Recovery Plan for *Lilaeopsis schaffneriana* ssp. *recurva* (Huachuca water umbel)

November, 2017
This page is left blank intentionally.
Recovery Plan for *Lilaeopsis schaffneriana* ssp. *recurva* (Huachuca water umbel)

2017

Region 2
U.S. Fish and Wildlife Service
Arizona Ecological Services Field Office
Tucson, Arizona

Approved:
[Signature]

Regional Director, U.S. Fish and Wildlife Service, Southwest Region

Date:
[Date]
Disclaimer

Recovery plans delineate reasonable actions that are believed to be required to recover and protect listed species. We, the U.S. Fish and Wildlife Service (Service), publish recovery plans, sometimes preparing them with the assistance of recovery teams, contractors, State agencies, Tribal agencies, and other affected and interested parties. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Costs indicated for action implementation and time of recovery are estimates and subject to change. Recovery plans do not obligate other parties to undertake specific actions, and may not represent the views or the official positions of any individuals or agencies involved in recovery plan formulation, other than the Service. Recovery plans represent the Service’s official position only after they have been signed by the Director or Regional Director as approved. Recovery plans are released for public comment and submitted to peer review before we adopt them as approved final documents. Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and the completion of recovery actions.

Literature Citation Should Read as Follows:

An electronic copy of this final Recovery Plan will be made available at:

A draft of this Recovery Plan was made available through a Federal Register notice published on March 8, 2016. Comments received from the public and peer-reviewers were considered in finalizing this revised Recovery Plan. The Service’s responses to comments can be found in Appendix B.
Executive Summary

Current Species Status

Lilaeopsis schaffneriana ssp. *recurva* (the Huachuca water umbel) was listed as endangered under the Endangered Species Act of 1973, as amended (16 U.S.C. 1531 et seq.) on January 6, 1997 (62 FR 665), and 83.2 kilometers (km)(51.7 miles (mi)) of streams or rivers in Cochise and Santa Cruz Counties, Arizona, were designated as critical habitat on July 12, 1999 (64 FR37441). The majority of critical habitat is under Federal administration through the Coronado National Forest (Forest Service), the San Pedro Riparian National Conservation Area (Bureau of Land Management), and Fort Huachuca Military Reservation (Fort Huachuca); a small portion is in private ownership. The taxon occurs in aquatic habitats such as cienegas, rivers, streams, and springs of five watersheds in southeastern Arizona and adjacent portions of Sonora, Mexico. In the United States, we are aware of 17 locations supporting extant occurrences of *L. schaffneriana* ssp. *recurva*, 8 locations where all *L. schaffneriana* ssp. *recurva* occurrences are considered extirpated, and 6 locations where no occurrences have been relocated in recent years. In Sonora, Mexico, we are aware of 21 locations supporting *L. schaffneriana* ssp. *recurva* occurrences, though most of these locations have not been revisited in recent years. It is difficult to estimate the number of individuals due to the clonal nature of the taxon, though estimates of density indicate most occurrences are stable or in decline. As recently as July, 2016, flooding associated with monsoon storms scoured drainages with occurrences of *L. schaffneriana* ssp. *recurva*, affecting the status of this species in some locations by removing these occurrences (Radke pers. comm. July 21, 2016).

Habitat Requirements and Limiting Factors

Lilaeopsis schaffneriana ssp. *recurva* occurs in shallow and slow-flowing waters that are relatively stable, or in active stream channels containing refugial sites where the plants can escape the effect of scouring floods (62 FR 665, p. 667; 64 FR 37441, p. 37442). The taxon depends on the availability of permanently wet (or nearly so), muddy, or silty substrates with some organic content. At this time, the most significant long-term threats to the continued existence of the species are: 1) aquatic habitat degradation, including unsustainable groundwater withdrawal; 2) the effects of drought and climate change; 3) wildfire and resulting sedimentation and scouring; 4) invasive non-native plant competition; and 5) poorly managed livestock grazing.

Recovery Priority

The recovery priority number for *Lilaeopsis schaffneriana* ssp. *recurva* is 3C, meaning that the listed entity is a subspecies, the level of threat is high, the potential for recovery is high, and there is a conflict with some form of economic activity (groundwater withdrawal for mining, agriculture, Fort Huachuca, municipal use, and private wells).
Recovery Strategy

The principal recovery strategy is to conserve the habitat of *L. schaffneriana ssp. recurva* by implementing a variety of protection strategies, including decreasing groundwater pumping, increasing water conservation and recharge, and protecting *L. schaffneriana ssp. recurva* occurrences and their seedbanks. Providing conservation and restoration of the taxon and its habitat will allow stable, self-sustaining occurrences to persist with some level of connectivity and opportunities for expansion, dispersal, and genetic exchange. Additional efforts will focus on improving the baseline understanding of *L. schaffneriana ssp. recurva* ecology and threats.

Recovery Goal

The principal recovery goal is to remove the taxon from the Federal List of Endangered and Threatened Plants (50 CFR 17.12).

Recovery Objectives

1) Protect and restore functional aquatic habitat and reduce dewatering threats to historical, existing, newly discovered, and newly established *L. schaffneriana ssp. recurva* occurrences and habitat.

2) Conserve historical, existing, newly discovered, and newly established *L. schaffneriana ssp. recurva* occurrences and their seedbanks; augment existing occurrences; establish new occurrences in appropriate habitat; establish plants at botanical gardens and other Service approved facilities for research, recovery, and educational purposes; and maintain seeds for conservation and recovery at seed storage facilities.

3) Remove stressors related to invasive non-native plants and poorly managed livestock grazing to historical, existing, newly discovered, and newly established *L. schaffneriana ssp. recurva* occurrences and their habitats.

4) With the aid of affected parties, develop a standardized monitoring technique based on existing protocols; monitor historical, existing, newly discovered, and newly established *L. schaffneriana ssp. recurva* occurrences, threats, and outcomes from management actions allowing for adaptive management.

5) Encourage scientific study to improve our understanding of *L. schaffneriana ssp. recurva* geography, ecology, viability, genetics, propagation, habitat restoration, and threats in the United States and Mexico.

6) Develop public outreach, collaborative partnerships, agency management plans, and agreements with private land owners in the United States and Mexico that encourage *L. schaffneriana ssp. recurva* conservation.
Recovery Criteria

To downlist *L. schaffneriana* ssp. *recurva* from endangered to threatened status, the following must occur:

1) A minimum cumulative extent of 2,000 square meters (0.2 ha / 0.5 ac) of naturally occupied habitat exists in the San Pedro Watershed, 20 percent of which occurs in tributary streams, springs, or cienegas; and a minimum of 2,000 square meters (0.2 ha / 0.5 ac) in the Santa Cruz Watershed, 90 percent of which occurs in tributary streams, springs, or cienegas, distributed among the areas of Cienega Creek (35 percent), Sonoita Creek (10 percent), the San Rafael Valley uplands and mainstem (10 percent), and the western Huachuca Mountains (35 percent); and a minimum of 125 square meters (0.01 ha / 0.03 ac) exists in the Rio Yaqui Watershed; this level of occupancy is sustained or improved for a minimum of 10 years over a 15 year period.

