small shallow pools located in beds of aquatic vegetation are well used by fry. Many small shallow pools are created by the hooves of elk and moose. The creation of the pools appears to be beneficial. Tiny, apparently newly hatched dace are common in all seasons (Binns 1978).

Adult KWS dace inhabit fairly shallow pools and stream runs not more than one foot (0.31 meter) in depth. Plant growth within the water is necessary for escape cover and protection from the main current. Fry also use the vegetation as nursery areas (USFWS 1982).

The KWS dace numbers along the creek seem to correlate with changes in dissolved oxygen and carbon dioxide levels. Fewer fish upstream and none at all at the spring source because dissolved oxygen is low and carbon dioxide is high. Plant growth provides their primary escape cover. A skittering flight to the nearest clump of plants is the typical predator avoidance reaction, although some also flee to the deeper, turbulent areas of the main current (Binns 1978).

KWS dace were found to regularly drift over the waterfall and into the Green River during all months sampled (Gryska and Hubert 1997). Of those, 75 percent were larval fish and 25 percent were either juveniles or adults. Although the authors postulated that their estimates may have been low, they estimated that at least 75 larval fish per day drifted from the creek (a total of about 9,200 fish during the months of May through August). This was attributed to the relatively poor swimming ability of the larvae once they entered the swifter current. An estimated 24,000 larval fish were present in the stream in June (Gryska and Hubert 1997). Drift of juvenile and adult KWS dace from the stream was estimated to be 25 fish per day during the months of May through August (about 3,000 fish) (Gryska and Hubert 1997). Apparently the population has a high enough reproductive rate to withstand such emigration from the naturally occurring waterfall at the end of the habitat, since the population still exists at KWS.

Habitat is limited, and only one population of the KWS dace exists. The habitat remains in relatively good condition; however, habitat alterations by recreational users have occurred in the form of construction of a series of dams/pools near the springs and also by contamination of the springs and stream by soaps, shampoos, and detergents. Since 1975 the U.S. Forest Service has prohibited bathing, wading, and washing clothes in the KWS area, but, rarely, illegal activities have been documented over the last several decades. At the time of its listing, its habitat was fragmented into two sections by a road built across the stream prior to 1934. The road culvert bisected the stream at a point approximately two-thirds of the way downstream from the stream’s origin. The road culvert has since been removed and replaced with a bridge that spans the stream (USFS 1997) allowing reconnection of the habitat.
FIGURE 2. Location of Kendall Warm Springs Dace Population

Kendall Warm Springs Dace Range

FIGURE 3. Diagram of Kendall Warm Springs Area

Wyoming

(Figure Adapted from Binns 1978)
FIGURE 4. Historic Aerial View of Kendall Warm Springs Looking West

Photo from Binns 1978

FIGURE 5. Waterfall Showing 3-meter Drop from Kendall Warm Springs Stream to Green River Below

Photo from Binns 1978
1.4 Life History

The KWS dace spawns year-round, although reproduction decreases in the winter (Gryska and Hubert 1997). During winter, very few larval fish are found along the shoreline, and the number of drifting larvae is substantially less in January than in May through August. Additionally, Gryska (1996) captured significantly fewer juvenile and adult fish in traps during winter than during summer. Mean length of fish captured in January was significantly greater than in summer (Gryska and Hubert 1997). The authors proposed two potential reasons for the seasonal changes they witnessed: (1) an overall reduction in primary productivity due to shorter winter days and reduced intensity of sunlight, and (2) cooler winter water temperatures in the shallow, near-shore larval fish habitat. It appears that photoperiod and/or water temperature may have an influence on reproductive rates (Gryska and Hubert 1997).

KWS dace feed on benthic invertebrates and epiphytic organisms (Gryska and Hubert 1997). They suck and scrape invertebrates from the substrate by using a subterminal mouth specialized

The KWS dace often form small aggregations. No information is currently available describing whether these fish have defined home ranges or if they display territoriality. In 1995, males were not observed to be purple when in breeding condition, although in 2013, a few KWS dace individuals were documented with light purplish hues over a portion of their bodies (Anderson 2014, pers. comm.). The KWS dace do breed during the winter, as ripe adults and larval fish are present during that season (Gryska and Hubert 1995). Some larval habitat with cooler temperatures along the peripheral areas of the stream in winter were still occupied by larval fish, indicating that the fish have a wide thermal tolerance. Reproductive output decreases during the winter (Gryska and Hubert 1997).

1.5 Indication of Possible Trend in Relative Abundance

A technique was developed to observe trends in relative abundance of the Kendall Warm Springs dace population using Catch-per-Unit-Effort (catch/ trap) (Gryska and Hubert 1995, 1997). This method employs the use of 18 small unbaited traps evenly spaced along both sides of the stream. The traps are checked twice daily – in the morning and evening. Surveys were conducted in 1997, 1999, 2005, 2007, 2010, 2011, and 2013. The number of days surveyed per year has varied from 5 to 9 days. To be consistent, the survey has always been completed at the same time of year—mid June. Because the conditions at the spring remain fairly constant and the sample sizes are large, the Recovery Team believes that this methodology and CPUE data are sufficiently robust to indicate trends in relative abundance of the population. According to the survey results for trap years 1997 through 2013 (Figure 7, Anderson 2014, pers. comm.), KWS dace relative abundance may have declined during this time period. It is currently unknown if the observed changes in relative abundance are within the natural range of variability for the KWS dace. For complete survey methodology, see Gryska (1995) and Gryska and Hubert (1995, 1997).
1.6 Threats

The set of listing factors set forth in Section 4(a)(1) of the ESA include: (A) the present or threatened destruction, modification, or curtailment of habitat or range; (B) overutilization for commercial, recreational, scientific, or education purposes; (C) disease or predation; (D) the inadequacy of existing regulatory mechanisms; and (E) other natural or manmade factors affecting the species’ continued existence. The discussion under each listing factor, below, addresses the threats to the species at the time of the original listing and newly identified or predicted threats that are likely to occur in the foreseeable future.

A thoughtful, systematic examination of what is known about the KWS dace life history, in the context of the five listing factors in the ESA was used to help identify threats (See Appendix A). In order to better understand how any given threat actually affects the species, each identified threat was partitioned into a stressor(s) that actually impact(s) or has potential to impact individuals of the species. This helps to assess the magnitude of the impact, and the source(s) of the stressor which often provides insight into how to alleviate a threat. We used the threats
assessment to evaluate each stressor for its scope, immediacy, and intensity, as a way of identifying the true magnitude of the potential threat to the target species. Using the threats assessment, we also characterized both the exposure of the target species to the stressors and the response of the species to the threat.

An overall threat level of low, moderate, high, or severe was ultimately determined by the recovery team for each threat for the KWS dace. Low level threats are those that do not require action at this time. For moderate level threats, action is needed. For high level threats, immediate action is necessary. Severe threats are those that require immediate action to ensure the survival of the species. At this time, no severe threats were identified by the recovery team for the KWS dace (See Appendix A). A 5-year review for this species was completed in 2007 (USFWS 2007). The threats analysis presented in this draft recovery plan does not differ markedly from that in the 2007 5-year review.

1.6.1 FACTOR A. The Present or Threatened Destruction, Modification, or Curtailment of Habitat or Range

The following threats could result or have resulted in the destruction, modification, or curtailment of the habitat or range of the KWS dace (USFWS 2007). Because there is only one population of KWS dace in one geographic area, any detrimental impacts that are negatively affecting the population are affecting the entire KWS dace population.

Bathing and the Use of Soaps, Detergents, Sunscreen, and Bleaches in the Species’ Habitat

Historically, recreational mountain travelers would bathe in the warm springs. It is reported that individuals also would wash clothes in the warm water of the springs (Binns 1978). The area was once a frequently-used recreational site. Swimming, bathing, and the use of detergents was believed to have degraded water quality and modified the quantity of vegetation present (Binns 1978). This threat occurred rangewide. At one time, this threat may have been of moderate to high intensity and may have resulted in mortality or inhibiting the basic needs of the species. The use of soaps, detergents, sunscreens, or bleaches in the KWS has been prohibited by the U.S. Forest Service (USFS) since 1975 (Binns 1978) and signs posted onsite notify visitors of these prohibitions. Enforcement actions have occurred and appear to have been successful. As a result of the prohibitions and subsequent enforcement actions, the dace is currently believed to face insignificant exposure to this threat; therefore, we conclude that the overall threat level for this threat is low at this time (See Appendix).

Deleterious Effects of Research Efforts

Research activities could stress the KWS dace population through reduction of habitat quantity and/or reduction in habitat quality. Researchers in their efforts to better understand the dace’s habitat could enter the stream to analyze habitat and disturb the vegetation, the substrate and/or the invertebrates upon which the dace feed. The deleterious effects of research efforts are rangewide historic/future threats. The current exposure level for this threat is small. There are no current research efforts approved that could involve disruption or degradation of habitat. Permits are required by the Service, the USFS, and the Wyoming Game and Fish Department (WGFD) to perform research activities relating to the KWS dace. The overall threat level for this threat is low. In the future, the potential deleterious effects (likely transitory and ephemeral)
to the dace population from properly designed research efforts should be weighed against the benefits potentially derived leading to better informed recovery and management actions.

Oil and Gas Development

Oil and gas development has not been known to affect the KWS dace population in the past. Future oil and gas development could potentially stress the dace population through changing the spring water quantity (e.g., drying up the spring or decreasing flow) or water quality (e.g., altering temperature regime). Although Mattson (1998) estimated the potential recharge area of the spring to be an area 21,270 acres (8,593 hectares) in size, the exact recharge area of the spring is not known with certainty and could extend across multiple watersheds. Oil and gas development within the recharge area is a potential future threat. If this threat does materialize, the exposure level could be very significant as 100 percent of the population could potentially be exposed. Surface disturbance associated with drilling (construction of drill pads, roads, and use of drilling fluids) could introduce sediment and contaminants to the spring. Subsurface disturbance could occur if drilling intercepts the fault zone that supports the spring. Introduction of drilling fluids or intercepting water may affect the temperature of the spring water. Any of these changes could have adverse impacts on the Kendall Warm Springs dace (USFS 2000). Significant mortality and possible extinction of the species could be realized within a very short time.

The USFS could authorize the Bureau of Land Management (BLM) to lease oil and gas development opportunities in the KWS area in the future. If leasing does occur, this could result in construction and operation of new well locations, upgrading of existing and building new roads, new pipelines, compressor stations, gas processing facilities, and evaporative ponds. Such development in the upper Green River watershed could impact crucial areas of KWS dace habitat and potential spring recharge areas. However, such activity would be subject to section 7 consultation under the ESA and impacts potentially resulting from this activity could be minimized as a result.

The Mineral Leasing Act of 1920 directs that all public lands are open to oil and gas leasing unless a specific order has been issued to close an area. At present, with no protection measures or decisions in place, the Federal land management agencies involved could authorize the development of oil and gas exploration and development activities within the potential recharge zone of the KWS. The withdrawal of 160 acres (64.75 hectares) around KWS from mineral entry (27 FR 8830, August 28, 1962) only applies to “locatable” minerals such as gold, silver, and precious metals and not to “leasable” minerals (oil and gas) or “salable” minerals (gravel, cobblestone, sand, etc.).

Interest in oil and gas exploration and development on the Bridger-Teton National Forest has prompted evaluations of all potential impacts of USFS activities to the habitat of the KWS dace. In response to an increased interest in oil and gas drilling, Mattson (1998) conducted a hydrogeologic evaluation of the area surrounding the KWS. Mattson (1998) recommended that in order to protect the KWS dace from oil and gas development, a number of conservation measures and potential drilling restrictions should be implemented in the potential recharge area of KWS.
The geologic environment surrounding KWS is complex and includes faulted and folded sedimentary rocks. The Wind River Mountains lie immediately east of KWS and were uplifted along the Wind River thrust fault. The mountain block shows evidence of shear zones in the interior of the mountain uplift. The younger strata on the west edge of the uplift are folded into a series of synclines and anticlines. A system of small high-angle reverse faults has further displaced and fractured the strata. The river corridor immediately surrounding KWS consists of a well-developed alluvial plain with unconsolidated glacial stream deposits. The complex geologic environment surrounding KWS gives rise to an equally complex hydrogeologic environment. The spring is apparently associated with a fault that delivers heated waters to the surface. Little detailed geologic investigation is available for the area, so it is difficult to precisely assess where recharge to the spring occurs (Mattson 1998).

The 1990 Bridger-Teton National Forest Land and Resource Management Plan (BT Plan) identified these areas as being administratively available for oil and gas leasing (USFS 1990). The USFS 2000 draft Environmental Impact Statement (draft EIS) describes a proposal to authorize leasing activities within the vicinity of KWS (USFS 2000). However, the BT Plan did not make site-specific decisions concerning the leasing of these available lands. The Forest Supervisor of the Bridger-Teton National Forest did decide to not pursue oil and gas leasing in the areas analyzed in the draft EIS (USFS 2000) due to overwhelming opposition from the public (USFS 2003). No final EIS or Record of Decision has been developed or completed over the draft proposal.

The draft EIS published by the USFS (2000) estimated that, over the approximately 369,900 acres (149,698 hectares) evaluated for potential oil and gas leasing activities, 30 to 128 wells could be expected to be drilled in the upper Green River area adjacent to where KWS is located (with associated facilities such as roads, pipelines, and power lines), if leasing were allowed. This scenario was developed using historical oil and gas development information from the U.S. Geological Survey (USGS), other known geologic information, and interpretation of information by the BLM and USFS geologists, as well as input from the oil and gas industry.

Alternatives and stipulations for development evaluated in the draft EIS included: (1) a no development alternative, (2) allowing leasing within all areas analyzed, (3) using No Surface Occupancy (NSO) stipulations in all USFS roadless areas and areas where sensitive soils exists, (4) making unavailable the 21,270 acres (8,593 hectares) of potential recharge area of the KWS dace as evaluated by Mattson (1998), and (5) limiting the number of well pads to 1 per 160 acres (1 per 64.75 hectares).

Currently the Kendall Warm Springs recharge zone remains available for construction and operation of drill sites. If these activities are permitted, this could result in the potential contamination, depletion, or change in water quality of the aquifer which supplies KWS. Such an irretrievable commitment of that water supply and recharge zone for KWS could cause the extinction of the KWS dace.

Since interest in oil and gas development remains, these activities could eventually be approved and undertaken. If undertaken according to the draft EIS of the USFS (2000), the following project aspects would be expected to occur. All roads built or upgraded to access leases or
facilitate field developments would be open to public traffic, except where administrative closures are in place. With field development, access roads may be plowed in the winter where and when possible, or may be accessed by over-the-snow vehicles. A total of 1,200 acres (485.6 hectares) around KWS could be recommended for withdrawal from locatable mineral entry as well as could carry a NSO Stipulation for leasable minerals. Acres of disturbance were estimated to be three acres for each well pad, and one mile of road and one mile of pipeline for each well, both located in the same corridor which would be 60 feet (18.3 meters) wide. During development (drilling), we assume that the area would receive high occupancy with high traffic use for approximately 90 days. However, this activity could occur for as much as 180 days. During production, we assume that one visit per well by pick-up truck would occur per day. Most emissions from oil and gas activities would be concentrated during the time period in which each well is being drilled and completed. This could extend from 3 to 6 months (USFS 2000).

During the production phase (which could last 15 years or longer), dust from roads and pads would be expected to be substantially less than during the exploration and development phase. Pad sizes are typically smaller for production facilities, and vehicular use rates are typically much less. A producing field containing tank facilities, gas separation facilities, gas powered combustion compressor engines, diesel pumps, and other related equipment could produce odors due to the venting of gasses and other emissions. In the production phase, air pollutants such as carbon monoxide, hydrocarbons, nitrous oxides, sulfur dioxide, and hydrogen sulfide can be produced. The U.S. Environmental Protection Agency (EPA) states that a single well can produce in the vicinity of 250 tons (227 metric tons) of pollutants per year. These pollutants can be injected in the environment during disposal of liquid waste and unwanted gases by burning of waste products, and by fugitive loss of gases from storage tanks and other facilities. Accidental explosions, fires, blowouts, oil spills, and leaks cause potentially serious pollution problems as well (USFS 2000).

The management area that contains the KWS dace and the springs’ potential recharge area is predicted to have one of the highest potentials for projected oil and gas development as analyzed by the draft EIS (USFS 2000). Despite the current lack of interest on the part of USFS, having such a high potential for oil and gas development increases the likelihood of renewed interest in oil and gas drilling in the area. Fracturing of the substrata supporting the hydrologic conditions of the KWS could occur, unless proper conservation measures or lease stipulations are implemented.

If plans for drilling in the area are pursued, the overall threat level for this threat could quickly become severe with immediate action being essential for survival of the KWS dace. Conservation measures to minimize this threat include making the 21,270 acres (8,593 hectares) of the springs’ potential recharge area “administratively unavailable” for oil and gas leasing (Figure 8) (Mattson 1998). To date, this proposed conservation measure has not been implemented by the relevant agencies. Given the current, planned, and potential increase in oil and gas development in Sublette County, Wyoming, and the potential high intensity impacts to the world’s only population of KWS dace, the overall threat level for oil and gas development is high.
FIGURE 8. Buffers for Kendall Warm Springs as proposed by USFS (2000)

Proposed Protective Buffers for the Kendall Warm Springs Dace on the Bridger-Teton National Forest

Legend

Streams

Proposed withdrawal of 1200 acres from locatable mineral mining (sand, gravel, etc.) and 1200 acres designated for No Surface Occupancy of leaseable (oil, gas) minerals

Proposed protection of 21,270 acres making those acres “administratively unavailable” for oil and gas leasing. This area encompasses the Kendall Warm Springs projected spring recharge zone.

Developed for the Bridger-Teton National Forest Oil and Gas Environmental Impact Statement 1999
Presence of Livestock in the Habitat
If allowed to enter KWS, livestock could affect the dace population through siltation of habitat and eutrophication of habitat. Livestock wading in the stream could cause some disturbance of the gravel and rock substrate of the stream bottom and allow some sediments to become suspended in the water or deposited in interstitial spaces that are critical for invertebrate production. Since the stream is relatively short (984 feet [300 meters] long) with a fairly rapid discharge of 6 to 8 cubic-feet-per-second (0.17 to 0.23 cubic-meters-per-second), it would not be expected that much effect would be observed from the disruption of the stream bottom caused by only a few head of livestock present over a short time period. It would be expected that most suspended sediment would be flushed from the stream, over the falls, and into the Green River within a relatively short time. Livestock use of the stream could increase the quantity of nitrates, ammonia, or other inputs from manure and urination of the livestock in or adjacent to the stream. The extent of effects from this threat would depend on the number of livestock present and the duration of their stay. A fence regularly maintained by USFS excludes livestock from 160 acres (64.75 hectares) immediately adjacent to the stream. Since this is a historic threat that has been minimized by excluding the livestock from the KWS dace habitat, we rank the overall threat level for this threat as low.

Increased Recreational Use of the Area
The increase in recreational use of the area could lead to an increase in incidents of trespass and wading/bathing in KWS. Dace habitat could be modified by bathers seeking to increase the depth of the stream by excavating areas and constructing rock dams. People wading in the stream also could alter vegetation and stream beds. This is a potential rangewide threat that would be expected to have a low intensity. There have been a few citations issued in past decades by USFS law enforcement officers. However, we know of no recent habitat modifications or trespass into KWS by bathers. For these reasons, we rank the overall threat level for this threat as low.

Reservoir Construction/Water Impoundments in the Upper Green River Watershed
An impoundment in the watershed which supplies the recharge water for the KWS could potentially change both the quantity and quality of the water in KWS. Although unlikely at this time, a major water impoundment could completely inundate the KWS as has occurred to other thermal springs in Wyoming (e.g., Alcova Hot Springs currently inundated by Alcova Reservoir). If water quality or quantity of the KWS is changed, the dace would likely suffer significant mortality and potential extinction.

Three potential reservoir sites on the upper Green River (Kendall, Wells, and Gannett) were mentioned in potential reservoir impoundment plans by a Wyoming Water Resources Research Institute study done in the late 1960s (Binns 1972 and N. A. Binns, pers. comm., June 15, 2007). Plans developed at that time indicated that a dam at the Kendall site could impound as much as 1 million acre-feet (1,233 million cubic meters), which would most certainly inundate KWS and the 984 feet (300 meters) of stream habitat occupied by the KWS dace. On May 17, 1968, an application was filed to the Wyoming State Engineer for a 608,600 acre-feet (750,403,800 cubic meters) capacity Kendall Reservoir (Binns 2007 pers. comm.). Public hearings on the proposed Kendall Dam were held in Pinedale and Green River City, where the proposal encountered considerable public resistance and the proposal was later shelved (Binns 2007 pers. comm.).
Recently, there has been renewed interest in developing water storage facilities in the Upper Green River basin (P. Ogle, Wyoming Water Commission, pers. comm., April 3, 2011). This interest was focused on an area many miles downstream from the KWS area. Furthermore, the request for funding was denied for that proposal due to numerous conflicting resource issues. There are currently no approved plans to impound waters in areas that may affect the KWS area. Therefore, we believe the KWS dace have a negligible, insignificant exposure to this threat at this time and we rank the overall threat level as low. If plans are developed for reservoir construction or water impoundments in the area, then the overall threat level could quickly change to one with severe effects.

Catastrophic Wildfire
The threat of catastrophic wildfire could represent a rangewide threat to the KWS dace. This is a future threat that could be of high intensity. Catastrophic wildfire in the forested area which recharges the KWS could cause hydrologic or thermal changes to the spring. This effect was seen lower in the watershed in the Surprise Lake area in Sublette County. There, a wildfire burned areas of the drainage and changed the temperature regime of the major spawning tributary of golden trout in the lake. The tributary was no longer suitable for golden trout spawning and the natural recruitment of that population declined (S. Roth, USFWS, pers. comm., February 15, 2007).

Depending on the severity and intensity of a wildfire, burning of the forest could cause: (1) increased runoff rates from the surrounding mountainsides, (2) decreased infiltration of precipitation into the KWS recharge zone, and (3) siltation of the spring water of KWS. The KWS dace habitat is located in a sagebrush/grass vegetation type. Forested areas occur in the upper slopes of the recharge area for the KWS. Currently, the forest surrounding the KWS is predominantly lodgepole pine that is dying out due to pine bark beetle infestations. Fuel loading is typical for that region (5 to 20 tons/acre (11.2 to 44.8 metric tons/hectare)). The potential recharge area for the KWS is large (21,270 acres (8,593 hectares)) and the potential for a wildfire to occur there is moderate. Given the high public use of that area, suppression of any wildfires occurring there would be attempted at the earliest stages (P. Hutta, USFS, pers. comm., January 22, 2007). As catastrophic wildfires occurring in that area are expected to be controlled by suppression efforts before they could potentially have deleterious effects to the KWS ecosystem, the overall threat level for this threat is low. Furthermore, wildfire is a natural event in the ecosystem surrounding the KWS. It is likely that large fires have historically burned through the area on a periodic basis. Fire suppression efforts are not likely to occur in the area given the Forest Service conservation measures currently in place.

Acid Rain
An increase of pollutants in the air could lead to a change in the pH of the rain water/snowmelt which recharges the KWS. A change in pH caused by acid rain could be a threat of regional scope affecting multiple states. It is unknown if effects from this threat are currently affecting the KWS dace population. Given the increase in industrialization of Sublette County, Wyoming, and the concomitant concern with decreasing air quality (Thuemer, Jr. 2014), it is conceivable that acid rain could alter the water chemistry of KWS. Prevailing winds may transport pollutants from industrialized regions. It is anticipated that the acid rain, if it occurred in the KWS dace
area, would be of low intensity. Also, the spring water is alkaline and emits from a limestone formation supplying calcium anions to the spring water (Binns 1978). Therefore, the spring may be fairly insulated from any threat from acid rain. Presently, no evidence of acid rain affecting the spring is known so the overall threat level from this threat is currently low.

Herbicide/Pesticide Use
The use of herbicides for weed control could affect the KWS dace habitat in the near future. Some non-native weed species are present in the immediate vicinity of KWS. Treatment of these with herbicides, if not appropriately conducted, could lead to localized contamination of the dace’s habitat, a decrease in aquatic vegetation of the habitat, and a reduction in invertebrate numbers leading to decreased habitat suitability for the dace. Even a brief exposure to a weak solution could prove lethal to the dace. A weak solution in the stream also could damage or destroy algae and phytoplankton, thus altering the basic productivity of the stream and degrading the food chain upon which the dace depend. Similarly, pesticide use, if not conducted properly, could be lethal to the dace or damage or destroy aquatic benthic invertebrates, as well as zooplankton, upon which the dace feed.

Because potential applications of herbicides or other pesticides near the dace’s habitat are under the control of USFS and section 7 consultation requirements apply to this activity, we have ranked the overall threat level of this threat as low. The ESA, requires USFS to consult with the Service prior to activities which they determine “may affect” a listed species. It is assumed that a well-planned protocol to minimize or eliminate adverse effects to the dace would be developed during section 7 consultation between USFS and the Service prior to the use of either herbicides or pesticides near the dace’s habitat.

Climate change
Scientific evidence currently indicates that the increase in greenhouse gases in the Earth’s atmosphere caused by the burning of fossil fuels such as coal, oil, and natural gas are having a worldwide effect on the Earth’s climate. Worldwide temperatures have risen over the past century and that trend is expected to continue. With worldwide warming, the polar ice caps and montane glaciers are melting at accelerated rates and below normal precipitation is occurring in many areas (Barry and Seimon 2000; Hall and Fagre 2003; Thomas et. al. 2009).

The magnitude of warming in the northern Rocky Mountains has been particularly great, as indicated by an 8-day advance in the appearance of spring phenological indicators since the 1930s (Cayan et al. 2001). The hydrologic regime in the northern Rockies also has changed with global climate change and is projected to change further (Bartlein et al. 1997; Cayan et al. 2001; Stewart et al. 2004). Under global climate change scenarios, the mountainous areas of northwest Wyoming may eventually experience milder, wetter winters and warmer, drier summers (Bartlein et al. 1997). Additionally, the pattern of snowmelt runoff also may change, with a reduction in spring snowmelt (Cayan et al. 2001) and an earlier peak runoff (Stewart et al. 2004), so that a lower proportion of the annual discharge will occur during spring and summer.

Our analyses under the ESA include consideration of ongoing and projected changes in climate. The terms “climate” and “climate change” are defined by the Intergovernmental Panel on Climate Change (IPCC). “Climate” refers to the mean and variability of different types of
weather conditions over time, with 30 years being a typical period for such measurements, although shorter or longer periods also may be used (IPCC 2007, p. 78). The term “climate change” thus refers to a change in the mean or variability of one or more measures of climate (e.g., temperature or precipitation) that persists for an extended period, typically decades or longer, whether the change is due to natural variability, human activity, or both (IPCC 2007, p. 78). Various types of changes in climate can have direct or indirect effects on species. These effects may be positive, neutral, or negative and they may change over time, depending on the species and other relevant considerations, such as the effects of interactions of climate with other variables (e.g., habitat fragmentation) (IPCC 2007, pp. 8–14, 18–19). In our analyses, we use our expert judgment to weigh relevant information, including uncertainty, in our consideration of various aspects of climate change.

Future climate change will be the product of natural variability acting over multiple spatial and temporal scales superimposed on anthropogenic trends (Gray et al. 2003, 2004; Jackson et al. 2009). Predicting ecological and biogeographic responses to climate change constitutes an immense challenge for ecologists (Jackson et al. 2009; Romme and Turner 1991). The effect that climate change could have on the KWS dace is unknown at this time. The KWS dace currently inhabits water which is geothermally warmed to a temperature of around 29.4°C (85°F). A drastic increase in the temperature of the spring water could lead to thermal or hydrologic changes to the springs that could be out of tolerance limits to the dace population. Lower precipitation levels potentially caused by global climate change could lead to reduced flows of the KWS and a reduction of available habitat for the dace.

Climate change is a potentially imminent and future threat. However, there is a large degree of uncertainty regarding what the localized effects of climate change will be and how localized effects may potentially impact the dace and its habitat. The warm nature of KWS indicates discharge occurs from a deeply circulating flow system. Typically such deep regional flow systems have long flowpaths and move slowly. Residence times are typically centuries to millennia (Mattson 1998). For these reasons, we rank the overall threat level for this threat as currently low and climate change is not likely to have an immediate influence on the spring water. Further studies should be conducted to determine if there is a need for strategies to monitor and minimize the effects of this potential threat.

1.6.2 FACTOR B. Overutilization for Commercial, Recreational, Scientific, or Educational Purposes

The following are threats caused by the overutilization of the KWS dace for commercial, recreational, scientific, or educational purposes:

Illegal Taking of the Dace
Illegal taking of the dace for home aquaria or for other commercial trade purposes could cause reduction of KWS dace numbers. To date, this has not been an issue since no illegal taking of the dace has been documented. If illegal take has occurred, it appears that the population has not been impacted. However, in other parts of the world, other rare and endangered species have been exploited for food, medicinal, or ornamental properties. Some are sold locally or internationally to rare species collectors pushing those species closer to extinction. Potential exists for similar activity to occur to the KWS dace. Any illegal collections of the dace would be
presumed to be of low intensity with a small portion of the population exposed to such efforts. For these reasons, we rank the overall threat level for this threat as low.

Deleterious Effects of Research Efforts

By visual observations from the stream-side, the population appears robust. The habitat appears to be completely occupied and the fish breed year-round. Because there are some unknown aspects of the dace’s biology, there is a high probability that some KWS dace or their invertebrate prey will be utilized for scientific purposes in the future. Some research efforts may include attempts at captive rearing or population monitoring. Successful captive rearing or establishment of refugia populations will depend on learning the breeding requirements of this species in captivity. If this is undertaken, it will require field capture of individuals and acclimatization to a laboratory setting. It is likely that some individuals will die from trapping mortality or disease. It is unlikely that individuals removed from the KWS dace population for captive rearing studies would be returned to KWS because doing so would risk the introduction of any diseases contracted in the laboratory to the KWS population.

Studies to determine accurate estimates of the population size of the KWS dace or its prey base have not been attempted. To date, only CPUE studies for the dace have been employed indicating only trends in relative abundance over time. Mark-recapture experiments, if they were to be undertaken, could be used to estimate the dace’s population size. However, mark-recapture studies could stress fish causing mortality to some dace. Currently, because of the dace’s listed status, a recovery permit would be required under Section 10 of the ESA and the effects to the species would have to be evaluated prior to issuance of a permit to conduct research. Because any research efforts to study the dace would not be approved unless they were of low threat intensity and/or constituted insignificant exposure to the population as a whole, we rank the overall threat level for this threat as low.

Use of Kendall Warm Springs Dace as Bait Fish
The KWS dace were historically used as bait fish; although it is uncertain to what extent this activity occurred in the past. The WGFD prohibited the use of KWS dace as bait beginning in the 1960s.

This was a rangewide historical threat with an unknown past exposure level. Depending on the extent of its capture by anglers, anywhere from a small part of the population to a very significant part of the population may have been impacted. Death would be assumed to be the response of KWS dace used as bait fish.