2) At least 3 separate introduced occurrences with a minimum cumulative extent of 150 square meters (0.015 ha / 0.037 ac) of occupied habitat are placed in each of the three United States watersheds and are stable or increasing over a 10 year period;

3) Threats to the taxon and its habitat have been managed and reduced, and management is in place for a minimum of 20 years to ensure the persistence of occurrences with minimum cumulative extent (as reflected by the achievement and maintenance of downlisting criteria 1 and 2) in each of the three United States watersheds;

4) A living collection of as many plugs as resources allows, collected from genetically distinct regions (e.g. Fort Huachuca / SPRNCA north; San Rafael / Las Cienegas / Sonoita; SPRNCA south / San Bernardino), from both the San Pedro and the Santa Cruz watersheds is maintained in at least one botanical garden in southern Arizona for recovery and educational purposes; and

5) Seeds of *L. schaffneriana* ssp. *recurva* are collected following Center For Plant Conservation guidelines, which include collecting from no more than 10 percent of the standing seed crop from 50 individual seed bearing plants per population (if the population size permits), and collecting from a variety of microsites and physical characteristics within the stand of plants. These seeds are stored at both the Agricultural Research Service National Center for Genetic Resources Preservation in Fort Collins, Colorado and stored according to protocols at a local facility such as the Desert Botanical Gardens in Phoenix, Arizona, for long-term conservation and recovery purposes.

To delist *L. schaffneriana* ssp. *recurva*, the criteria for down-listing must be met and the level of occupancy in the downlisting criteria is sustained or increasing for a minimum of 20 years over a 30 year period.

Actions Needed

1) Maintain or enhance groundwater hydrography, as measured by both well observations and stream gages, by reducing water withdrawal and increasing water conservation and recharge;

2) Conserve historical, existing, newly discovered, and newly established *L. schaffneriana* ssp. *recurva* occurrences and their seedbanks through the protection of occupied habitat, unoccupied corridors, and habitat quality; augment existing and establish new *L.
<p>schaffneriana ssp. recurva occurrences in appropriate habitat using appropriate genetic stock to increase the redundancy (number of occurrences) and resiliency (size of occurrences) of the taxon to help ensure the long-term survival of the taxon in southern Arizona; establish plants at botanical gardens and other Service approved facilities for research, recovery, and educational purposes; and maintain seeds for conservation and recovery at seed storage facilities;</p>

3) Remove stressors related to invasive plants and poorly managed livestock grazing to historical, existing, newly discovered, and newly established L. schaffneriana ssp. recurva occurrences and their habitats;

4) Work toward a standardized monitoring technique and continue monitoring occurrences;

5) Conduct research and monitoring that will facilitate better understanding of: a) the distribution and genetics of the taxon in both the United States and Mexico, b) population and metapopulation dynamics and trends, c) life history, d) response to threats, and e) other relationships key to recovery of the species;

6) Develop collaborative partnerships with Federal and State land managers, private landowners, museums and botanical gardens, seed storage facilities, and others; provide outreach to the public as needed to accomplish recovery; promote the achievement of conservation and recovery in Mexico, resulting in long-term protection of L. schaffneriana ssp. recurva and its habitat; in coordination with stakeholders, revise this plan as needed as new information comes to light so that the recovery strategy and actions implement recovery in as efficient a manner as possible.

Estimated Date and Cost of Recovery

Date: 2037
Cost: $52,006,000*

* The importance of preventing excessive water drawdown and increasing water recharge into the San Pedro, Santa Cruz, and Río Yaqui watersheds in the United States cannot be understated in the recovery of L. schaffneriana ssp. recurva and co-occurring listed species. Arizona is an arid state with finite water supplies, a human population expected to double by 2050, and ongoing drought (ADWR 2014, entire; Marshall et al. 2010, p. 1). There is a potential for a long-term imbalance between available water supplies and projected water demands over the next 100 years if no action is taken (ADWR 2014, entire). A clean and sustainable water supply is essential for humans and the environment; water resources planning must embrace the need for water for urban growth, as well as environmental water needs (Marshall et al. 2010, p. 1). Using water more efficiently, reusing water, capturing water, and purchasing surface water rights are all methods whereby water availability can be increased for the benefit of L. schaffneriana ssp. recurva. These activities would have added benefit to many other co-occurring listed and unlisted plant and animal species, ecosystem services provided by healthy watersheds, and economic benefits such as from increased tourism.
Of the three United States watersheds which support *L. schaffneriana* ssp. *recurva*, the San Pedro supports the greatest amount. Studies estimate the depletion of the Sierra Vista Subwatershed, which contains the upper San Pedro River, to be 567.4 hectar meters per annum (hma) (4,600 acre feet per annum (afa)) (Upper San Pedro Partnership 2013, entire). We have developed an estimate of water resources needed for recovery of *L. schaffneriana* ssp. *recurva*, based on the best available information, and have included a target of 123.3 hma (1,000 afa) for recovery of this taxon across the entire range. Although this may ultimately be inadequate to meet the water needs of the taxon across the range, it is unlikely that more acre feet of water could be attained annually through any combination of methods; there may simply not be sufficient water rights, conservation savings, or other available water resources (lack of water or precipitation, lack of water rights, lack of willing sellers, lack of conservation opportunities in the appropriate areas, etc.). Therefore, we utilize the 123.3 hma (1,000 afa) as a realistic estimate.

It is unknown if all of the methods listed in the implementation schedule will need to be or even can be employed to down-list or de-list this taxon. Issues surrounding water are complex and the political, social, economic, and environmental aspects of water are constantly changing, and may affect the scope and scale of the implementation of these recovery actions. In addition, actions taken to improve aquatic habitats for other listed species such as *Spiranthes delitescens* (Canelo Hills ladies’ tresses), Chiricahua leopard frog (*Lithobates chiricahuensis*), Northern Mexican gartersnake (*Thamnophis eques megalops*), beautiful shiner (*Cyprinella formosa*), desert pupfish (*Cyprinodon macularius*), Gila chub (*Gila intermedia*), Gila topminnow (*Poeciliopsis occidentalis occidentalis*), Yaqui catfish (*Ictalurus pricei*), Yaqui chub (*Gila purpurea*), Yaqui topminnow (*Poeciliopsis occidentalis sonoriensis*), southwestern willow flycatcher (*Empidonax traillii extimus*), and yellow-billed cuckoo (*Coccyzus americanus*) would benefit *L. schaffneriana* ssp. *recurva*; therefore costs listed above may not reflect the actual cost of recovery, as such costs may be distributed across a variety of efforts targeting riparian and aquatic restoration, reducing the recovery cost per species.
RESUMEN EJECUTIVO

Estado Actual de la Especie

Lilaeopsis schaffneriana ssp. *recurva* fue listada como en peligro de extinción bajo el Acta de Especies en Peligro de Extinción de 1973, como enmendado (16 U.S.C. 1531 et seq.) el 6 de enero de 1997 (62 FR 665) y 83.2 kilómetros (km)(51.7 millas (mi)) de riachuelos o ríos en los condados de Cochise y Santa Cruz, Arizona, fueron designados como hábitat crítico el 12 de julio de 1999 (64 FR37441). La mayoría del hábitat crítico está bajo administración federal por medio del Bosque Nacional Coronado (Servicio Forestal de los Estados Unidos), el Área Ribereña de Conservación Nacional de San Pedro (Oficina de Administración de Tierras), y la Reservación Militar del Fuerte Huachuca (Ejército de los Estados Unidos); una pequeña porción está en propiedad privada. El taxón ocurre en hábitats acuáticos como ciénagas, ríos, riachuelos, y manantiales de cinco cuencas en el sureste de Arizona y porciones adyacentes de Sonora, México. En los Estados Unidos, conocemos 17 sitios apoyando ocurrencias existentes de *L. schaffneriana* ssp. *recurva*, 8 sitios donde todas las ocurrencias de *L. schaffneriana* ssp. *recurva* se consideran extirpadas, y 6 sitios donde ninguna ocurrencia se han reubicado en años recientes. En Sonora, México, conocemos 21 sitios apoyando ocurrencias de *L. schaffneriana* ssp. *recurva*, aunque la mayoría de estos sitios no se han visitado de nuevo en años recientes. Es difícil estimar el número de individuos debido a la naturaleza clonal del taxón, pero las estimaciones de densidad indican que la mayoría de las ocurrencias son estables o están en declive. Tan reciente como julio de 2016, las inundaciones asociadas con tormentas monzónicas han erosionado los desagües con ocurrencias de *L. schaffneriana* ssp. *recurva* afectando el estatus de esta especie en algunos sitios por medio de remover estas ocurrencias (Radke comunicación personal, 21 de julio de 2016).

Requisitos de Habitat y Factores Limitantes

Lilaeopsis schaffneriana ssp. *recurva* ocurre en aguas poco profundas y de flujo lento que son relativamente estables, o en cauces activos que contienen sitios de refugio donde las plantas pueden escapar al efecto de las inundaciones que causan erosión (62 FR 665, p. 667; 64 FR 37441, p. 37442). El taxón depende de la disponibilidad de sustratos permanentemente mojados (o casi así), lodosos, o sustratos limosos con algún contenido orgánico. En este momento, las amenazas más significativas a largo plazo para la continua existencia de esta especie son: 1) degradación de hábitat acuáticos, incluyendo la extracción de las aguas subterráneas no sostenibles; 2) efectos de sequía y cambio climático; 3) incendios y la sedimentación y erosión resultantes; 4) competencia de plantas invasoras no nativas; y 5) manejo inadecuado del pastoreo de ganado.

Prioridad de Recuperación

El número de prioridad de recuperación para *Lilaeopsis schaffneriana* ssp. *recurva* es 3C, indicando que la entidad listada es un subespecie, el nivel de amenaza es alta, el potencial de recuperación es alto, y que hay conflicto de alguna forma con la actividad económica (extracción de aguas subterráneas para minería, agricultura, Fuerte Huachuca, uso municipal, y pozos privados).
Estrategia de Recuperación

La estrategia principal de recuperación es conservar el hábitat de *L. schaffneriana ssp. recurva* por medio de la implementación de varias estrategias de protección, incluyendo la disminución de la extracción de aguas subterráneas, aumentando la conservación y recarga del agua, y protegiendo las ocurrencias de *L. schaffneriana ssp. recurva* y sus bancos de semillas. Proveer conservación y restauración del taxón y su hábitat permitirá que ocurrencias estables y autosostenibles persistan con algún nivel de conectividad y oportunidades para su expansión, dispersión, y intercambio genético. Esfuerzos adicionales se centrarán en mejorar la comprensión básica de la ecología y amenazas de *L. schaffneriana ssp. recurva*.

Meta de Recuperación

La meta principal de la recuperación es retirar el taxón de la Lista Federal de Plantas Amenazadas y En Peligro de Extinción (50 CFR 17.12).

Objetivos de Recuperación

1) Proteger y restaurar el hábitat acuático funcional y reducir las amenazas de la extracción del agua por las ocurrencias existentes, recién descubiertas, y recién establecidas de *L. schaffneriana ssp. recurva* y su hábitat.

2) Conservar las ocurrencias históricas, existentes, recién descubiertas, y recién establecidas de *L. schaffneriana ssp. recurva* y sus bancos de semillas; establecer nuevas ocurrencias en hábitat adecuados; establecer plantas en jardines botánicos para propósitos de investigación científica, recuperación y educación; y mantener las semillas para conservación y recuperación en instalaciones de almacenamiento de semillas.

3) Quitar los estresores relacionados a plantas invasoras y el manejo inadecuado de pastoreo de ganadería de las ocurrencias históricas, existentes, recién descubiertas, y recién establecidas de *L. schaffneriana ssp. recurva* y su hábitat.

4) Con la ayuda de las partes afectadas, desarrollar una técnica estandarizada de monitoreo basada en los protocolos existentes; monitorear la ocurrencias, amenazas, y resultados de acciones de manejo históricas, existentes, recién descubiertas, y recién establecidas de *L. schaffneriana ssp. recurva*, permitiendo el manejo adaptativo.

5) Fomentar estudios científicos para mejorar nuestro entendimiento de la geografía, ecología, viabilidad, genética, propagación, restauración de hábitat, y amenazas de *L. schaffneriana ssp. recurva* en los Estados Unidos y en México.

6) Desarrollar participación publica, socios colaborativos, planes de manejo de las agencias, y acuerdos con dueños de tierras privadas en los Estados Unidos y México que fomenten la conservación de *L. schaffneriana ssp. recurva*.
Criterios de Recuperación

Para la reclasificación de *L. schaffneriana* ssp. *recurva* de en peligro de extinción a amenazada, debe ocurrir lo siguiente:

1) Una extensión mínima acumulada de 2,000 metros cuadrados (0.2 ha / 0.5 ac) de hábitat naturalmente ocupada existe en la Cuenca San Pedro, de la cual 20 por ciento ocurre en riachuelos tributarios, manantiales, o ciénagas; y un mínimo de 2,000 metros cuadrados (0.2 ha / 0.5 ac) en la Cuenca Santa Cruz, de la cual 90 por ciento ocurre en riachuelos tributarios, manantiales, o ciénagas, distribuidas entre las áreas del riachuelo Ciénega (35 por ciento), el riachuelo Sonoita (10 por ciento), las tierras altas y río principal del Valle de San Rafael (10 por ciento), y el oeste de las montañas Huachuca (35 por ciento); y un mínimo de 125 metros cuadrados (0.01 ha / 0.03 ac) existe en la Cuenca del Río Yaqui; este nivel de ocupación está sostenido o mejorado por un mínimo de 10 años de un periodo de 15 años.