As there currently are prohibitions against using KWS dace as bait and no exposure of the population to this threat is anticipated in the future, we rank the overall threat level for this threat as currently low.

1.6.3 FACTOR C. Disease or Predation

Disease Stemming from Research Efforts

Deleterious effects from disease could be realized as a result of research efforts. Equipment or waders used in habitat during dace population assessment could serve as pathways for the
introduction of disease into the population. This is a rangewide threat that could occur under current management procedures. Precautions are now taken to minimize the risks of disease being introduced into the KWS dace population. Current research protocol calls for all equipment and waders used for research efforts in the habitat of the KWS dace be disinfected with a 10% bleach solution before entering the habitat.

If disease were to be introduced into the population, potentially 100% of the KWS dace population could be affected. Depending on the type of disease introduced, the response from individuals could range from behavioral to significant mortality or extinction. At this time, the overall threat level from this activity is low because action is taken by researchers to avoid the introduction of disease into the population.

Disease or Predation of Dace From Introduction of Non-native Species
Historically, disease or predation has not been an issue as no introduced species or diseases have been documented in the habitat of the KWS dace. Potential exists for illegal introduction of warmwater or tropical fishes into the habitat of this species. Introduced fish diseases or predators to the KWS could have devastating effects on the KWS dace population potentially affecting 100 percent of the population. Introduced predatory fishes could affect the dace population and lead to extinction of the species. The overall level for this threat is high. Refugia populations are needed to ensure survival of the KWS dace should disease or predation by non-native species jeopardize the only dace populations currently in existence. Many examples exist of other fish restricted to one location that have gone extinct at least partially caused by non-native species introductions. For further detail regarding the potential effects of introduced species on the KWS ecosystem, see discussion below under Factor E.

The Wyoming Game and Fish Commission currently prohibits the introduction of non-native fishes to KWS or any waters of the State; but illegal introductions of non-native fish species still do occur (Rahel 2000; WGFD 2012a, b). Aquatic non-native species legislation (Enrolled Act 62, see WGFD 2010) was passed by the Wyoming legislature in 2010, substantially increasing the potential penalties for introducing non-native aquatic species into waters of the State. A program to prevent the expansion of aquatic non-native species also was started as a result of the recently passed legislation. We commend the State of Wyoming for enacting such laws prohibiting the introduction of non-native species within the State. However, it is uncertain, at this time, how successful this legislation will be at completely preventing such introductions. Because illegal introductions could still occur despite laws aimed at stopping them and because such introductions could have devastating effects on the only KWS dace population, we conclude this is a high intensity threat with potential for very significant exposure of the species and potentially causing significant mortality or extinction. Therefore, we rank the overall threat level for this threat as high (see discussion under Factor E. below).

1.6.4 FACTOR D. The Inadequacy of Existing Regulatory Mechanisms

Although many regulatory mechanisms are currently in place independent of the ESA and have been fairly effective at controlling some of the deleterious threats that historically affected the dace, additional regulatory mechanisms could be improved for further protection of the dace. For instance, a regulatory mechanism in the BT Plan to protect the recharge zone for KWS from
potential oil and gas development by making the area “administratively unavailable” is not currently in place, but has been discussed (USFS 2000). The high-level threat of oil and gas development in the spring’s recharge zone is discussed under Factor A above. The following is a general synopsis of all existing regulatory mechanisms (independent of the ESA) currently employed and their inadequacies, if applicable.

Prohibitions currently exist against: (1) wading, bathing, or the use of soaps or detergents for washing clothes in the KWS and associated stream habitat; (2) livestock use of the stream for watering purposes; (3) introductions of non-native species into the habitat of the dace; (4) mining or staking locatable mineral claims in a 160-acre (64.75-hectare) area surrounding the KWS habitat; (5) the use of KWS dace as baitfish (WGFD 2012a); and (6) fishing in the KWS area (WGFD 2012c). These existing regulatory mechanisms are important and help protect the species.

The enforcement portion of some regulatory mechanisms may be a key issue in some cases. The difficulty of complete and adequate enforcement of regulations in a remote setting like KWS may put the dace at risk. Although prohibited since 1975, some wading and bathing in the spring has still occurred. The USFS conducted a population survey of the KWS dace in 2005. During that survey, four of the traps used to capture the dace were tampered with. One trap disappeared completely during a day set (was the most visible from the road), two traps were partially stepped on (presumably by a small, hoofed animal), and one was removed from the stream and placed atop an algae mat. Five dace were found dead in that trap (USFS 2006). These instances demonstrate the difficulty of ensuring that KWS dace are protected from illegal activities. However, to our knowledge such events have been relatively rare.

The 1990 Bridger-Teton National Forest Land and Resource Management Plan includes a goal to protect populations of, and provide suitable and adequate amounts of habitat for the KWS dace (USFS 1990). The plan also states that the existing populations and habitat of the KWS dace will be maintained and enhanced (USFS 1990). Included in the activities that are likely to take place during implementation of the plan are a KWS dace exclosure fence and fence reconstruction activities (USFS 1990). Livestock are currently prohibited from entering KWS and an exclusion fence is regularly maintained by the USFS. These measures are currently believed to be fairly effective at excluding livestock from KWS. However, livestock have occasionally gained access to the springs for watering. Those situations involved: (1) downed portions of the exclusion fence, (2) low water levels in the Green River due to drought conditions allowing livestock to swim across the Green River, or (3) low water levels in the Green River allowing cattle to walk or wade around the portion of the fence which extends to the edge of the Green River. Therefore, regular monitoring of fences and livestock use are necessary to ensure the protections enacted remain effective.

To date, no non-native species are known to have been introduced into KWS. However, numerous thermal springs throughout North America have received unauthorized introductions of non-native species causing disastrous consequences for the native dace species there (see Table 1 below), making precautions at KWS appropriate. Possible factors contributing to KWS not yet having received unauthorized non-native species introductions are: (1) the low publicity level of the KWS area; (2) the inaccessibility of the area to the general public during much of the
year due to winter road closures; (3) Wyoming regulations against the use of live baitfish along the Upper Green River; and (4) prohibitions against the introduction of non-native species in the State (WGFD 2012b). Also, coldwater fish species in the adjacent Green River may not survive the warmer water temperatures found in KWS. In 2010, the Wyoming Legislature established an Aquatic Invasive Species Program to combat the threat of illegal aquatic introductions in Wyoming. This effort is aimed at zebra mussels (*Dreissena polymorpha*) and quagga mussels (*Dreissena rostriformis*) that have continued to spread throughout North America, despite intense efforts to stop their range expansion, causing major changes to aquatic ecosystems where these species have been introduced. Vigilant enforcement of restrictions on illegal non-native aquatic species introductions is necessary, but the complete elimination of the threat from non-native species introductions (e.g., tropical aquarium fish, etc.) may be highly difficult because this crime may not be discovered until long after it is committed.

Although the area surrounding KWS has been withdrawn from locatable mineral entry (27 FR 8830, August 28, 1962), the possibility still remains that fluid mineral mining (oil and gas development) or salable mineral mining (e.g., pea gravel, gravel, cobblestone) could still be authorized in the KWS recharge zone which has been estimated to be 21,270 acres (8,593 hectares) in size (Mattson 1998). A prohibition, if put in place, against fluid or salable mineral development in the spring’s recharge zone would provide needed administrative protections from these threats to the dace’s habitat.

A Kendall Warm Springs Biological Unit Management Plan was approved by USFS in 1978. The management objectives of that plan were to: (1) maintain or improve the quality and quantity of the presently occupied habitat, and (2) to perpetuate a viable population level of dace. The area designated by this plan encompasses 160 acres (64.75 hectares). This same acreage was withdrawn from locatable mineral entry under EO-10355 in 1962, fenced to provide habitat protections in 1969, and identified as “essential habitat” for the dace in 1977. Boundaries include most of the small watershed and adjacent terrestrial communities which surround and directly affect the spring and stream section (USFS 1978). The 1978 plan provides a good description of the taxonomy and ecology of the dace. Several threats are addressed in the plan and recommendations were made in the plan to address those threats. Several follow-up actions since 1978 have been employed.

The U.S. Forest Service Bridger-Teton National Forest Land and Resource Management Plan, approved in 1990, covers the known population of dace (USFS 1990). The BT Plan contains general standards and guidelines for the maintenance and enhancement of the KWS dace habitat. More specific conservation measures such as making the recharge area of KWS “administratively unavailable” for oil and gas development (USFS 2000), if approved and finalized, would serve to alleviate this threat. The Bridger-Teton National Forest began the revision process for its Land and Resource Management Plan in 2005. However, that revision process has been put on hold pending ongoing litigation over forest-planning rules. Therefore the conservation measure designating the potential recharge of KWS as “administratively unavailable” has, to date, not yet been implemented.

The current inadequacy of some existing regulatory mechanisms is a rangewide threat with a moderate intensity as opportunities to more effectively regulate activities affecting the species
may be missed. We rank the intensity level of this threat as moderate and the exposure level as moderate/significant. Therefore, we assign the overall level of threat as moderate at this time.

1.6.5 FACTOR E. Other Natural or Manmade Factors Affecting the Species’ Continued Existence

The following are other threats to the dace which are not fully analyzed in the preceding sections:

Other Effects Stemming From Introduction of Non-native Species
The introduction of non-native fish or other aquatic species to the spring could upset the ecological balance currently present in the spring ecosystem thereby potentially impacting the KWS dace or potential hybridization could destroy the genetic integrity of this unique subspecies (Dowling and Childs 1992; Echelle and Conner 1989). Competition for food, shelter, breeding sites, or competition for other resources could occur as a result of the introduction of non-native species. Small populations of other dace species occurring in thermal springs in other areas of North America have been severely impacted, been partially extirpated, or become extinct, because of the introduction of non-native species (see Table 1) which were able to survive in the warm waters that those dace historically inhabited (Deacon et al. 1964; Lanteigne 1987; McAllister 1969; Nico 2006; Nico and Fuller 2006; Renaud and McAllister 1988; USFWS 2006).
<table>
<thead>
<tr>
<th>NATIVE SPECIES</th>
<th>STATUS</th>
<th>LOCATION</th>
<th>NON-NATIVE SPECIES INTRODUCED TO HABITAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moapa dace (Moapa coriacea)</td>
<td>Federally Endangered</td>
<td>Moapa River and associated thermal springs in Clark County, Nevada</td>
<td>Common carp (Cyprinus carpio)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shortfin molly (Poecilia mexicana)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Channel catfish (Ictalurus punctatus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Largemouth bass (Micropterus salmoides)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fathead minnow (Pimephales promelas)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Black bullhead (Ameiurus melas)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tilapia (Oreochromis aurea)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mosquitofish (Gambusia affinis)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fish tapeworm (Bothriocephalus acheilognathi)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fish nematode (Contracaecum spp.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Anchor worm copepods (Lernaea spp.)</td>
</tr>
<tr>
<td>Speckled dace (Rhinichthys osculus)</td>
<td>Common</td>
<td>Kelly Warm Springs, Wyoming</td>
<td>Bullfrog (Rana catesbeiana)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Convict cichlid (Cichlasoma nigrofasciatum)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Green swordtail (Xiphophorus helleri)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Guppy (Poecilia reticulata)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Koi (Cyprinus carpio)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Red rim snail (Melanoides tuberculatus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tadpole madtom (Noturus gyrinus)</td>
</tr>
<tr>
<td></td>
<td>Extirpated</td>
<td>Near Lake Mead, Nevada</td>
<td>Convict cichlid (Cichlasoma nigrofasciatum)</td>
</tr>
<tr>
<td>Kendall Warm Springs dace (Rhinichthys osculus thermalis)</td>
<td>Federally Endangered</td>
<td>Kendall Warm Springs, Wyoming</td>
<td>None</td>
</tr>
<tr>
<td>Banff longnose dace (Rhinichthys cataractae smithi)</td>
<td>Extinct</td>
<td>Thermal spring in Banff National Park, Alberta, Canada</td>
<td>Mosquitofish (Gambusia affinis)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Green swordtail (Xiphophorus helleri)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Convict cichlid (Cichlasoma nigrofasciatum)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sailfin molly (Poecilia latipinna)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Jewelfish (Hemichromis bimaculatus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Angelfish (Pterophyllum scalare)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blue gourami (Trichogaster trichopterus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Siamese fighting fish (Betta splendens)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brook charr (Salvelinus fontinalis)</td>
</tr>
<tr>
<td>Desert dace (Eremichthys acros)</td>
<td>Federally Threatened</td>
<td>Thermal springs in Humboldt County, Nevada</td>
<td>Lahonton redside (Richardsonius egregiosus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Largemouth bass (Micropterus salmoides)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Channel catfish (Ictalurus punctatus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Goldfish (Carassius auratus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Anchor worm copepods (Lernaea spp.)</td>
</tr>
<tr>
<td>Ash Meadows speckled dace (Rhinichthys osculus nevadensis)</td>
<td>Federally Endangered</td>
<td>Thermal springs in Ash Meadows, Nevada</td>
<td>Mosquitofish (Gambusia affinis)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sailfin molly (Poecilia latipinna)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Largemouth bass (Micropterus salmoides)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Crayfish (Procambarus spp.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bullfrog (Rana catesbeiana)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arawana (Osteoglossum bicirchosum)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Black bullhead (Ameiurus melas)</td>
</tr>
</tbody>
</table>
The nearest thermal spring to KWS where there are documented cases of introduced non-native species is Kelly Warm Springs located to the northwest in Teton County, Wyoming. Kelly Warm Springs, which is inhabited by the more common speckled dace (*Rhinichthys osculus*), currently contains introduced populations of guppies (*Poecilia reticulata*), convict cichlids (*Cichlasoma nigrofasciatum*), green swordtails (*Xiphophorus helleri*), bullfrogs (*Rana catesbeiana*), red rim snails (*Melanoides tuberculatus*), and tadpole madtoms (*Noturus gyrinus*) (Grand Teton National Park 2009; Nico 2006; Nico and Fuller 2006). Convict cichlids pose a threat to small native fish because of their predatory nature. Guppies pose a threat to native fish because not only are they a hardy, prolific competitor, but they also can carry non-native trematode parasites (Nico 2006). They also are effective predators of larval fish (e.g., potentially KWS dace fry). According to Deacon et al. (1964), convict cichlids, in combination with other non-native fishes, apparently caused the decline and extermination of a population of speckled dace (*R. osculus*) near Lake Mead, Nevada.

The speckled dace (*Rhinichthys osculus*) occurs in the Green River adjacent to KWS. In other environments, speckled dace have hybridized with other cyprinid minnows (e.g., least chubs (*Iotichthys phlegethon*) (Miller and Behnke 1985), redside shiners (*Richardsonius balteatus*) (Baxter and Stone 1995), and longnose dace (*Rhinichthys cataractae*) (Smith 1973)). If speckled dace were able to persist in the thermal environment of the KWS stream, then an introduction of the speckled dace, either deliberate or without malicious intent, could have significant implications for the genetic integrity of the KWS dace population through intraspecific hybridization. Similar effects have occurred to the Pecos pupfish (*Cyprinodon pecosensis*) (Echelle and Connor 1989), the Apache trout (*Oncorhynchus apache*), and the Gila trout (*O. gilae*) (Dowling and Childs 1992) through the introduction of allopatric conspecifics. We know of no studies involving KWS dace undertaken to identify whether or not incidents of intraspecific hybridization have occurred in the past. Though we rank the exposure level of this threat as currently small, the intensity level could be high given the potentially significant implications for the preservation of genetic integrity of this unique subspecies and because the ability to detect genetic contamination by speckled dace is very low given the size of the occupied habitat and lack of genetic monitoring currently employed.