2) Por lo menos 3 ocurrencias distintas con una extensión acumulada mínima de 150 metros cuadrados (0.015 ha / 0.037 ac) de hábitat ocupado están ubicadas en cada una de las tres cuencas de los Estados Unidos son estables o aumentando durante un periodo de 10 años;

3) Las amenazas al taxón y su hábitat se han manejado y reducido, y el manejo está asegurado por un mínimo de 20 años para asegurar la persistencia de las ocurrencias con una extensión acumulada mínima (reflejada por el logro y manutención de los criterios 1 y 2 para la reclasificación a amenazada) en cada una de las tres cuencas en los Estados Unidos;

4) Una colección viva de tantos plantones como lo permitan los recursos, recolectados de regiones genéticamente distintas (p.ej. Fuerte Huachuca / SPRNCA norte; San Rafael / Las Cienegas / Sonoita; SPRNCA sur / San Bernardino), de ambas cuencas San Pedro y Santa Cruz, están mantenidas en por lo menos un jardín botánico en el sur de Arizona para propósitos de recuperación y educación; y

5) Las semillas de *L. schaffneriana* ssp. *recurva* se recolectan siguiendo las guías del Centro para la Conservacion de Plantas, las cuales incluyen la recolecta de no más que 10 por ciento de la cosecha de semillas de 50 individuos de planta con semillas por población (si el tamaño de población lo permite), y recolectar de una variedad de micro sitios y características físicas dentro del grupo de plantas. Estas semillas están almacenadas en el Centro Nacional del Servicio de Investigaciones Agrícolas para Recursos Genéticos en Fort Collins, Colorado y están almacenadas según protocolos en una instalación local tal como los Jardines Botánicos del Desierto en Phoenix, Arizona, para propósitos de conservación y recuperación a largo plazo.

Para retirar *L. schaffneriana* ssp. *recurva* de la lista, tienen que cumplirse los criterios para la reclasificación a amenazada y el nivel de ocupación en los criterios para reclasificación sea sostenible o incremente por un mínimo de 20 años en un periodo de 30 años.
Acciones Necesarias

1) Mantener o mejorar la hidrografía de agua subterránea, tanto medida por observaciones de los pozos y por medidores de flujo, reduciendo la extracción de agua y aumentando la conservación y recarga de agua;

2) Conservar las ocurrencias históricas, existentes, recién descubiertas, y recién establecidas de L. schaffneriana ssp. recurva y sus bancos de semillas por medio de la protección de hábitat ocupado, corredores desocupados, y calidad de hábitat; aumentar las ocurrencias existentes y establecer nuevas ocurrencias de L. schaffneriana ssp. recurva en hábitat adecuado usando el material genético apropiado para aumentar la redundancia (numero de ocurrencias) y capacidad para adaptarse (tamaño de ocurrencias) del taxón para asegurar sobrevivencia a largo plazo del taxón en el sur de Arizona; establecer plantas en jardines botánicos y otros instalaciones aprobados por el Servicio para propósitos de investigación científica, recuperación, y educación; y mantener las semillas para conservación y recuperación en instalaciones de almacenamiento de semillas;

3) Eliminar estresores, relacionados a las plantas invasoras y el manejo inadecuado del pastoreo de ganadería de las ocurrencias históricas, existentes, recién descubiertas, y recién establecidas de L. schaffneriana ssp. recurva y su hábitat;

4) Trabajar hacia una técnica de monitoreo estandarizado y seguir con el monitoreo;

5) Realizar investigaciones y monitoreos que faciliten un mejor entendimiento de: a) la distribución y genética del taxón en los Estados Unidos y México, b) las dinámicas y tendencias de poblaciones y metapoblaciones, c) ciclo biológico de vida, d) respuesta a amenazas, y e) otras relaciones claves para la recuperación de la especie;

6) Desarrollar asociaciones colaborativas con administradores de tierras federales y estatales, propietarios privados, museos y jardines botánicos, instalaciones de almacenamiento de semillas, y otros; proveer educación al público tanto como sea necesario para lograr la recuperación; promover el logro de conservación y recuperación en México, resultando en la protección de L. schaffneriana ssp. recurva y su hábitat a largo plazo; en coordinación con los interesados, revisar este plan como fuese necesario cuando nueva información salga a la luz para que la estrategia de recuperación y las acciones conduzcan a la recuperación de manera tan eficiente como sea posible.

Fecha y Costos Estimados para la Recuperación

Fecha: 2037
Costo: $52,006,000*

* La importancia de prevenir el exceso de extracción de agua y aumentar la recarga del agua en las Cuencas San Pedro, Santa Cruz, y Río Yaqui en los Estados Unidos no se puede subestimar para la recuperación de L. schaffneriana ssp. recurva y otras especies que ocurren en el mismo lugar. Arizona es un estado árido con suministro de agua limitado, una población humana
proyectada a duplicarse a partir del 2050, y una sequía que continúa (ADWR 2014, todo; Marshall et al. 2010, p. 1). Hay un desequilibrio potencial a largo plazo entre los suministros disponibles de agua y las demandas de agua proyectadas durante los siguientes 100 años si no se toman acciones (ADWR 2014, todo). Un suministro limpio y sustentable de agua es esencial para el crecimiento urbano para la gente y el medioambiente; la planificación de los recursos de agua tiene que abarcar la necesidad de agua para el crecimiento urbano tanto como para las necesidades ambientales (Marshall et al. 2010, p. 1). El uso eficiente del agua, la reutilización de agua, la captura de agua, y la compra de los derechos de aguas superficiales son todos los métodos con los cuales la disponibilidad de agua se puede incrementar para el beneficio de *L. schaffneriana* ssp. *recurva*. Estas actividades tendrán beneficios adicionales para muchas otras especies de plantas y animales listadas y no listadas las cuales ocurren en el mismo lugar, servicios de ecosistemas producidos por las cuencas saludables, y beneficios económicos como el aumento del turismo.

De las tres cuencas en los Estados Unidos que sostienen *L. schaffneriana* ssp. *recurva*, la de San Pedro sostiene la mayor cantidad. Los estudios estiman que el agotamiento de la Subcuenca Sierra Vista, la cual contiene el Río San Pedro alto, es de 567.4 hectarea-metros por año (4,600 acre-pies por año) (Upper San Pedro Partnership 2013). Hemos desarrollado un estimado de recursos de agua necesarios para la recuperación de *L. schaffneriana* ssp. *recurva*, basado en la mejor información disponible, y hemos incluido una meta de 123.3 hectarea-metros por año 1,000 acre-pies por año para la recuperación de este taxón a través de todo su rango. Aunque al final esta puede ser inadecuada para cumplir con las necesidades de agua del taxón a través de todo su rango, no es probable que se puedan conseguir más acre-pies de agua anualmente por medio de cualquier combinación de métodos; simplemente puede ser que no haya suficiente derechos de agua, ahorros de conservación, u otros recursos de agua disponible (falta de precipitación, falta de derechos de agua, falta de vendedores disponibles, falta de oportunidades de conservación en las áreas adecuadas, Etc.). Así que utilizamos los 1,000 acre-pies por año como un estimado realista.