The potential upset of the ecological balance of the KWS ecosystem by the introduction of one or more non-native species or the potential loss of the genetic integrity of the KWS dace through introduction of other *Rhinichthys* species if it occurred would be a rangewide threat. Any introduction of nonnative species could presumably affect 100 percent of the KWS dace population since the dace is only found in one locality. The KWS dace population could suffer significant mortality or other deleterious effects. Enforcement of regulations and laws associated with illegal non-native species introductions and apprehension of perpetrators after the fact also are decidedly difficult. Because this threat could materialize relatively easily, with high intensity, inhibiting the basic needs of the species over the species’ entire range, this threat has an overall threat level rank of high. Action should be undertaken to lessen the potential impacts associated with this threat. After a thorough evaluation of potential effects to the KWS dace population, attempts at controlling any introduced non-native species could potentially be employed by implementing one or more removal strategies.
Activities of Vandalism
Potential exists for deliberate poisoning of the KWS dace or the purposeful introduction of deleterious non-native species into its habitat. Poisoning could occur through the application of piscicide or other contaminant(s). Because it is only found in one location, the entire population of the KWS dace could be eliminated by such an action. To date, there is no indication that anyone or any group would attempt to vandalize the KWS dace population. This is a rangewide threat which has the potential to affect 100 percent of the population, and since only one population of the KWS dace exists, this could lead to its extinction. We rank the intensity of this threat as high, but with only a small exposure to the population at this time. However, because of the dace population’s current vulnerability to acts of vandalism and because the dace could be perceived as an obstacle to some projects, we give this threat an overall threat level of moderate. Action is needed to reduce the degree of the dace’s vulnerability to this potential threat possibly by establishing refugia populations that would not be exposed to such a threat.

Threats Associated with Small Population Size and Restricted Geographic Range
Stochastic, or random, changes in a wild population’s demography or genetics, can threaten its persistence (Brussard and Gilpin 1989; Lacy 1997). A stochastic demographic change such as a skewed age or sex ratio (for example, a sudden loss of adult females) could negatively affect reproduction, especially in a small population. Species with small population size and restricted distribution are vulnerable to extinction by natural processes and human disturbance (Levin et al. 1996). Random events causing population fluctuations or population extirpations become a serious concern when the number of individuals or the geographic distribution of the species is very limited. A single human-caused or natural environmental disturbance could destroy the entire population of KWS dace.

When a population’s genetic variability falls to low levels, its long-term persistence may be jeopardized because its ability to respond to changing environmental conditions is reduced. In addition, the potential for inbreeding depression increases, which means that fertility rates and survival rates of offspring may decrease. Although environmental and demographic factors usually supersede genetic factors in threatening species viability, inbreeding depression and low genetic diversity may enhance the probability of extinction of rare species (Levin et al. 1996).

Because there is only one population of KWS dace in one geographic area, any detrimental impacts which are negatively affecting the population are affecting the entire KWS dace population. The lack of more than one KWS dace population may increase the likelihood of its extinction. The overall threat level for this threat is moderate and action is needed. Establishing refugia populations has been discussed; to date, no refugia populations have been established. The KWS dace have never been documented to reproduce in captivity. Their captive rearing would be very important to the establishment of refugia populations.

Toxins
Toxins may enter the KWS ecosystem in a number of ways. Potential sources of toxins include: (1) the use of soaps, detergents, sunscreens, or bleaches in the KWS, (2) vehicle use on the bridge which crosses the KWS ecosystem, (3) road construction/maintenance activities, (4) fire suppression activities, or (5) oil and gas development. Effects to dace could include: (1) direct
poisoning, (2) impaired reproduction of the species, or (3) poisoning of the dace’s food supply. As this dace occurs in only one location, this threat is considered a rangewide threat.

At one time, the use of soaps, detergents, and bleaches may have been of moderate/high intensity. The use of such materials has been prohibited since 1975. The dace currently are not known to be exposed to this threat.

The use of vehicles on the bridge over the dace’s stream habitat could affect the dace population if: (1) a toxic spill occurs, (2) garbage is dumped, or 3) road salt or sediment is washed from the road into the stream. There have been no instances recorded of this activity historically occurring. Because: (1) the road which crosses the bridge over the dace’s stream habitat is the only access road to the heavily used Green River Lakes recreational area and campground and because (2) recreational use of the area is likely to increase in the future, this threat could have more potential to affect the dace in the future. Depending on the extent of any inputs into the stream this could be a low/moderate threat. It is expected that up to 30% of the population would be affected, since only the lower one-third of the dace’s habitat is downstream from the bridge crossing. Some habitat could be modified or dace mortality could occur as a result of poisoning.

If a wildfire occurred in the recharge zone for the KWS, the fire suppression activities associated with that wildfire could have deleterious effects to the KWS dace population. Fire suppression activities could include increased vehicle traffic around the springs and the use of fire retardants. Fire retardants are often composed of either ammonia nitrate or surfactants. Ammonia nitrate is toxic to fish and could enter the spring water and poison the dace, or reduce or eliminate the aquatic plants or invertebrates present in the KWS. Fire retardant use is banned within the 160-acre fenced exclosure around KWS as per the Fire Management Plan for the Bridger-Teton National Forest (J. Neal, USFS, pers. comm. 2008, 2011). The USFS also has recently agreed to implement a 0.5-mile mandatory fire retardant application buffer around KWS to further reduce the possibility that a misapplication could occur near KWS (USFS 2011).

Toxins from oil and gas development have not been known to have stressed the KWS dace population in the past. However, toxins associated with this activity could stress the dace population in the future through impacts to the underground aquifer. The scope of the threat of oil and gas development is rangewide. The exact recharge area of the spring is not known with certainty and could extend across multiple watersheds. Currently no deleterious effects from oil and gas development are realized by the population as this is a potential threat. If this threat does materialize, the exposure level would be very significant as 100% of the population could be exposed. Significant mortality and possible extinction of the species could be realized within a short time. If drilling in the area is pursued, the overall threat level for this threat could quickly become severe with immediate action being essential for survival of the KWS dace. Conservation measures to minimize this threat have not yet been committed to by the relevant agencies. Proposed conservation measures include making the 21,270 acres (8,593 hectares) of the springs’ potential recharge area “administratively unavailable” for oil and gas leasing (Mattson 1998). Given the push for increased oil and gas development in Sublette County, Wyoming, the overall threat level associated with toxins is high.
Other Natural Events
The potential for earthquakes, seismic activity, or great floods exists within the dace’s habitat. The area is within an Intensity VII Earthquake Area (Case et al. 2002). The U.S. Geologic Survey (USGS) estimated that a 4.2 to 4.5 magnitude earthquake might occur somewhere in the Green River Basin every 62 years (BLM 1999, as cited in BLM 2004). The effects an earthquake of this magnitude might have on Kendall Warm Springs remains unknown however. The Yellowstone National Park region, located about 60 miles to the northwest, is a hotspot for geothermal, seismic activity and some major volcanic eruptions have occurred there in the past. The intensity of this threat if it were to occur could potentially be very high with a very significant exposure level and 100 percent of the KWS dace population could be affected. Significant mortality could result. Currently, the population is not known to be experiencing any effects from this threat and the likelihood is low that deleterious effects would materialize from this threat. Furthermore, the dace has existed with natural events without causing its demise to date, further leading to our conclusion that the threat from this activity is currently at a low overall threat level.
<table>
<thead>
<tr>
<th>THREATS</th>
<th>OVERALL THREAT LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Habitat</td>
<td></td>
</tr>
<tr>
<td>Bathing and the use of soaps in stream</td>
<td>X</td>
</tr>
<tr>
<td>Research efforts</td>
<td>X</td>
</tr>
<tr>
<td>Oil and gas development</td>
<td></td>
</tr>
<tr>
<td>Livestock</td>
<td>X</td>
</tr>
<tr>
<td>Increase in recreational use</td>
<td>X</td>
</tr>
<tr>
<td>Reservoir construction</td>
<td>X</td>
</tr>
<tr>
<td>Catastrophic wildfire</td>
<td>X</td>
</tr>
<tr>
<td>Acid rain</td>
<td>X</td>
</tr>
<tr>
<td>Herbicide/pesticide use</td>
<td>X</td>
</tr>
<tr>
<td>Climate change</td>
<td>X</td>
</tr>
<tr>
<td>Overutilization</td>
<td></td>
</tr>
<tr>
<td>Illegal Taking of the dace</td>
<td>X</td>
</tr>
<tr>
<td>Deleterious effects of research</td>
<td>X</td>
</tr>
<tr>
<td>Use of KWS dace as bait fish</td>
<td>X</td>
</tr>
<tr>
<td>Disease or Predation</td>
<td></td>
</tr>
<tr>
<td>Disease stemming from research</td>
<td>X</td>
</tr>
<tr>
<td>Disease/predation from non-natives</td>
<td>X</td>
</tr>
<tr>
<td>Regulatory Mechanisms</td>
<td></td>
</tr>
<tr>
<td>Inadequacy of regulatory mechanisms</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Other from non-natives</td>
<td></td>
</tr>
<tr>
<td>Vandalism</td>
<td>X</td>
</tr>
<tr>
<td>Small populations size</td>
<td></td>
</tr>
<tr>
<td>Toxins</td>
<td></td>
</tr>
<tr>
<td>Catastrophic Natural Events</td>
<td>X</td>
</tr>
</tbody>
</table>
2.0 RECOVERY STRATEGY

The general recovery strategy for the KWS dace is to reduce threats to the species, allow a viable, self-sustaining population to persist at KWS, and establish at least two refugia populations as insurance that a catastrophic event would not cause extinction. Many of the necessary actions for habitat protection are based on an increased understanding of the relationship of the KWS dace to its physical, chemical, and ecological environment. Several recovery actions are designed to collect information on the species and its habitat to provide for better future science-based management decisions and conservation actions. For example, an increased understanding of the species’ genetics, life history, population dynamics, and responses to identified threats would be useful.

Implementation of the revised recovery plan will require adaptive management strategies to more effectively manage the KWS dace, both in the wild, as well as in captivity. Knowledge of genetic variation of the wild population will be needed to ensure that genetic variation is not lost in captivity through bottleneck or founder effects.

3.0 RECOVERY PROGRAM

3.1 Recovery Goal, Objectives, and Criteria

Goal
The ultimate goal of this revised recovery plan is to minimize the threats to the KWS dace to the point that protection under the ESA is no longer required and the KWS dace can be delisted.

Objectives
The recovery objectives for the KWS dace are to reduce and/or remove threats to the species and its habitat, to ensure a population persists at KWS, to establish at least two refugia populations, and to obtain an increased understanding of the relationship of the KWS dace to its physical, chemical, and ecological environment. The accomplishment of these objectives is intended to provide reasonable assurance for the continued survival of the species even if ESA protections are removed.

Criteria
The ESA requires recovery plans to include “objective, measurable criteria” which, when met, would result in the determination…that the species be removed from the list.” Recovery criteria describe discrete targets with standards for measurement to determine that species have achieved recovery objectives and may be delisted. Developing precise measurable criteria for recovery of KWS dace is challenging because many of the largest potentially devastating threats to the species have not yet manifested and are currently not affecting the population. However, the threats could manifest at any time and could cause a drastic reduction in population levels or extinction of the dace in a short time period. Many of the recovery actions in this recovery plan will allow for future development of more specific criteria.
A. Reclassification to Threatened

The KWS dace will be considered ready for reclassification from Endangered to Threatened when all of the below criteria are realized:

(1) The population of KWS dace and its habitat are shown to be protected by the effective implementation of a no drilling zone (e.g., buffers, administratively unavailable areas, withdrawals, etc.) that significantly reduces the threats associated with the introduction of toxins (petroleum products or fracking fluids) to its habitat by oil and gas extraction activity that could intercept the spring recharge zone that supplies water to its habitat. These protections should be assured through formal inclusion as regulatory mechanisms in an approved land management plan or other regulatory means.

(2) The population of KWS dace and its habitat are shown to be protected by the effective implementation of a no drilling zone (e.g., buffers, administratively unavailable areas, withdrawals, etc.) that significantly reduces the threats associated with manipulation of the spring’s flow (and associated hydrologic regime) or thermal regime by interception of the water table from oil and gas exploration activities in the spring’s recharge zone. These protections should be assured through formal inclusion as regulatory mechanisms in an approved land management plan or other regulatory means.

(3) The naturally-occurring KWS dace population is experiencing a stable or increasing trend in relative abundance over a five-year period as indicated by Catch per Unit Effort (CPUE) survey methodologies or other methods as determined by the Recovery Team.

(4) A captive KWS dace population is established and successfully propagated and maintained in at least one location, including complete documentation of propagation methods and hatchery requirements. The captive population will consist of the number of individuals and pairs that will ensure the maintenance of long-term genetic diversity and integrity necessary for long-term species viability as documented in the best available scientific information.

B. Delisting

The KWS dace will be considered recovered and ready for removal from the list of endangered and threatened wildlife (delisted) when all of the additional criteria listed below are realized:

(1) The population of KWS dace and its habitat are shown to be protected from present and foreseeable threats to the point where listing is no longer required through implementation of activities including stewardship, protection of groundwater in the spring recharge zone, and ensuring adequate regulatory enforcement. These protections should be assured through formal inclusion as regulatory mechanisms in an approved land management plan or other regulatory means.

(2) The naturally-occurring KWS dace population is experiencing a stable or increasing trend in relative abundance over a ten-year period as indicated by Catch per Unit Effort (CPUE) survey methodologies or other methods as determined by the Recovery Team.

(3) Necessary administrative measures are implemented to ensure flows are maintained. Suitable flows and water quality in the KWS stream are determined through recovery tasks and assured through formal inclusion as regulatory mechanisms in an approved land management plan or other regulatory means.
(4) Captive KWS dace populations are established and successfully propagated and maintained in at least two locations, including complete documentation of propagation methods and hatchery requirements. Captive populations will consist of the number of individuals and pairs that will ensure the maintenance of long-term genetic diversity and integrity necessary for long-term species viability as documented in the best available scientific information.

(5) Non-native species, if present, are controlled within the KWS ecosystem and are not causing declining trends in relative abundance of the KWS dace population there. Additionally, develop and implement a management strategy to monitor the site for the presence of non-native species and promptly take action to address any concerns from any non-native species for which presence has been verified. This management strategy should be formally adopted by incorporation as a regulatory mechanism in an approved land management plan or other regulatory means.

Changes to Recovery Criteria

Recovery plans are not regulatory documents, but are instead intended to provide guidance on methods of minimizing threats to listed species and on criteria that may be used to determine when recovery is achieved. There are many paths to accomplishing recovery of a species, and recovery may be achieved without all criteria being fully met. For example, one or more criteria may be exceeded while other criteria may not be accomplished. In that instance, we may judge that the threats are minimized sufficiently, and the species is robust enough to reclassify from endangered to threatened or to delist. In other cases, recovery opportunities may be recognized that were not known at the time the recovery plan was finalized. These opportunities may be used instead of methods identified in the recovery plan. Likewise, information on the species may be learned that was not known at the time the recovery plan was finalized. The new information may change the extent that criteria need to be met for recognizing recovery of the species. Recovery of a species is a dynamic process requiring adaptive management that may, or may not, fully follow the guidance provided in a recovery plan.

3.2 Recovery Actions

The recovery program for the KWS dace is divided into eight areas of action: (1) protection of habitat, (2) non-native species, (3) genetics, (4) captive populations/refugia, (5) monitoring, (6) adaptive management, (7) life history studies, and (8) cooperation with stakeholders/agencies. Overall, these sets of recovery actions are tied directly to achievement of the recovery criteria for the KWS dace (Appendix B).

Full descriptions of the recovery actions are provided in the Recovery Action Narrative. In the narrative, a priority number of 1 to 3 has been assigned to each action. These priorities are based on the following criteria:

Priority 1a: Actions that must be taken to prevent extinction or to prevent the species from declining irreversibly.
Priority 1b: Actions that by itself will not prevent extinction, but which is needed to carry out a Priority 1a action.

Priority 2: Actions that must be taken to prevent a significant decline in species population/habitat quality or some other significant negative impact short of extinction.

Priority 3: All other actions necessary to provide for full recovery of the species.

Recovery Action Narrative

Habitat Protection

1. Protect KWS dace habitat and establish formal regulatory mechanisms in an approved land management plan, or other regulatory means.
 1.1 Develop/revise and implement a **habitat protection plan**. A plan should comprehensively identify specific protection parameters and threats to the water quality/quantity and habitat of the KWS dace (Priority 1b).
 1.2 Protect and maintain the **hydrology** for the estimated recharge zone for KWS to provide for continual uninterrupted flow of the springs, particularly from the threat of oil and gas development in the recharge zone. Work toward the inclusion of oil and gas development protection measures within the spring’s recharge zone during the revision of the Bridger Teton National Forest Land and Resource Management Plan (Priority 1a).
 1.3 More thoroughly verify the source and **recharge zones** of the aquifer that supports stream flow in KWS. Perform comprehensive investigation, mapping, and modeling so that effective groundwater management and conservation is ensured (Priority 1b).
 1.4 Monitor and maintain **stream flow, water quality, and channel morphology** in natural conditions to provide for ecosystem functions to support KWS dace. A USFS Land and Resource Management plan that serves to improve watershed health should be developed and implemented for the protection of the watershed supporting KWS dace (Priority 1a).
 1.5 Identify and eliminate potential **pollution** sources to aquatic habitats of the KWS dace to the maximum extent practicable. Of special concern are potential inputs from oil and gas development (Priority 1a).
 1.6 Through both field and laboratory investigations, determine flow velocities, temperatures, extent/amount of habitat needed, and water quality **tolerances and preferences** of different life history phases (including reproduction) of KWS dace. The information gained will be used in the establishment of the refugia populations. Information on factors that may influence these habitat requirements includes the impacts of vegetation in spring outflows, assessment of aquatic and riparian vegetation cover, and water flows and water levels. The information should be analyzed by season, age class, and stream section. Some information has already been gathered in this area. Qualitative assessments of habitat preferences have been made, suggesting the adults occupy areas with
moderate depths and velocities, and gravel substrates near aquatic vegetation and the fry occupy shallower, backwater areas. Future investigations will be predicated on sufficient numbers in the wild to allow for experimentation without affecting the population (Priority 2).

1.7 Investigate the effect of disturbance in the system as it relates to the needs of the fish. Complete research to determine the effects of various land management methods (e.g., grazing practices) in the riparian area around KWS (Priority 3).

1.8 Enforcement of existing regulations to protect habitat should be continued (Priority 1a).

2. Enhance KWS dace habitat.

2.1 Develop a habitat enhancement plan. A habitat enhancement plan for KWS aimed at improving and maintaining physical habitat for KWS dace should be formulated and implemented. This may include the physical alteration of stream morphology. A number of anthropogenic habitat modifications occurred during the past century including: partially damming the stream after the construction of a road across the stream, placement of road culverts within the streambed and their subsequent removal, the construction of wading pools within the stream by the building of small rock dams, the watering of livestock within the spring and the subsequent construction and maintenance of a fence around the spring to exclude livestock (Priority 2).

3. Protect KWS dace from catastrophes.

3.1 Prepare a KWS dace catastrophe plan. The plan should be implemented if necessary to ensure the continued survival of this species if a catastrophe occurs (Priority 1a).

NON-NATIVE SPECIES

4. Protect KWS from the threat of non-native species.

4.1 Minimize potential introduction of non-native species. Protective measures that minimize the possibility that non-native competitors, predators, and/or carriers of parasites and/or diseases remain out of the ecosystem should be developed and employed. Potentially introduced species within the range of the KWS dace are a major potential threat and alleviating this threat will require ongoing enforcement of State regulations and keeping the habitat as little publicized, as possible. Potential problems could include not only non-native fishes, but also other non-native animals or plants that could introduce a parasite or disease or alter the natural habitat. Because of the dangers of predation, competition, diseases, parasites, and hybridization, introductions of all non-native organisms that could affect the aquatic environment, should be prevented within the range of the KWS dace. Methods for control should be developed and implemented for non-native species that could potentially be detrimental to the KWS dace population or its habitat. Declines, extirpations, and extinctions of several other dace species are attributable to negative impacts by introduced non-native fishes (Priority 1a).
4.2 Strict regulations on use and enforcement and movement of baitfish are currently in place and should be continued (Priority 1a).

4.3 All equipment and waders used for research efforts in the habitat of the KWS dace should be disinfected with a 10 percent bleach solution, or best available decontamination method before entering the habitat (Priority 1b).

GENETICS

5. Maintain KWS genetic structure.

5.1 Develop and implement a **genetics management plan**. A genetics management plan should be completed in accordance with the Service’s Captive Propagation Policy. The purpose of the plan is to ensure that: (1) the genetic makeup of propagated individuals is, to the extent practicable, representative of the wild population; (2) propagated individuals are behaviorally and physiologically suitable for introduction; and, (3) this genetic makeup is maintained in captivity over generations. The genetics management plan should include adaptive management provisions to incorporate biological information gained during the research and early implementation of captive propagation (Priority 1b).

5.2 Evaluate the species’ **genetic structure**. The results should help in the management of the population(s). This information will be essential for establishment of captive populations and the maintenance of genetic diversity. Evaluate any changes in the variation in the KWS dace’ genetic structure and/or morphology by comparing current specimens to the original type-specimens collected in the 1930s. It is possible that the dace in KWS has undergone bottleneck effects as a result of its use as baitfish from the 1930s to the 1960s prior to the prohibition of its use as bait (Priority 1b).

5.3 Preserve **genetic integrity**. There is only one population of KWS dace. For genetic diversity tracking purposes, the population of KWS dace in KWS will be considered one management unit. Any additional established populations will be considered separate management units (Priority 1b).

CAPTIVE POPULATIONS/REFUGIA

6. Protect KWS from extinction by establishing refugia populations.

6.1 Maintain **refugia populations** of KWS dace in captivity to lessen the risk of extinction by a catastrophic event. These refugia populations should be in a facility that can maintain the population for the long term, can maintain the genetic characteristics of the source population, and is secure. Specific details on holding facilities should be developed and their establishment should be pursued by designated individuals. Refugia populations should be maintained in manmade habitats (either indoor or outdoor) or aquaria, as necessary. Artificial refugia are an important component of the effort to preserve several endangered or nearly endangered fish species (Pister 1981; Johnson and Jensen 1991; Weedman 1998). These refugia should preserve a large fraction of the genetic variability originally present in their progenitors (Turner 1984). Captive populations may be established at facilities managed by a variety of groups (schools, museums, public education displays, zoos, National Fish Hatcheries,
The level of genetic diversity in the population will, in part, determine the number of fish that need to be housed in captivity. Dexter National Fish Hatchery and Technology Center has played a major role in the recovery programs for other species. Other captive populations of threatened fish are held at zoos, museums, and universities (Bagley et al. 1991; Brown and Abarca 1992; Weedman 1998). Since these populations may have high fluctuations in size and structure, periodic genetic reviews of currently maintained captive populations also must be implemented (Priority 1b).

6.2 It is important to establish at least 2 additional stocks that contain the genetic diversity of the species. Identify and select two potential sites (Priority 1b).

6.3 Protocols should be developed for capture, transport, establishment, and management of the KWS dace refugia populations (Priority 1b).

6.4 An important aspect of the success of the genetic conservation management plan is the continued monitoring of the refugia populations. The KWS dace introduced into refugia need to be maintained and monitored for survivability, health, growth, and reproductive success. Additional KWS dace need to be periodically stocked in the refugia to maintain the genetic diversity of the stock (Priority 1b).

6.5 Prior to any captive population establishment efforts, a comprehensive introduction plan should be developed in accordance with the Service’s Captive Propagation Policy (Policy Regarding Controlled Propagation of Species Listed Under the Endangered Species Act, 65 FR 56916, September 20, 2000). This plan would include, but not be limited to, a consideration of population genetics, an assessment of reintroduction effects should reintroduction become necessary in Kendall Warm Springs, and a specific monitoring component to measure reintroduction results (Priority 2).

MONITORING

7. Continue KWS dace monitoring efforts.

7.1 Maintain a population and habitat database and generate regular reports. The USFS is designated as the repository agency for habitat and population monitoring data. Regular reports should be generated and distributed to other interested parties involved in the management of the KWS dace. Data is stored at the Pinedale Ranger District Office of the Bridger-Teton National Forest and is available to cooperating partners. Standardized population and habitat monitoring protocols have been established and implementation of those protocols should continue. A consistent report format should be adopted to allow rapid analysis of comparable data from reports over time (Priority 3).

8. Implement post-delisting monitoring.

8.1 Develop a post-delisting monitoring plan for the KWS dace. Section 4(g)(1) of the ESA requires that the Service monitor the status of all recovered species for at least 5 years following delisting. In keeping with this mandate, a post-delisting monitoring plan should be developed by the Service in cooperation with WGFD, USFS, other Federal agencies, academic institutions,
and other appropriate entities. This plan should outline the indicators that will be used to assess the population status of the KWS dace, develop monitoring protocols for those indicators, and evaluate factors that may trigger consideration for relisting (Priority 3).

ADAPTIVE MANAGEMENT

9. Apply **Adaptive Management**.

9.1 The strategy of this recovery plan is based on the best available science; however, we recognize there are considerable knowledge gaps regarding the species and the ecosystem upon which it depends. As a result of this uncertainty, the process of KWS dace recovery will necessitate adaptive management. Throughout the implementation of recovery actions outlined below, new information and technologies will become available. New information should be evaluated and used to modify the strategy for recovery of KWS dace, as appropriate. With increasing knowledge, some recovery actions will likely become obsolete and other actions will be proposed that cannot be envisioned now. Likewise, the objectives and criteria of this recovery plan may be adjusted in the future as our understanding improves.

Through a continual circular process of biological planning, conservation design, conservation delivery, outcome-based monitoring, assumption-based research, evaluation, and adjusting management, we will learn how to effectively conserve this species. The knowledge we gain from implementation of this recovery plan will be incorporated in the future recovery process. The Service periodically reviews approved recovery plans to determine the need for modifications. This recovery plan should be considered a living document that is flexible and consistent with the available, contemporary, scientific information. This may require periodic updates to the plan without full revisions being completed. This flexibility will maximize the usefulness of the recovery plan. The adaptive management concept ensures that all parties who choose to participate will have opportunities to contribute to the KWS dace recovery process. The work to accomplish the species’ recovery should be coordinated with multiple agencies. Only by working together with different resources, knowledge, and expertise can recovery objectives and criteria be achieved (Priority 2).

LIFE HISTORY

10. Perform **Life history studies** (predicated on sufficient numbers of fish in the wild to allow for experimentation without affecting the population). Information on life history will be useful to ensure adequate husbandry needs for captive populations.

10.1 Determine the **population structure** of the KWS dace. Determine population viability, optimum numbers and the spatial arrangement of the population, and population dynamics including fecundity, age and size class, sex ratio and longevity, through population estimations (Priority 1b).

10.2 Study interactions with **coexisting organisms**. Investigations of competition will require additional knowledge of reproduction, life history, habitat use, and food preference. The KWS dace is thought to eat invertebrates and algae;
however, virtually nothing is known of specific food preferences. Potential predators of KWS dace include dragonfly nymphs (Odonata), American dippers (*Cinclus mexicanus*), and wandering garter snakes (*Thamnophis elegans vagrans*) (Priority 3).

10.3 Perform laboratory studies on **spawning** habitat, embryo development, and habitat preferences for yolk-sac larvae, feeding larvae, and juveniles of KWS dace. Perform further field observations on spawning adults and habitat preference of larvae, juveniles, and adults. Comprehensive studies in laboratory and field settings are needed to determine reproductive traits such as timing, duration, frequency, behavior, fecundity, and habitats (including water velocities, depths, and substrate). This information can be used to assist in developing captive breeding techniques for maintaining captive populations and assessing potential competition. This information also could be critical to management of the ecosystem to benefit reproduction of the species. Important factors could be discovered that are currently limiting the reproduction and early survival of KWS dace (Priority 1b).

10.4 Investigate **predation** by other organisms and incorporate information obtained into management of the population. Predation levels by all co-habitating organisms should be determined for KWS dace through field study (Priority 3).

10.5 Investigate **disease and parasites**. No data are available on the diseases and parasites of the KWS dace. Advancing knowledge of the diseases and parasites of the fish could help contain any potential future epidemic (Priority 1b).

COOPERATION WITH STAKEHOLDERS/AGENCIES

11. Cooperate with **stakeholders/partner agencies and formalize expectations of continued stakeholder/partner cooperation in an approved land management plan.**

11.1 Seek and maintain a team relationship with partners. Endorse and encourage the partnerships of agencies and stakeholders to continue protection of the KWS dace and its habitat. Approval and support of governmental agencies and grazing lessees are needed. These entities should be recognized for past land management actions that have allowed the species to persist (Priority 1b).

11.2 Thoroughly evaluate all proposed projects prior to beginning any study (Priority 1b).
4.0 IMPLEMENTATION SCHEDULE

The following Implementation Schedule outlines actions and estimated costs for the KWS dace recovery program over the next 20 years. It is a guide for meeting recovery objectives discussed in section 3 of this plan. This schedule indicates action priorities, action numbers, action descriptions, links to recovery criteria, duration of actions, and estimated costs. In addition, parties with authority, responsibility, or expressed interest to implement a specific recovery action are identified in the schedule. The listing of a party in the Implementation Schedule neither requires nor implies a requirement for the identified party to implement the action(s) or secure funding for implementing the action(s). However, parties willing to participate may benefit by being able to show in their own budgets that their funding request is for a recovery action identified in an approved recovery plan and, therefore, is considered a necessary action for the overall coordinated effort to recover the KWS dace. Also, section 7(a)(1) of the ESA, as amended, directs all federal agencies to use their authorities in furtherance of the purposes of the ESA by carrying out programs for the conservation of threatened and endangered species. The schedule will be updated as recovery actions are initiated and completed.

Key to Implementation Schedule Priorities (column 1)

The ESA requires that recovery plans include actions that may be necessary to achieve recovery. The recovery actions (and their corresponding recovery action numbers) listed in this section (section 4) correspond to the recovery actions (and their corresponding numbered headings) described in section 3.2, respectively. Priorities also are assigned to each action in the implementation schedule (Table 3). In compliance with Endangered and Threatened Species Listing and Recovery Priority Guidelines (55 FR 24296), all recovery actions will have assigned priorities based on the following:

Priority 1a: Actions that must be taken to prevent extinction or to prevent the species from declining irreversibly.

Priority 1b: Actions that by itself will not prevent extinction, but which is needed to carry out a Priority 1a action.

Priority 2: Actions that must be taken to prevent a significant decline in species population/habitat quality or some other significant negative impact short of extinction.

Priority 3: All other actions necessary to provide for full recovery of the species.