No se sabe si todos los métodos descritos en el programa de implementación se necesitarán o aún si se pueden implementar para reclasificar el taxón a amenazado o quitarlo de la lista. Los asuntos que tratan del agua son complejos y los aspectos políticos, sociales, económicos, y ambientales del agua están cambiando constantemente, y pueden afectar el alcance y la escala de la implementación de estas acciones de recuperación. Además, las acciones tomadas para mejorar el hábitat acuático para otras especies listadas tales como *Spiranthes delitescens*, *Lithobates chiricahuensis*, *Thamnophis eques megalops*, *Cyprinella formosa*, *Cyprinodon macularius*, *Gila intermedia*, *Poeciliopsis occidentalis occidentalis*, *Ictalurus pricei*, *Gila purpurea*, *Poeciliopsis occidentalis sonoriensis*, *Empidonax traillii extimus*, y *Coccyzus americanus* beneficiará a *L. schaffneriana* ssp. *recurva*; así que puede ser que los costos listados arriba no reflejen los costos actuales de la recuperación, de tal manera que los costos pueden estar distribuidos por una variedad de esfuerzos con objetivos de restauración de áreas ribereñas y acuáticas, reduciendo el costo de recuperación por especie.
Table of Contents

Disclaimer .. iv
Executive Summary ... v
RESUMEN EJECUTIVO ... x
Acknowledgements ... xvii
Part I. Background .. 1
 1. Overview .. 1
 2. Description ... 1
 3. Terminology .. 2
 4. Taxonomy ... 2
 5. Historical Distribution .. 3
 6. Current Distribution and Abundance ... 3
 7. Habitat ... 11
 8. Reproduction ... 12
 9. Ecology .. 14
 10. Reasons for Listing and Current Threats ... 15
 Factor A: Present or threatened destruction, modification or curtailment of habitat or range 16
 Factor B: Overutilization for commercial, recreational, scientific, or educational purposes 27
 Factor C: Disease or predation .. 28
 Factor D: Inadequacy of existing regulatory mechanisms ... 28
 Factor E: Other natural or manmade factors affecting its continued existence: 29
 11. Past Conservation Efforts ... 31
Part II. Recovery ... 35
 1. Recovery Strategy ... 35
 2. Recovery Goal ... 35
 3. Recovery Objectives .. 35
 4. Recovery Criteria .. 36
 6. Stepdown Recovery Outline ... 38
 7. Recovery Narrative ... 41
Part III. Implementation ... 49
 Implementation Schedule ... 51
Literature Cited ... 60
Acknowledgements

The recovery planning process has benefitted from the advice and assistance of many individuals, agencies, and organizations. We thank the following individuals for providing information and insight; we apologize to anyone whose name was omitted inadvertently from this list:

Greta Anderson, Western Watersheds Project
Debbie Brewer, Fort Huachuca
Kevin Cobble, Fish and Wildlife Service
Jody Daline, The Nature Conservancy
Jason Douglas, Fish and Wildlife Service
Doug Duncan, Fish and Wildlife Service
Mima Falk, private researcher
Shannon Fehlberg, Desert Botanical Garden
Julia Fonseca, Pima County Office of Sustainability and Conservation
Matt Killeen, The Nature Conservancy
John Kraft, Coronado National Forest
Liz Makings, Arizona State University
Bill Radke, Fish and Wildlife Service
Marcia Radke, Bureau of Land Management
Jim Rorabaugh, private researcher
Sue Schuetze, Arizona Game and Fish Department
Jeff Simms, Bureau of Land Management
Tom Skinner, private researcher
Jonathan Titus, State University of New York at Fredonia
Priscilla Titus, private researcher
Sabra Tonn, Arizona Game and Fish Department
Peter Warren, The Nature Conservancy

The primary author of this Recovery Plan is Julie Crawford, Plant Ecologist, Tucson Ecological Services Field Office, Arizona. Parts of this plan were taken from a draft plan written by Jonathan and Priscilla Titus in 2011. Jennifer Smith-Castro translated the Executive Summary into Spanish. Additional thanks go to the following for their technical assistance and review and editing of this document: Julie McIntyre, Arturo Mora Olivo, Jim Rorabaugh, Scott Richardson, Sarah Rinkevich, Bill Radke, and Jeff Simms.
Part I. Background

1. Overview

Lilaeopsis schaffneriana ssp. *recurva* was listed as endangered under the Endangered Species Act of 1973 (Act), as amended (16 U.S.C. 1531 et seq.) on January 6, 1997 (62 FR 665), and 83.2 kilometers (km)(51.7 miles (mi)) of streams and rivers in Cochise and Santa Cruz Counties Arizona were designated as critical habitat on July 12, 1999 (64 FR 37441). The decision to list the taxon was based upon the limited number of wetland habitats in southern Arizona and northern Sonora, Mexico, suitable for this plant, and threats including the degradation and destruction of habitat resulting from poorly managed livestock grazing, non-native plant invasion, water diversions, dredging, and groundwater pumping. Other threats include catastrophic flooding, post-fire erosion and sedimentation, and drought exacerbated by climate change.

A draft Recovery Plan, written by contractors, was sent for review to the Service on October 28, 2011. Due to other higher priorities, it was not finalized at that time. The first 5-year status review (5-Year Review) for *L. schaffneriana* ssp. *recurva* was signed on August 21, 2014 (Service 2014c, entire). Based on the static or declining status of the species across its range and continued threats, it was recommended in the 5-Year Review that the taxon remain listed as endangered. The recovery priority number for *L. schaffneriana* ssp. *recurva* is 3C, meaning that the listed entity is a subspecies, the level of threat is high, the potential for recovery is high, and there is a conflict with some form of economic activity (groundwater withdrawal for mining, agriculture, Fort Huachuca, municipal use, and private wells).

2. Description

Lilaeopsis schaffneriana ssp. *recurva* is a semi-aquatic to fully aquatic herbaceous (non-woody) perennial (having a life cycle of more than two years) (Figure 1). The root system is comprised of both long horizontal rhizomes (underground stem that has shoots and roots growing from it) and connected shorter vertical rhizomes. Hollow linear leaves that taper to a point are produced singly or in clusters at the top of short rhizomes. The leaves vary greatly in length from 2.5 to 33 centimeters (cm) (0.98 to 12.99 inches (in)) depending on their habitat, with shorter leaves typically found in drier environments and longer leaves when the plant is submerged in water (Coulter and Rose 1902, p. 125; Affolter 1985, p. 51; Service 2014a, p. 4). The leaves are round or elliptical in cross section, 0.5 to 5.5 millimeters (mm) (0.02 to 0.2 in) in diameter, and contain 6 to 18 distinctive septa (thin partitions) along their length (Affolter 1985, p. 51; Arizona Rare Plant Guide Committee 2001).
Plant Guide Committee 2001, unpaginated; Service 2014, p. 4). Umbels (umbrella-like flower structures) are borne on stalks shorter than the leaves and contain three to ten 1.0 to 2.0 mm (0.04 to 0.08 in) wide perfect (containing male and female parts) flowers with five white to slightly maroon tinted petals and maroon anthers (pollen bearing part of the flower) (Affolter 1985, p. 51). Fruits are spherical and dry, 1.6 to 2.3 mm (0.6 to 0.09 in) long by 1.2 to 2.0 mm (0.04 to 0.08 in) broad, with five distinct spongy ribs that make the seed buoyant and easily dispersed by water (Affolter 1985, p. 57). Flowering has been observed episodically from March through October, peaking in July and occurring with abundance irregularly (Warren et al. 1991, p.15).

3. Terminology

Because this taxon is clonal (propagate asexually) in nature and it is not practicable to identify individuals, the term “occurrence” is used herein to denote concentrations of this taxon within a distinct locality that are relatively distant from other concentrations. Occurrences are more likely to share underground root systems, and are often separated from one another by bed and bank features or hydrological features. Within occurrences, clusters of stems separated by areas without stems are denoted herein as “patches”. An occurrence can consist of one to many patches; patches can have one or a few stems or form carpets of stems. Within this document the term “occurrence” applies to historical, existing, newly discovered, and newly established occurrences.

4. Taxonomy

Lilaeopsis schaffneriana ssp. *recurva* is a member of the Apiaceae (carrot family). Within the Apiaceae, *Lilaeopsis* is in tribe Oenantheae and subfamily Apioideae (Bone et al. 2011, p. 789). The genus is considered to be taxonomically difficult because all members of the genus have similar simplified vegetative morphology of linear, hollow, transversely septate (divided) leaves. These characteristics, however, are unlike those of most other genera in this family. *Lilaeopsis* is a genus of 15 perennial, rhizomatous herbs of damp, marshy, or aquatic habitats found in temperate regions of North and South America and Australasia (Affolter 1985, p. 1; Bone et al. 2011, p. 789). *Lilaeopsis schaffneriana* is found in southeastern Arizona, central and northern Mexico, and northwestern South America (Bone et al. 2011, p. 790).

The first mention of this taxon was in 1853 when Schlechtendal named it *Crantzia schaffneriana* from a specimen collected in Mexico (Affolter 1985, p. 3). Apparently due to inadequate descriptions, the species was merged into *Crantzia lineata* and the genus was considered monotypic (Affolter 1985, p. 3). In 1891, Greene published the genus name *Lilaeopsis* to replace *Crantzia* (Affolter 1985, p. 3) and, in 1897, *Crantzia schaffneriana* was transferred to *Lilaeopsis* based on much better specimens (Coulter and Rose 1897, pp 47-49). In his 1927 revision of the genus, Hill separated the material collected in Arizona as the species *L. recurva* (named for its re-curved pedicels); separating it from that of Mexico and Chile which he named *L. schaffneriana* (Affolter 1985, p. 53). Affolter (1985, pp. 53-54), with many more samples at his disposal, determined that the features separating *L. recurva* and *L. schaffneriana* were not valid and reduced *L. recurva* to subspecies status, i.e., *L. schaffneriana* ssp. *recurva*. The subspecies status was used because of apparent differences in fruit morphology and geographic
distribution (Affolter 1985, p. 56). This differentiation is maintained in the 2011 revision of the genus by Bone et al. (2011, p. 800).

In general, researchers consider plants west of the Continental Divide in Sonora to be ssp. *recurva* and those to the east, ssp. *schaffneriana* (64 FR 37441, p. 37442). Due to the work of J. Rorabaugh and others, we are aware of additional small occurrences of *L. schaffneriana* to the south and east of this divide at Rio Casas Grandes, Rio Santa Clara, Rio Papogochic, and Rio Conchos. We are excluding these occurrences from this document due to the uncertainty of the subspecies these plants represent. Genetic analysis is warranted to better understand the relationship of occurrences within and between localities in southeastern Arizona, northern Sonora, and northwestern Chihuahua, Mexico.

5. **Historical Distribution**

The type specimen of *L. schaffneriana* ssp. *recurva* was collected in the Santa Cruz Valley of southern Arizona near Tucson on May 19, 1881, in an area that is now encompassed by the City of Tucson and no longer provides suitable habitat for the species (Affolter 1985, p. 61). The following history was determined using the Southwest Environmental Information Network (SEINET observations). It was not collected again until September 28, 1947, by L.N. Gooding in Bear Canyon of the Huachuca Mountains. Gooding made six additional collections through 1961, documenting *L. schaffneriana* ssp. *recurva* from the San Pedro River and Garden Canyon in the Huachuca Mountains. Additional collections were made by other researchers from Sonoita Creek, the Huachuca Mountains, and the San Pedro River in the 1960s. In the 1970s, additions to the range included collections from the San Rafael Valley and Canelo Hills; in the 1980s, San Bernardino National Wildlife Refuge was also added to the list of known locations. In the 1990s, the taxon was collected from Empire Gulch and northern Sonora, Mexico; in the 2000s, it was documented from the new locations of Bingham Cienega and the Babocomari Ranch; and in the 2010s, it was found further south in Arizona along the San Pedro River. Figure 2 represents the general distribution of the taxon by watershed across its range; locations believed to be extirpated are delineated, as are locations where the plant has not been seen in recent history, but where a seedbank may still persist. Figure 3 represents the designated critical habitat of the taxon in the United States.

6. **Current Distribution and Abundance**

Within the Santa Cruz, San Pedro, and Rio Yaqui watersheds in southern Arizona, we are aware of 17 locations supporting extant occurrences of *L. schaffneriana* ssp. *recurva*, 8 locations where all *L. schaffneriana* ssp. *recurva* occurrences are considered extirpated, and 6 locations where historical occurrences have not been seen in recent years. Within the Santa Cruz, San Pedro, Rio Yaqui, Rio Sonora, and Rio Concepcion watersheds in Sonora, Mexico, we are aware of 21 locations supporting *L. schaffneriana* ssp. *recurva* occurrences, though most of these locations have not been revisited in recent years. Many of these locations were documented after the plant was listed under the Act, extending the known geographic range to the north and west in Arizona, and expanding the previous elevation limits of 1,148 to 2,133 meters (m) (3,500 to 6,500 feet (ft)) known at the time of listing, to the current known range of 610 to 2,166 m (2,001 to 7,100 ft) (Vernadero 2011b, p. 3; Vernadero Group and the Desert Botanical Garden 2012, p.
Figure 2. Range-wide distribution and status of *Lilaeopsis schaffneriana* ssp. *recurva* by watershed in southern Arizona and northern Sonora, Mexico.
Figure 3. Range-wide distribution of *Lilaeopsis schaffneriana* ssp. *recurva* designated critical habitat totaling 83.2 kilometers (51.7 miles) of streams or rivers in Cochise and Santa Cruz counties, Arizona.
There are no occurrences that appear to be increasing in size and many are reported from single patches among competing vegetation or in aquatic habitat that is in danger of being lost to groundwater pumping or drought. Numerous other occurrences have not been relocated in many years and are believed extirpated due to degradation and contraction of suitable habitat.