Key to Responsible Parties (column 6)

Team = Kendal Warm Springs Dace Recovery Team
USFWS = U.S. Fish and Wildlife Service
USFS = U.S. Forest Service
USGS = U.S. Geological Survey
WGFD = Wyoming Game and Fish Department
RIs = Research Institutions (e.g., University of Wyoming)
Other = Other, as of yet unidentified, constituencies
TABLE 3. Implementation Schedule: Kendall Warm Springs Dace Revised Recovery Plan

<table>
<thead>
<tr>
<th>Priority#</th>
<th>Recovery Action#</th>
<th>Recovery Action Description</th>
<th>Recovery Criterion#</th>
<th>Action Duration (Years)</th>
<th>Responsible Parties</th>
<th>USFWS Lead?</th>
<th>Total Cost $1000s</th>
<th>Year 1 $1000s</th>
<th>Year 2 $1000s</th>
<th>Year 3 $1000s</th>
<th>Year 4 $1000s</th>
<th>Year 5 $1000s</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a 1.2</td>
<td>1.2</td>
<td>Protect groundwater in spring recharge zone</td>
<td>A(1), A(2), B(1), B(3)</td>
<td>Continuing</td>
<td>USFS USGS WGFD RIs Other</td>
<td>N</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Although future yearly costs may vary, action should be repeated indefinitely. Total cost is estimated for the next 20-year time period.</td>
</tr>
<tr>
<td>1a 1.4</td>
<td>1.4</td>
<td>Maintain stream flow & quality</td>
<td>A(1), A(2), B(1), B(3)</td>
<td>Continuing</td>
<td>Team</td>
<td>N</td>
<td>60</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Although future yearly costs may vary, action should be repeated indefinitely. Total cost is estimated for the next 20-year time period.</td>
</tr>
<tr>
<td>1a 1.5</td>
<td>1.5</td>
<td>Identify & have a strategy in place to address pollution issues</td>
<td>A(1), B(3)</td>
<td>3 years</td>
<td>Team</td>
<td>Y</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1a 1.8</td>
<td>1.8</td>
<td>Continue existing habitat protection enforcement</td>
<td>B(1)</td>
<td>Continuing</td>
<td>USFS USFWS WGFD</td>
<td>N</td>
<td>60</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Although future yearly costs may vary, action should be repeated indefinitely. Total cost is estimated for the next 20-year time period.</td>
</tr>
<tr>
<td>1a 3.1</td>
<td>3.1</td>
<td>Prepare a catastrophe plan</td>
<td>A(1), A(2), B(3), B(4), B(5)</td>
<td>3</td>
<td>Team</td>
<td>Y</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1a 4.1</td>
<td>4.1</td>
<td>Minimize potential introduction of non-native species</td>
<td>A(3), B(1), B(2), B(3), B(4), B(5)</td>
<td>Continuing</td>
<td>Team</td>
<td>N</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>Although future yearly costs may vary, action should be repeated indefinitely. Total cost is estimated for the next 20-year time period.</td>
</tr>
<tr>
<td>1a 4.2</td>
<td>4.2</td>
<td>Continue existing enforcement of baitfish prohibition</td>
<td>A(3), B(1), B(2), B(4), B(5)</td>
<td>Continuing</td>
<td>WGFD</td>
<td>N</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Although future yearly costs may vary, action should be repeated indefinitely. Total cost is estimated for the next 20-year time period.</td>
</tr>
<tr>
<td>1b 1.1</td>
<td>1.1</td>
<td>Develop/revise a habitat protection plan</td>
<td>A(1), A(2), A(3), B(1), B(2), B(3)</td>
<td>5 years</td>
<td>Team</td>
<td>Y</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

39
<table>
<thead>
<tr>
<th>Priority#</th>
<th>Recovery Action#</th>
<th>Recovery Action Description</th>
<th>Recovery Criterion#</th>
<th>Action Duration (Years)</th>
<th>Responsible Parties</th>
<th>USFWS Lead?</th>
<th>Total Cost $1000s</th>
<th>Year 1 $1000s</th>
<th>Year 2 $1000s</th>
<th>Year 3 $1000s</th>
<th>Year 4 $1000s</th>
<th>Year 5 $1000s</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>1.3</td>
<td>Verify recharge zone</td>
<td>A(1), A(2), B(1), B(3)</td>
<td>5</td>
<td>USFS USFWS USGS</td>
<td>N</td>
<td>15</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>1b</td>
<td>4.3</td>
<td>Disinfect research equipment</td>
<td>A(3), B(1), B(2), B(5)</td>
<td>Continuing</td>
<td>USFS USFWS RIs</td>
<td>N</td>
<td>0.2</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>Although future yearly costs may vary, action should be repeated indefinitely. Total cost is estimated for the next 20-year time period.</td>
</tr>
<tr>
<td>1b</td>
<td>5.1</td>
<td>Develop & implement a genetics management plan</td>
<td>B(2), B(4)</td>
<td>3</td>
<td>Team</td>
<td>Y</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1b</td>
<td>5.2</td>
<td>Evaluate species’ genetic structure</td>
<td>B(2), B(4)</td>
<td>5</td>
<td>Team</td>
<td>N</td>
<td>50</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>1b</td>
<td>5.3</td>
<td>Track genetic diversity</td>
<td>B(2), B(4)</td>
<td>Continuing</td>
<td>Team</td>
<td>N</td>
<td>200</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>Although future yearly costs may vary, action should be repeated indefinitely. Total cost is estimated for the next 20-year time period.</td>
</tr>
<tr>
<td>1b</td>
<td>6.1</td>
<td>Maintain 2 refugia populations</td>
<td>A(1), A(2), B(1), B(4)</td>
<td>Continuing</td>
<td>Team</td>
<td>Y</td>
<td>4068</td>
<td>800</td>
<td>172</td>
<td>172</td>
<td>172</td>
<td>172</td>
<td>Although future yearly costs may vary, action should be repeated indefinitely. Total cost is estimated for the next 20-year time period.</td>
</tr>
<tr>
<td>1b</td>
<td>6.2</td>
<td>Identify & select at least 2 rearing facilities</td>
<td>B(4)</td>
<td>3</td>
<td>Team</td>
<td>Y</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1b</td>
<td>6.3</td>
<td>Develop protocols to establish captive populations</td>
<td>B(4)</td>
<td>3</td>
<td>Team</td>
<td>Y</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1b</td>
<td>6.4</td>
<td>Monitor captive populations</td>
<td>B(4)</td>
<td>Continuing</td>
<td>Team</td>
<td>Y</td>
<td>100</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Priority#</td>
<td>Recovery Action#</td>
<td>Recovery Action Description</td>
<td>Recovery Criterion#</td>
<td>Action Duration (Years)</td>
<td>Responsible Parties</td>
<td>USFWS Lead?</td>
<td>Total Cost $1000s</td>
<td>Year 1 $1000s</td>
<td>Year 2 $1000s</td>
<td>Year 3 $1000s</td>
<td>Year 4 $1000s</td>
<td>Year 5 $1000s</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>1b 10.1</td>
<td>Determine population structure</td>
<td>A(3), B(1), B(2)</td>
<td>4</td>
<td>Team</td>
<td>N</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1b 10.3</td>
<td>Study spawning habits</td>
<td>B(4)</td>
<td>5</td>
<td>Team</td>
<td>N</td>
<td>25</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1b 10.5</td>
<td>Investigate disease & parasites</td>
<td>A(3), B(1), B(2), B(4), B(5)</td>
<td>3</td>
<td>Team</td>
<td>N</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1b 11.1</td>
<td>Seek & maintain a team relationship between partners</td>
<td>A(1), A(2), A(3), B(1), B(2), B(3), B(4), B(5)</td>
<td>Continuing</td>
<td>Team</td>
<td>Y</td>
<td>23</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1b 11.2</td>
<td>Evaluate all proposed projects prior to beginning any study</td>
<td>A(3), B(2)</td>
<td>Continuing</td>
<td>USFWS USFS</td>
<td>Y</td>
<td>22</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2 1.6</td>
<td>Determine habitat needs</td>
<td>A(3), B(1), B(2), B(3), B(4)</td>
<td>5</td>
<td>Team</td>
<td>Y</td>
<td>25</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2 2.1</td>
<td>Develop a habitat enhancement plan</td>
<td>A(3), B(1)</td>
<td>3</td>
<td>Team</td>
<td>Y</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2 6.5</td>
<td>Develop a reintroduction plan</td>
<td>B(2), B(4)</td>
<td>3</td>
<td>Team</td>
<td>Y</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2 9.1</td>
<td>Apply adaptive management</td>
<td>A(3), B(1), B(2), B(3), B(4), B(5)</td>
<td>Continuing</td>
<td>Team</td>
<td>N</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Although future yearly costs may vary, action should be repeated indefinitely. Total cost is estimated for the next 5-year time period.
<table>
<thead>
<tr>
<th>Priority#</th>
<th>Recovery Action#</th>
<th>Recovery Action Description</th>
<th>Recovery Criterion#</th>
<th>Action Duration (Years)</th>
<th>Responsible Parties</th>
<th>USFWS Lead?</th>
<th>Total Cost $1000s</th>
<th>Year 1 $1000s</th>
<th>Year 2 $1000s</th>
<th>Year 3 $1000s</th>
<th>Year 4 $1000s</th>
<th>Year 5 $1000s</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.7</td>
<td>Investigate effect of disturbance</td>
<td>A(3), B(1), B(2)</td>
<td>5</td>
<td>Team</td>
<td>N</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>7.1</td>
<td>Continue CPUE Monitoring Maintain database & generate regular reports</td>
<td>A(3), B(1), B(2), B(4)</td>
<td>Continuing</td>
<td>Team</td>
<td>N</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8.1</td>
<td>Develop a post-delisting monitoring plan</td>
<td>B(1), B(2)</td>
<td>3</td>
<td>Team</td>
<td>Y</td>
<td>12</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>10.2</td>
<td>Study interactions with coexisting organisms</td>
<td>A(3), B(1), B(2), B(5)</td>
<td>5</td>
<td>Team</td>
<td>N</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>10.4</td>
<td>Investigate predation levels</td>
<td>A(3), B(1), B(2), B(5)</td>
<td>5</td>
<td>Team</td>
<td>N</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
5.0 LITERATURE CITED

Wyoming Game and Fish Department. 2010. Program Review and Budget Report to the Joint Appropriations Committee and Joint Travel, Recreation, Wildlife and Cultural Resources Committee. Wyoming Game and Fish Department, Cheyenne, WY. 38 pp.

PERSONAL COMMUNICATIONS

APPENDIX A

Threats Assessment Table

Kendall Warm Springs Dace Threats, Stressors, & Their Associated Scope, Immediacy, Intensity, Exposure, Response, & Overall Threat Level Ratings