Individual *L. schaffneriana* ssp. *recurva* plants are difficult to identify due to their clonal reproduction and clustered growth habit. Measurements of density and frequency have been collected in only a portion of the range, and monitoring data have been collected using different, though sometimes overlapping, methodologies. Density by category (clumped, scattered-patchy, scattered-even, sparse, moderate, or dense) has been recorded by some surveyors, others use the number of detections divided by the number of sampling points, or report only the area of the patch with no indication of density. In addition, the taxon is difficult to detect due to its diminutive size. As a result, it is difficult to compare occurrences or develop an overall estimate of population size or density by occurrence, watershed, or across the entire range of the taxon.

To allow a comparison between and among known occurrences of *L. schaffneriana* ssp. *recurva* across their range, we used existing geographical information system data (points and polygons) developed by the Arizona Natural Heritage Program (Table 1). These data were developed using information from herbarium collections, reports, and other documentation depicting locations where *L. schaffneriana* ssp. *recurva* occurs or has occurred historically. Although the unit of measure for this comparison was acres, the data do not represent actual acres of land occupied by the taxon, because density and distribution within polygons varies both spatially and temporally. We use these data simply to illustrate the general area of distribution of *L. schaffneriana* ssp. *recurva* on the landscape. The greatest quantities of *L. schaffneriana* ssp. *recurva* are found within the San Pedro River, the western Huachuca Mountains, and Cienega Creek (Table 1). We used the percentages developed in Table 1, along with density and distribution data for *L. schaffneriana* ssp. *recurva* to determine recovery criteria.