<table>
<thead>
<tr>
<th>Threat</th>
<th>Stressor Associated with Threat</th>
<th>Factor</th>
<th>Scope</th>
<th>Immediacy</th>
<th>Intensity</th>
<th>Exposure</th>
<th>Response</th>
<th>Overall Threat Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bathing & use of soaps, detergents, sunscreen, & bleaches in spring & creek</td>
<td>Poisoning of dace</td>
<td>A</td>
<td>rangewide</td>
<td>historic</td>
<td>low</td>
<td>insignificant</td>
<td>mortality</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poisoning of macroinvertebrates</td>
<td>A</td>
<td>rangewide</td>
<td>historic</td>
<td>low</td>
<td>insignificant</td>
<td>basic needs inhibited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poisoning of plant community</td>
<td>A</td>
<td>rangewide</td>
<td>historic</td>
<td>low</td>
<td>insignificant</td>
<td>basic needs inhibited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modification of water quality</td>
<td>A</td>
<td>rangewide</td>
<td>historic</td>
<td>low</td>
<td>insignificant</td>
<td>basic needs inhibited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modification of habitat</td>
<td>A</td>
<td>rangewide</td>
<td>historic</td>
<td>low</td>
<td>insignificant</td>
<td>basic needs inhibited</td>
</tr>
<tr>
<td>2</td>
<td>Personal aquaria/commercial trade purposes</td>
<td>Reduction in dace numbers in population</td>
<td>B</td>
<td>rangewide</td>
<td>future</td>
<td>low</td>
<td>small</td>
<td>removal from population</td>
</tr>
<tr>
<td>3</td>
<td>Deleterious effects of research efforts</td>
<td>Reduction in dace numbers</td>
<td>B</td>
<td>rangewide</td>
<td>historic/future</td>
<td>low</td>
<td>small</td>
<td>mortality</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impaired reproduction/survival</td>
<td>B</td>
<td>rangewide</td>
<td>historic/future</td>
<td>low</td>
<td>small</td>
<td>basic needs inhibited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction of disease</td>
<td>C</td>
<td>rangewide</td>
<td>future</td>
<td>moderate</td>
<td>moderate</td>
<td>mortality</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduction in prey abundance/diversity</td>
<td>B</td>
<td>rangewide</td>
<td>historic/future</td>
<td>low</td>
<td>small</td>
<td>basic needs inhibited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduction of habitat quantity</td>
<td>A</td>
<td>rangewide</td>
<td>historic/future</td>
<td>moderate</td>
<td>small</td>
<td>basic needs inhibited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduction of habitat quality</td>
<td>A</td>
<td>rangewide</td>
<td>historic/future</td>
<td>moderate</td>
<td>small</td>
<td>basic needs inhibited</td>
</tr>
<tr>
<td>Threat</td>
<td>Stressor Associated with Threat</td>
<td>Factor</td>
<td>Scope</td>
<td>Immediacy</td>
<td>Intensity</td>
<td>Exposure</td>
<td>Response</td>
<td>Overall Threat Level</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>4</td>
<td>Oil & gas leasing, drilling, fracking, flushing with warmer or colder water, flushing with surfactants, other fluids, reinjection of water, removing groundwater</td>
<td>A</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>significant</td>
<td>mortality (potential extinction)</td>
<td>high</td>
</tr>
<tr>
<td></td>
<td>Modification of the aquifer by drilling activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Changes in spring water quantity (drying up the spring)</td>
<td>A</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>significant</td>
<td>mortality (potential extinction)</td>
<td>high</td>
</tr>
<tr>
<td></td>
<td>Changes in spring water quality (e.g., introduction of toxins from drilling, changes in water chemistry)</td>
<td>A</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>significant</td>
<td>mortality (potential extinction)</td>
<td>high</td>
</tr>
<tr>
<td>5</td>
<td>Introduction of tropical or warmwater fish species, other Rhinichthys species, or other non-native aquatic species (e.g., zebra mussels, non-native snails, non-native plants) to spring. Introduction of parasites</td>
<td>C</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>significant</td>
<td>mortality (potential extinction)</td>
<td>high</td>
</tr>
<tr>
<td></td>
<td>Introduction of disease, impaired reproduction/survival, physiological changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Predation on dace</td>
<td>C</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>significant</td>
<td>mortality (potential extinction)</td>
<td>high</td>
</tr>
<tr>
<td></td>
<td>Competition for important resources (habitat, food)</td>
<td>E</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>significant</td>
<td>basic needs inhibited</td>
<td>moderate</td>
</tr>
<tr>
<td></td>
<td>Upset of ecological balance</td>
<td>E</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>significant</td>
<td>basic needs inhibited</td>
<td>high</td>
</tr>
<tr>
<td></td>
<td>Potential hybridization</td>
<td>E</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>small</td>
<td>loss of genetic integrity</td>
<td>high</td>
</tr>
<tr>
<td>6</td>
<td>Activities of vandalism (e.g., deliberate poisoning of KWS dace)</td>
<td>E</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>small</td>
<td>mortality (potential extinction)</td>
<td>moderate</td>
</tr>
<tr>
<td></td>
<td>Reduction or elimination of dace population through poisoning or other malicious activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Climate change</td>
<td>E</td>
<td>rangewide</td>
<td>imminent/</td>
<td>low</td>
<td>low</td>
<td>basic needs inhibited</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>Changes in hydrological conditions, habitat conditions</td>
<td></td>
<td></td>
<td>future</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threat</td>
<td>Stressor Associated with Threat</td>
<td>Factor</td>
<td>Scope</td>
<td>Immediacy</td>
<td>Intensity</td>
<td>Exposure</td>
<td>Response</td>
<td>Overall Threat Level</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>8</td>
<td>Lack of (or inefficiency of) Existing Regulatory Mechanisms independent of ESA</td>
<td>Insufficient protective measures</td>
<td>D</td>
<td>rangewide</td>
<td>historic/imminent/future</td>
<td>moderate</td>
<td>moderate</td>
<td>various</td>
</tr>
<tr>
<td>9</td>
<td>Livestock grazing (livestock crossing the fence & watering in spring)</td>
<td>Siltation of habitat</td>
<td>A</td>
<td>rangewide</td>
<td>historic</td>
<td>high</td>
<td>small</td>
<td>basic needs inhibited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pollution of habitat</td>
<td>A</td>
<td>rangewide</td>
<td>historic</td>
<td>high</td>
<td>small</td>
<td>basic needs inhibited</td>
</tr>
<tr>
<td>10</td>
<td>Vehicle use on bridge over stream</td>
<td>Potential for toxic spill/garbage, E localized</td>
<td>E</td>
<td>localized</td>
<td>historic/future</td>
<td>low</td>
<td>small</td>
<td>behavioral (avoidance, startle, mortality)</td>
</tr>
<tr>
<td>11</td>
<td>Use of KWS dace as a bait fish</td>
<td>Reduction of numbers of dace</td>
<td>B</td>
<td>rangewide</td>
<td>historic</td>
<td>high</td>
<td>insignificant</td>
<td>mortality confirmed</td>
</tr>
<tr>
<td>12</td>
<td>Road construction/Improvement</td>
<td>Siltation of habitat</td>
<td>E</td>
<td>localized</td>
<td>historic/future</td>
<td>low</td>
<td>small</td>
<td>behavioral (avoidance)/basic needs inhibited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pollution of habitat</td>
<td>E</td>
<td>localized</td>
<td>future</td>
<td>low</td>
<td>small</td>
<td>behavioral (avoidance)/basic needs inhibited</td>
</tr>
<tr>
<td>Threat</td>
<td>Stressor Associated with Threat</td>
<td>Factor</td>
<td>Scope</td>
<td>Immediacy</td>
<td>Intensity</td>
<td>Exposure</td>
<td>Response</td>
<td>Overall Threat Level</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>13 Increased recreational use of area</td>
<td>Illegal take of dace</td>
<td>B</td>
<td>rangewide</td>
<td>future</td>
<td>moderate</td>
<td>small</td>
<td>removal from population</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>Modification of habitat by bathers</td>
<td>A</td>
<td>rangewide</td>
<td>historic</td>
<td>low</td>
<td>small</td>
<td>behavioral (avoidance)/ basic needs inhibited</td>
<td>low</td>
</tr>
<tr>
<td>14 Reservoir construction (changes in hydrology, etc.)</td>
<td>Changes in spring flow, inundation of spring</td>
<td>A</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>insignificant</td>
<td>mortality (potential extinction)</td>
<td>low</td>
</tr>
<tr>
<td>15 Catastrophic wildfire</td>
<td>Changes in hydrology</td>
<td>A</td>
<td>rangewide</td>
<td>future</td>
<td>moderate</td>
<td>small</td>
<td>basic needs inhibited</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>Changes in siltation rates</td>
<td>A</td>
<td>rangewide</td>
<td>future</td>
<td>moderate</td>
<td>small</td>
<td>basic needs inhibited</td>
<td>low</td>
</tr>
<tr>
<td>16 Fire suppression activities</td>
<td>Increased vehicular traffic around spring</td>
<td>E</td>
<td>rangewide</td>
<td>future</td>
<td>low</td>
<td>small</td>
<td>basic needs inhibited</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>Pollution of spring</td>
<td>E</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>small</td>
<td>basic needs inhibited/mortality</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>Poisoning of dace</td>
<td>E</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>small</td>
<td>mortality</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>impaired reproduction/survival</td>
<td>E</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>small</td>
<td>basic needs inhibited/mortality</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>Poisoning of macroinvertebrates</td>
<td>E</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>small</td>
<td>basic needs inhibited</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>Poisoning of plant community</td>
<td>E</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>small</td>
<td>basic needs inhibited</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>Modification of water quality</td>
<td>E</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>small</td>
<td>basic needs inhibited/mortality</td>
<td>low</td>
</tr>
<tr>
<td>17 Fire retardants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pollution of spring</td>
<td>E</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>small</td>
<td>basic needs inhibited/mortality</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>Poisoning of dace</td>
<td>E</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>small</td>
<td>mortality</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>impaired reproduction/survival</td>
<td>E</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>small</td>
<td>basic needs inhibited/mortality</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>Poisoning of macroinvertebrates</td>
<td>E</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>small</td>
<td>basic needs inhibited</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>Poisoning of plant community</td>
<td>E</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>small</td>
<td>basic needs inhibited</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>Modification of water quality</td>
<td>E</td>
<td>rangewide</td>
<td>future</td>
<td>high</td>
<td>small</td>
<td>basic needs inhibited/mortality</td>
<td>low</td>
</tr>
<tr>
<td>18 Acid rain</td>
<td>Change in water chemistry</td>
<td>A</td>
<td>rangewide</td>
<td>future</td>
<td>low</td>
<td>small</td>
<td>unknown</td>
<td>low</td>
</tr>
<tr>
<td>Threat</td>
<td>Stressor Associated with Threat</td>
<td>Factor</td>
<td>Scope</td>
<td>Immediacy</td>
<td>Intensity</td>
<td>Exposure</td>
<td>Response</td>
<td>Overall Threat Level</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>--------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>19</td>
<td>Natural catastrophe (earthquake)</td>
<td></td>
<td>E</td>
<td>rangewide</td>
<td>future</td>
<td>low</td>
<td>small</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td>Change in hydrology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Herbicide/pesticide use</td>
<td></td>
<td>A</td>
<td>localized</td>
<td>future</td>
<td>low</td>
<td>small</td>
<td>basic needs inhibited/ mortality</td>
</tr>
<tr>
<td></td>
<td>Contamination of dace’s habitat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decrease in aquatic vegetation of habitat</td>
<td></td>
<td>A</td>
<td>localized</td>
<td>future</td>
<td>low</td>
<td>small</td>
<td>basic needs inhibited</td>
</tr>
<tr>
<td></td>
<td>Reduction in invertebrate numbers</td>
<td></td>
<td>A</td>
<td>localized</td>
<td>future</td>
<td>low</td>
<td>small</td>
<td>basic needs inhibited</td>
</tr>
</tbody>
</table>

Factors
A = The present or threatened destruction, modification, or curtailment of its habitat or range
B = Overutilization for commercial, recreational, scientific, or educational purposes
C = Disease or predation
D = The inadequacy of existing regulatory mechanisms
E = Other

Scope = Geographic extent of threat factor occurrence
Immediacy = Time frame of stressor
Intensity = Strength of stressor
Exposure = Level of total known population exposed to threat source
Response = Level of physiological/behavioral response
Overall Threat Level = Integration of the scope, immediacy, intensity, exposure, and response at the species level
APPENDIX B

Kendall Warm Springs Dace Threats Tracking Table

<table>
<thead>
<tr>
<th>Threat</th>
<th>Factor</th>
<th>Recovery Criteria</th>
<th>Recovery Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathing & use of soaps, detergents, sunscreen, & bleaches in spring & creek</td>
<td>A</td>
<td>Threat reduced since listing, B(1), B(2), B(3)</td>
<td>Continued enforcement, Protection of habitat, Cooperation with partner agencies (Action 1.1, 1.8, 4.1, 11.1)</td>
</tr>
<tr>
<td>Collection of dace for personal aquaria/commercial trade purposes</td>
<td>B</td>
<td>Threat reduced since listing, B(1), B(2)</td>
<td>Continued enforcement (Action 4.1)</td>
</tr>
<tr>
<td>Deleterious effects of research efforts</td>
<td>A, B, C</td>
<td>A(3), B(1), B(2)</td>
<td>Thorough review of all research projects; Use of bleach solution to wash equipment (Action 4.3, 9.1, 10.5, 11.2)</td>
</tr>
<tr>
<td>Oil & gas leasing, drilling, fracking, flushing with warmer or colder water, flushing with surfactants, other fluids, reinjection of water, removing groundwater</td>
<td>A</td>
<td>A(1), A(2), B(1), B(2), B(3), B(4)</td>
<td>Establishment of no drilling buffer, Protection of habitat, Cooperation with partner agencies (Action 1.1, 1.3, 1.4, 1.5, 1.6, 3.1, 6.1, 6.2, 6.3, 7.1, 11.1)</td>
</tr>
<tr>
<td>Introduction of tropical or warmwater fish species, other Rhinichthys species, or other non-native aquatic species (e.g., zebra mussels, non-native snails, non-native plants) to spring. Introduction of parasites</td>
<td>C, E</td>
<td>B(1), B(2), B(4), B(5)</td>
<td>Limiting publicity of area; Establishment of refugia populations; Attempted removal of non-native species, if necessary; Continued enforcement (Action 4.1, 6.1, 6.2, 6.3, 7.1, 9.1, 10.1, 10.3, 10.4, 10.5, 11.1)</td>
</tr>
<tr>
<td>Activities of vandalism (e.g., deliberate poisoning of KWS dace)</td>
<td>E</td>
<td>A(3), B(1), B(2), B(3), B(4), B(5)</td>
<td>Continued monitoring; Protection of habitat, Cooperation with partner agencies, Establishment of refugia populations, Monitoring (Action 1.1, 3.1, 6.1, 6.2, 6.3, 7.1, 11.1, 11.2)</td>
</tr>
<tr>
<td>Climate change</td>
<td>E</td>
<td>A(3), B(1), B(2), B(3), B(4)</td>
<td>Monitoring & modeling potential changes to ecosystem (Action 1.1, 1.4, 1.6, 2.1, 3.1, 6.1, 7.1, 8.1, 9.1, 11.1, 11.1)</td>
</tr>
<tr>
<td>Lack of (or inadequacy of) existing Regulatory Mechanisms independent of ESA</td>
<td>D</td>
<td>Threat reduced since listing, A(1), A(2), A(3), B(1), B(2), B(3), B(4)</td>
<td>Continued implementation & enforcement of existing regulations; Development & implementation of buffer zone around springs to sufficiently protect groundwater & spring recharge zone from oil & gas drilling/contamination/water flow manipulation (Action 3.1, 4.1, 4.2, 6.1, 6.2, 6.3, 7.1, 9.1, 11.1)</td>
</tr>
<tr>
<td>Threat</td>
<td>Factor</td>
<td>Recovery Criteria</td>
<td>Recovery Action</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Livestock grazing (livestock crossing fence & watering in spring)</td>
<td>A</td>
<td>Threat reduced</td>
<td>Protection of habitat, continued exclusion of livestock from spring area most of year; monitoring & maintenance of exclusion fence, Adaptive management, Cooperation with partner agencies (Action 1.1, 1.4, 1.5, 1.7, 1.8, 2.1, 7.1, 9.1, 11.1, 11.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>since listing, B(1), B(2), B(3)</td>
<td></td>
</tr>
<tr>
<td>Vehicle use on bridge over stream/Road Construction/Accidental</td>
<td>E</td>
<td>B(1), B(2), B(3)</td>
<td>Protection of habitat, Preparation of catastrophe plan, Establishment of refugia populations, Monitor spring for signs that introduction of toxins, siltation has occurred. (Action 1.1, 1.5, 3.1, 6.1, 6.2, 6.3, 7.1, 11.1, 11.2)</td>
</tr>
<tr>
<td>introduction of toxins/siltation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of KWS dace as a bait fish</td>
<td>B</td>
<td>Threat reduced</td>
<td>Continued implementation/enforcement of prohibitions currently in place, Cooperation with partner agencies (Action 5.2, 11.1, 11.2).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>since listing, B(1), B(2)</td>
<td></td>
</tr>
<tr>
<td>Increased recreational use of area</td>
<td>A, B</td>
<td>B(1), B(2)</td>
<td>Limiting publicity of the area; monitoring; reporting (Action 1.1, 4.1)</td>
</tr>
<tr>
<td>Reservoir construction (changes in hydrology, etc.)</td>
<td>A</td>
<td>B(1), B(2), B(3)</td>
<td>Habitat protection, Catastrophe plan, Establishment of refugia population, Continued coordination with Wyoming Water Development Commission to ensure that reservoir proposals are evaluated early (Action 1.1, 1.2, 1.3, 1.4, 1.8, 3.1, 6.1, 11.1, 11.2)</td>
</tr>
<tr>
<td>Catastrophic wildfire/Fire suppression/Flame retardants</td>
<td>A, E</td>
<td>B(1), B(2), B(3), B(4)</td>
<td>Use of proper restriction buffers & fuel management/fire suppression techniques. (Action 1.1, 1.4, 1.5, 3.1, 7.1, 11.1, 11.2)</td>
</tr>
<tr>
<td>Acid rain</td>
<td>A</td>
<td>B(1), B(2), B(3)</td>
<td>Monitoring pH of spring water & precipitation in area (Action 1.1, 1.4, 7.1)</td>
</tr>
<tr>
<td>Natural catastrophe (earthquake)</td>
<td>E</td>
<td>B(4)</td>
<td>Catastrophe plan, Establishment of refugia populations (Action 3.1, 6.1, 6.2, 6.3)</td>
</tr>
<tr>
<td>Herbicide/pesticide use</td>
<td>A</td>
<td>B(1), B(2), B(3)</td>
<td>Development & implementation of a herbicide/pesticide use plan for area (Action 1.1, 1.4, 1.5, 7.1, 9.1, 11.1, 11.2)</td>
</tr>
</tbody>
</table>
APPENDIX C

Summary of Public Comments

On December 26, 2012, we published a notice in the Federal Register soliciting public comments on our release of a draft revised recovery plan for the endangered Kendall Warm Springs (KWS) dace (77 FR 76065).

The new revised recovery plan constitutes the first revision of the recovery plan since 1982. The revised recovery plan documents the current understanding of the species’ life history requirements, identifies probable threats that were not originally recognized, includes revised recovery criteria, and based on improved understanding of the species, describes those actions believed necessary to eventually delist the species.

In our announcement, we requested assistance in the recovery plan revision effort by providing the public with the opportunity to review the revised plan and solicited any additional information related to KWS dace that was not already included in the draft revision. Specifically, we requested any new information, analyses, or reports that summarize and interpret: population status and threats, demographic or population trends; genetics and competition; dispersal and habitat use; habitat condition or amount; and adequacy of existing regulatory mechanisms, management, and conservation planning.

Following the public comment period, we solicited independent peer review of the document from three individuals prominent in the field of conservation biology of small aquatic populations.

The 60-day public comment period closed on February 25, 2013, and we are grateful for the contributions from those who provided information during this review and comment period. This input ultimately improved the information contained within this revision to our 1982 KWS Dace Recovery Plan.

Peer-review and public comments ranged from minor editorial suggestions to providing recommendations on plan content. As appropriate, we have incorporated all applicable comments into the text of this revised recovery plan. All comment letters are on file at the Wyoming Ecological Services Field Office, 5353 Yellowstone Road, Suite 308A, Cheyenne, Wyoming 82009.

List of Commenters:

PEER REVIEWERS:
Harry Crockett
Colorado Parks & Wildlife
314 W. Prospect St.
Fort Collins, CO 80526
Krissy Wilson
State of Utah – Dep of Nat Res
1594 West North Temple, Suite 2110
PO Box 146301
Salt Lake City, UT 84114

Richard Fridell
Washington County Field Office
Utah Div of Wildl Resources
451 North SR-318
Hurricane, UT 84737

ADDITIONAL COMMENTERS:

Wyoming Game and Fish Department

Wyoming Department of Agriculture

U.S. Fish and Wildlife Service – Region 6

Comments on draft KWS dace recovery plan revision

Following are those substantive comments that were not addressed in the final KWS Dace Recovery Plan, along with our response to each comment. Comments are arranged into the following categories – general information, downlisting/delisting criteria, and recovery tasks.

General

Comment 1: The recovery plan should include a habitat assessment conveying the actual holding capacity of KWS.

Response 1: The KWS dace population in KWS is believed to be at carrying capacity given that there are currently no known unnatural factors influencing the size of the population. However, the risk of extinction remains high given the accessibility of KWS to the public and potential groundwater withdrawals associated with potential energy development in the area.

Comment 2: The draft plan provides information that dace regularly drift from KWS, over the waterfall, and into the Green River. The Green River should be inventoried for KWS dace. Is it possible the dace adapts to conditions in the Green River? The dace should be tagged to more thoroughly understand the life cycle and ability to adapt to conditions outside KWS.

Response 2: This is a research question for which we currently do not have an answer. This important question may be pursued if funding becomes available; however, recovery of the KWS dace could occur without an answer to this particular question.
Comment 3: We question why the recovery plan excludes analyzing the possibility of wild ungulates, such as moose, elk, or deer freely entering the exclosure and possibly degrading water quality or stream banks.

Response 3: The KWS dace evolved and persisted with the presence of naturally occurring levels of ungulates. Substantial increases in ungulate populations or a change in use across the landscape (e.g., fewer available water sources) could alter the timing or use of KWS and concentrate use at the springs, potentially resulting in habitat modification. However, we know of no instances of concentrated moose, elk, or deer near KWS. Obviously, if large numbers of ungulates concentrated at the spring for extended periods, habitat modification could occur.

Comment 4: If chemicals are used to treat noxious and invasive weeds under section 7, we recommend transparency in listing out what chemicals are approved, how often they are applied, what results are achieved, and the basic application methods in relation to application restrictions according to the chemicals’ labels.

Response 4: If we received a request to initiate section 7 consultation on such a project, we would work with the action agency (or agencies) to fully evaluate, articulate and minimize the effects of the proposed action using best available data. Any biological opinion issued for such a project would be written in plain language and would provide clear documentation and support for analysis and conclusions. In addition, the action agency (or agencies) would also prepare a document (e.g., Environmental Assessment) under the National Environmental Policy Act.

Comment 5: The draft plan discusses the implementation of the exclosure fence to keep livestock out of dace habitat. The commenter asks for information regarding specific instances that livestock have gained access to the exclosure. Commenter believes that livestock grazing should be allowed to occur in the exclosure on an agreed upon timeline to remove decadent vegetation, remove weeds and reduce fine fuels to reduce fire.

Response 5: The following statements are taken from a July 7, 1988, letter from USFWS in Cheyenne to USFS following a site inspection of the KWS unit. These statements are provided to fulfill the Commenter’s request for information.

1. “The bucking pole fence surrounding the springs/wetland complex that was originally erected to protect dace habitat from cattle/livestock encroachment was in a state of disrepair. Several sections were broken, allowing cattle easy access to the exclosure.

2. The passage gate at the north cattle guard appeared to be in poor condition and left partially open, thereby allowing access to the exclosure by cattle/livestock from the north.

3. The south cattle guard grating appeared to be filled with dirt and rocks, virtually eliminating its effectiveness in preventing access by cattle/livestock.
4. We observed about thirty (30) head of cattle within the exclosure standing on/in primary dace habitat/wetlands and feeding on the new growth along the streamside.

5. A food survey of much of the wetland/spring complex revealed evidence of recent heavy livestock use as noted by the presence of numerous hoof prints and droppings.”

6. “In the short term, action needs to be taken to mend the existing fence and passage gate and to clean the south cattle guard grate to prevent cattle/livestock access to the exclosure. Over the long term, we need to discuss possible realignment of either the existing road/fence or both to ease the cattle movement problem while maintaining the protection and integrity of the spring complex and adjacent wetlands. Clearly, fence repair and maintenance will be a long term requirement that must be dealt with promptly and decisively.”

Additionally according to records from the 1989 Take Pride in America Awards Program that described activities of the USFS, “the original fencing plan was inadequate in the face of heavy grazing pressure from nearby cattle operations. During an inspection early in 1988, it was discovered that cattle had knocked over several sections of fence and the cattle guards were filled with soil and debris, thereby eliminating their effectiveness in excluding livestock.”

“Subsequent coordination and management decisions by the Pinedale Ranger District proved successful in establishing a better alternative fencing plan and proactive management of the area to avoid livestock impacts to the dace and habitat while creating minimum restrictions on livestock operations. The fence was subsequently rebuilt and realigned to provide better protection of the Unit, and the cattle guards reconstructed to prevent livestock access. The District has observed an active maintenance and stepped up monitoring policy of the area.”

Comment 6: The table reveals “Vandalism” as a moderate threat. Commenter requests documentation of types of vandalism, the number of incidents, and how these incidents impacted the dace habitat.

Response 6: No known incidents of vandalism of KWS dace habitat are known at this time, but vandalism is still a potential threat. The threat is given a ranking of “moderate” because we determined that actions are needed to minimize the vulnerability of the KWS dace to this potential threat. If this threat did occur, it could potentially have a large impact on the KWS dace population.

Comment 7: Commenter requests specific and scientific data indicating the distance required to eliminate the risk of fracking fluid entering KWS. The Commenter also questions the ability to
develop an appropriate “no drilling zone” buffer or the possibility to scientifically prove a decrease in the water table due to water extraction from oil and gas development.

Response 7: This specific information is unknown at this time for KWS. Nevertheless, the threat remains and must be accounted for in the recovery plan. Implementation of recovery actions is intended to answer these important questions. If this threat did occur, it could potentially have a large impact on the KWS dace population.

Comment 8: The draft recovery plan states, “It is possible that the dace in KWS has undergone bottleneck effects as a result of its use as baitfish from the 1930s to the 1960s…” What baseline data is used to make this assumption? If the genetic diversity is in fact low, what can be done to alleviate this?

Response 8: We have no data suggesting that a bottleneck has occurred, rather we identify a possibility that a bottleneck could have occurred at some time in the past. Any number of events could have reduced the population to low numbers including: capture of dace for use as baitfish; reduction of habitat due to reduced spring flows; disease; non-native predators that later died off; etc.

Currently, we do not know if the genetic diversity of KWS dace has been reduced over time, but this could potentially be a topic of future research. If genetic integrity of KWS dace has been modified (reduced) over time, due to any cause, the chances of restoring the initial genetic integrity of the KWS dace may not be possible, given that there is only one population in existence. In fact, for this isolated dace, there is no genetic exchange with other populations, so the recovery goal is to maintain the existing genetic diversity of the KWS population. However, if this species’ genetic diversity is so limited that it causes deleterious effects, we will need to address this issue, if it exists, before moving forward with downlisting or delisting.

Comment 9: Commenter states that they believe the threat of illegal exotic species introductions to KWS is low, in part because they believe exotic species in aquatic environments can be controlled.

Response 9: Control of introduced non-native species and preventing the introduction of non-native species are both problematic. Non-native introductions could have great impacts on the KWS dace population and also prove very difficult if not impossible to eradicate without potentially destroying the genetic and biological integrity of the KWS dace population. Since the KWS dace population is the only one of its kind in existence, it is questionable whether any proposed action to apply piscicides to KWS [as has been used in other aquatic ecosystems] would be permitted, because it could potentially jeopardize the continued existence of the KWS dace.
Comment 10: Has quantity of vegetation decreased? With a decrease in vegetation in the stream may cause increase in water velocity which may account for decline in population.

Response 10: We are unaware of any evidence that may suggest that there has been a decline in aquatic vegetation within the habitat.

Comment 11: Although the threat of introduction of exotics is assessed as “high”, the State of Wyoming should be commended for enacting laws prohibiting the introduction of non-native species within the state.

Response 11: We agree that the State of Wyoming has implemented exemplary regulatory mechanisms and conservation efforts and expended considerable resources to minimize the potential that non-natives will be introduced into the waters of Wyoming, as well as detecting and eradicating such illegally introduced species. We commend the efforts of the State of Wyoming. These efforts bring us one step closer to recovery of the KWS dace.

Comment 12: In the brief section concerning abundance trends, no hypotheses are advanced to explain the apparent decline. The most serious threats are still prospective (e.g., contamination of the spring or disruption of its flow), whereas most threats that have actually been realized, presently or in the past, have been mitigated. One wonders therefore why the population is in apparent decline, and if it is, why this appears to have only commenced sometime after 1998.

Response 12: At this time, it is uncertain if the observed apparent decline in relative abundance of the KWS dace should be of concern—possibly the dace population is still within the natural range of variability. Or possibly the stream has experienced morphological changes since the removal of the culverts and/or livestock exclusion.

Comment 13: This section focuses on potential applications by the USFS. Are there any concerns about overspray from aerial applicators working nearby areas of properties?

Response 13: The nearest non-Federal land is approximately 4.2 miles (6.7 km) away. Given this distance, we feel that overspray or runoff into the KWS is not a concern.

Comment 14: The section on abundance trends could be more informative if trends by size classes (e.g. young-of-year and adults) are presented to examine annual reproduction/recruitment.

Response 14: Since the KWS dace produces young year-round in the 85 °F water of KWS, there would be no “young-of-year”. Also the fish do not produce annuli on their scales since they do not undergo yearly temperature fluctuations in their habitat. Therefore, we currently do not have a method to effectively “age” the fish.
Comment 15: Title of “Disease and Predation” section should include “competition”. Competition with introduced cyprinids (e.g. fathead minnow, killifish, *Gambusia*, red shiner, etc.) has led to population declines in many western native fish populations with limited distribution.

Response 15: Although the modification of the section title may appear appropriate, the current section headings are set up to reflect the FWS “5-factor” analysis as supported by the ESA regulations. Therefore, the headings should be left as is. Any other threats such as “competition” are covered in Factor E with the heading “Other” threats.

Comment 16: It is unclear how the Factor E threats assessment differs from the Factor C assessment.

Response 16: Factor C only deals with disease and predation while Factor E deals with all “other” threats, like competition, etc. This is according to the “5-factor” analysis as supported by ESA regulations.

Comment 17: Recommend evaluating the possible population sink due to downstream drift and loss of KWS dace into the Green River as a threat in this section. If the KWS dace population is subjected to a constant mortality rate through downstream drift, then this should be evaluated as a possible threat and included as a possible obstacle to recovery of KWS dace. In addition, quantification of mortality from downstream drift should be included in the recovery plan, and if verified, actions to minimize loss should be planned, evaluated, and implemented, as well.

Response 17: Downstream drift of KWS dace from KWS into the Green River is a natural phenomenon for this subspecies and the KWS dace has dealt with this, presumably from the beginning of its existence. We believe that modification of this naturally occurring phenomenon may result in manipulating the population and subspecies in an unnatural way. Therefore, there will not be measures undertaken to minimize this factor of emigration/mortality for the KWS population, at this time.

Delisting Criteria

Comment 18: We believe the Revised Plan, as written, provides a false sense of hope for delisting the dace, when the population only occurs in 984 feet of stream length, in a single location. We would rather the recovery plan openly convey the unlikelihood of ever removing the dace from the ESA List.

Response 18: It is not a function of the recovery plan to speculate on the likelihood of implementation of recovery actions, though the dace has been assigned a recovery priority number of 12C indicating that it is a species with low recovery potential. During recovery plan development, we are tasked with identifying the recovery actions that, if implemented, would
lead to threats being addressed sufficiently that the species could be removed from the ESA list (i.e. recovery would be achieved). Actions in the recovery plan are achievable and if recovery goals are achieved, the KWS dace can be removed from the ESA list.

Comment 19: “Necessary administrative measures are implemented to ensure flows are maintained.” What are “administrative measures?” Does an earthquake or other geological shift causing reduced flow constitute a threat to ensuring flows are maintained?

Response 19: Administrative measures are written commitments, enforcement procedures, and regulations. Earthquakes and other geologic shifts are normally not considered a direct result of human action. No administrative measures are known to ensure that those threats do not materialize.

Comment 20: Could the threat of non-native species be controlled with 100 percent certainty? Is 100 percent certainty expected for all potential threats before delisting could occur?

Response 20: We cannot control the threat of introduction of non-native species with 100 percent certainty, but developing at least two refugia populations will create redundancy and may facilitate future actions to rehabilitate/reintroduce/repatriate dace back to KWS. To obtain absolute 100 percent certainty for the control of all potential threats may be unrealistic. However, in order to propose delisting, the USFWS must have sufficient confidence that the species is no longer in danger of extinction throughout all or a significant portion of its range.

Recovery Tasks

Comment 21: The recovery plan discusses the need to develop a habitat enhancement plan. The recovery plan requires six plans, including the: (1) habitat enhancement plan, (2) watershed plan, (3) catastrophe plan, (4) genetics management plan, (5) captive introduction plan, and (6) post-delisting monitoring plan. Six plans are excessive. Additionally, should there ever be a delisting decision; each plan creates an easy opening for environmental organizations to litigate based on an underdeveloped plan.

Response 21: Increased planning efforts by all parties involved will aid in ensuring that all details are thoroughly addressed. Proceeding without planning, however, can lead to increased litigation. Proceeding with abundant and adequate planning should lead to a reduced risk of litigation in the future. The recovery plan does not “require” certain actions such as the development of various plans. Instead the recovery plan is a guidance and planning document only; identification of an action to be implemented by any public or private entity does not create a legal obligation beyond existing legal requirements.

Comment 22: Prior to the implementation of surface disturbance restrictions, the recharge zone of KWS needs to be clearly identified.
Response 22: KWS dace may be put at risk of extinction by activities within the spring’s recharge zone that could affect the hydrology of the spring, such as drilling and intercepting or contaminating the groundwater that supplies KWS. These activities could potentially negatively impact KWS prior to the spring’s recharge zone being accurately delineated. Therefore, in order to fully protect the KWS dace, the buffer zone should be implemented prior to oil and gas, or other potentially impacting types of development and should follow, at a minimum, the estimated recharge zone of the spring as delineated by Mattson (1998), until a more accurate delineation of the spring’s recharge zone is obtained.

Comment 23: Regarding the Recovery Action Narrative – monitor stream flow, and determine flow velocities – suggest determining and understanding the current variability in discharge rate. Has discharge rate changed since the late 1990’s? Has a change in discharge been a cause for the decline? Determination of discharge and velocity may only paint a picture of the current state. It is necessary to know if that has changed over the last 20-30 years.

Response 23: In the available literature, there are a few measurements of historic flow rates of the spring. The recovery actions call for more research in this area.

Comment 24: Delisting criteria #4 states that captive KWS dace populations will consist of the number of individuals and pairs that will ensure the maintenance of long-term genetic diversity and integrity necessary for long-term species viability as documented in the best available scientific information. Is it possible to include the actual number of individuals or pairs of KWS dace needed to ensure its genetic diversity prior to finalizing the recovery plan?

Response 24: We feel that without knowledge of artificial propagation methods or needs of the KWS dace in captivity, or knowledge of the current genetic diversity in the natural population, we could not accurately provide an estimate of the numbers of individual fish or pairs that may be needed for each captive population at this time.

Citations