In the United States, *L. schaffneriana* ssp. *recurva* occurs or has historically occurred on lands administered by the United States Army, the Forest Service, the Bureau of Land Management, the Service, Arizona State Parks, Pima County, The Nature Conservancy, and private landowners. In Mexico, most *L. schaffneriana* ssp. *recurva* occurs on private lands (Anderson 2006, entire). The current status and trends of the occurrences within the United States and Mexico are summarized in Table 2 and discussed in detail in Appendix A. It is hypothesized that the distribution of *L. schaffneriana* ssp. *recurva* in the Santa Cruz watershed consists of persistent remnants of a formerly larger occurrence (64 FR 37441, p. 37443). Although occurrences may be considered ephemeral and long-term viability may be considered low, sites that still contain functioning perennial waters and that have historically supported *L. schaffneriana* ssp. *recurva*, but currently do not, should not be considered unoccupied without further analysis and subsequent surveys.
<table>
<thead>
<tr>
<th>Watershed</th>
<th>Location</th>
<th>Unit</th>
<th>Percent of Watershed</th>
<th>Percent of Total Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Pedro</td>
<td>San Pedro River</td>
<td>1,503</td>
<td>71.5</td>
<td>43.9</td>
</tr>
<tr>
<td></td>
<td>Babocomari River and tributaries</td>
<td>251</td>
<td>11.9</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>Eastern Huachuca Mountains</td>
<td>227</td>
<td>10.8</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>Sonora, Mexico</td>
<td>120</td>
<td>5.7</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>61.4</td>
<td></td>
</tr>
<tr>
<td>Santa Cruz</td>
<td>Western Huachuca Mountains</td>
<td>556</td>
<td>48.6</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>Cienega Creek</td>
<td>415</td>
<td>36.2</td>
<td>12.1</td>
</tr>
<tr>
<td></td>
<td>San Rafael Valley (uplands and mainstem river)</td>
<td>90</td>
<td>7.9</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>Sonoita Creek</td>
<td>68</td>
<td>5.9</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Santa Cruz River</td>
<td>8</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Sonora, Mexico</td>
<td>8</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>33.5</td>
<td></td>
</tr>
<tr>
<td>Rio Yaqui</td>
<td>Black Draw</td>
<td>72</td>
<td>50.7</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Leslie Canyon</td>
<td>46</td>
<td>32.4</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>Sonora, Mexico</td>
<td>24</td>
<td>16.9</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>Rio Concepcion</td>
<td>Sonora, Mexico</td>
<td>24</td>
<td>100</td>
<td>0.7</td>
</tr>
<tr>
<td>Rio Sonora</td>
<td>Sonora, Mexico</td>
<td>8</td>
<td>100</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Table 1. Approximation of overall distribution of occupied and formerly occupied *L. schaffneriana* ssp. *recurva* habitat throughout the United States and Mexico. Units do not represent actual acres of land occupied by the taxon because density and distribution within polygons varies both spatially and temporally, instead they are derived from geographic information system locations, where points are given a value of 8 acres, and polygon acres are calculated.
<table>
<thead>
<tr>
<th>Location</th>
<th>Jurisdiction</th>
<th>Watershed</th>
<th>Status</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ciénega near the Casa Grande</td>
<td>Private; Sonora, Mexico</td>
<td>Rio Concepcion</td>
<td>unknown</td>
<td>abundant (2006)</td>
</tr>
<tr>
<td>La Cienega la Atascosa</td>
<td>Private; Sonora, Mexico</td>
<td>Rio Concepcion</td>
<td>unknown</td>
<td>unknown (1990)</td>
</tr>
<tr>
<td>Rancho el Arribaba along the Rio Cocospera</td>
<td>Private; Sonora, Mexico</td>
<td>Rio Concepcion</td>
<td>unknown</td>
<td>occurs sparingly along 6 km (3.7 mi) of river (2014)</td>
</tr>
<tr>
<td>Ojo de Aqua</td>
<td>Private; Sonora, Mexico</td>
<td>Rio Sonora</td>
<td>unknown</td>
<td>1 occurrence; 1 very small patch (2006)</td>
</tr>
<tr>
<td>Arroyo el Tigre</td>
<td>Private; Sonora, Mexico</td>
<td>Rio Yaqui</td>
<td>unknown</td>
<td>unknown (2007)</td>
</tr>
<tr>
<td>Leslie Canyon NWR</td>
<td>Service</td>
<td>Rio Yaqui</td>
<td>extant</td>
<td>1 occurrence; multiple patches (2014)</td>
</tr>
<tr>
<td>Mababi Spring</td>
<td>Private; Sonora, Mexico</td>
<td>Rio Yaqui</td>
<td>unknown</td>
<td>numerous plants (1994)</td>
</tr>
<tr>
<td>Rio San Bernardino</td>
<td>Private; Sonora, Mexico</td>
<td>Rio Yaqui</td>
<td>extirpated</td>
<td>1 occurrence; 2 small patches (1988)</td>
</tr>
<tr>
<td>San Bernardino Black Draw</td>
<td>Service</td>
<td>Rio Yaqui</td>
<td>extirpated</td>
<td>1 occurrence; 4 patches (1991)</td>
</tr>
<tr>
<td>San Bernardino NWR house pond</td>
<td>Service</td>
<td>Rio Yaqui</td>
<td>extirpated</td>
<td>1 occurrence; ? patches (1990)</td>
</tr>
<tr>
<td>Arroyo el Tapiro</td>
<td>Private; Sonora, Mexico</td>
<td>San Pedro</td>
<td>unknown</td>
<td>unknown (1990)</td>
</tr>
<tr>
<td>Arroyo los Alisos</td>
<td>Private; Sonora, Mexico</td>
<td>San Pedro</td>
<td>unknown</td>
<td>1 occurrence; 1 small patch (2006)</td>
</tr>
<tr>
<td>Arroyo los Fresnos</td>
<td>Private; Sonora, Mexico</td>
<td>San Pedro</td>
<td>unknown</td>
<td>numerous patches (2006)</td>
</tr>
<tr>
<td>Babocomari River</td>
<td>Private</td>
<td>San Pedro</td>
<td>extant</td>
<td>2 occurrences – 8 patches (2006); 1 patch (2013)</td>
</tr>
<tr>
<td>Bingham Cienega</td>
<td>Pima County</td>
<td>San Pedro</td>
<td>extirpated</td>
<td>1 occurrence; 2 patches (2002)</td>
</tr>
<tr>
<td>Ciénega Los Fresnos</td>
<td>Private; Sonora, Mexico</td>
<td>San Pedro</td>
<td>unknown</td>
<td>uncommon (2006)</td>
</tr>
<tr>
<td>Garden Canyon</td>
<td>Fort Huachuca</td>
<td>San Pedro</td>
<td>extant</td>
<td>2 occurrences; scattered patches / mats (2013)</td>
</tr>
<tr>
<td>Joaquin Canyon</td>
<td>Private and Forest Service</td>
<td>San Pedro</td>
<td>unknown</td>
<td>3 occurrences; multiple patches (2002; not relocated in 2014)</td>
</tr>
<tr>
<td>La Cieneguita</td>
<td>Private; Sonora, Mexico</td>
<td>San Pedro</td>
<td>unknown</td>
<td>1 occurrence; 1 small patch (2006)</td>
</tr>
<tr>
<td>Location</td>
<td>Jurisdiction</td>
<td>Watershed</td>
<td>Status</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>La Sauceda</td>
<td>Private; Sonora, Mexico</td>
<td>San Pedro</td>
<td>unknown</td>
<td>unknown (1990)</td>
</tr>
<tr>
<td>Las Nutrias</td>
<td>Private; Sonora, Mexico</td>
<td>San Pedro</td>
<td>unknown</td>
<td>1 occurrence; sparse small patches (2006)</td>
</tr>
<tr>
<td>Las Pamitas</td>
<td>Private; Sonora, Mexico</td>
<td>San Pedro</td>
<td>unknown</td>
<td>1 occurrence; small patches (2006)</td>
</tr>
<tr>
<td>Lone Mt Canyon</td>
<td>Forest Service</td>
<td>San Pedro</td>
<td>extant</td>
<td>1 occurrence; multiple patches (2014)</td>
</tr>
<tr>
<td>McClure Canyon</td>
<td>Fort Huachuca</td>
<td>San Pedro</td>
<td>extant</td>
<td>1 occurrence; 1 patch (2013)</td>
</tr>
<tr>
<td>Mud Spring</td>
<td>Forest Service</td>
<td>San Pedro</td>
<td>extant</td>
<td>1 occurrence – multiple patches (2014)</td>
</tr>
<tr>
<td>O’Donnell Creek</td>
<td>The Nature Conservancy and Forest Service</td>
<td>San Pedro</td>
<td>unknown</td>
<td>multiple occurrences; ? patches (2002; not relocated in 2013)</td>
</tr>
<tr>
<td>Portrero del Alamo</td>
<td>Private; Sonora, Mexico</td>
<td>San Pedro</td>
<td>unknown</td>
<td>1 occurrence; 1 small patch (2006)</td>
</tr>
<tr>
<td>Rio Casa Blanca</td>
<td>Private; Sonora, Mexico</td>
<td>San Pedro</td>
<td>unknown</td>
<td>1 occurrence; frequent patches (2006)</td>
</tr>
<tr>
<td>Rio San Pedro</td>
<td>Private; Sonora, Mexico</td>
<td>San Pedro</td>
<td>unknown</td>
<td>1 occurrence; patchy (2006)</td>
</tr>
<tr>
<td>Rio San Rafael</td>
<td>Private; Sonora, Mexico</td>
<td>San Pedro</td>
<td>unknown</td>
<td>1 occurrence; scattered plants (2006)</td>
</tr>
<tr>
<td>San Pedro River</td>
<td>Bureau of Land Management</td>
<td>San Pedro</td>
<td>extant</td>
<td>multiple occurrences; multiple patches (2010)</td>
</tr>
<tr>
<td>Sawmill Canyon</td>
<td>Fort Huachuca</td>
<td>San Pedro</td>
<td>One patch extirpated; one patch extant</td>
<td>1 occurrence 2 patches: 1 patch extirpated (2002); 1 patch (2013)</td>
</tr>
<tr>
<td>Sycamore Spring</td>
<td>Forest Service</td>
<td>San Pedro</td>
<td>extant</td>
<td>1 occurrence; 1 patch (2013)</td>
</tr>
<tr>
<td>Turkey Creek</td>
<td>Private</td>
<td>San Pedro</td>
<td>unknown</td>
<td>multiple occurrences; ? patches (1989; not relocated in 2013)</td>
</tr>
<tr>
<td>Villa Verde</td>
<td>Private; Sonora, Mexico</td>
<td>San Pedro</td>
<td>unknown</td>
<td>1 occurrence; dense patches (2006)</td>
</tr>
<tr>
<td>Wakefield Mine springbox</td>
<td>Forest Service</td>
<td>San Pedro</td>
<td>extant</td>
<td>1 occurrence; 1 large patch (2014)</td>
</tr>
<tr>
<td>Location</td>
<td>Jurisdiction</td>
<td>Watershed</td>
<td>Status</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Winkelman</td>
<td>Private</td>
<td>San Pedro</td>
<td>extirpated</td>
<td>1 occurrence; ? patches (1967; not relocated in ~2002)</td>
</tr>
<tr>
<td>Bear Canyon</td>
<td>Forest Service</td>
<td>Santa Cruz</td>
<td>extant</td>
<td>multiple occurrences; few patches / singles (2013)</td>
</tr>
<tr>
<td>Freeman Spring</td>
<td>Forest Service</td>
<td>Santa Cruz</td>
<td>extirpated</td>
<td>1 occurrence; ? patches (2003; not relocated in 2013; altered habitat)</td>
</tr>
<tr>
<td>Huachuca Canyon</td>
<td>Fort Huachuca</td>
<td>Santa Cruz</td>
<td>extant</td>
<td>1 occurrence; ? patches (2013)</td>
</tr>
<tr>
<td>Las Cienegas NCA</td>
<td>Bureau of Land Management</td>
<td>Santa Cruz</td>
<td>extant</td>
<td>multiple occurrences; multiple patches (2013)</td>
</tr>
<tr>
<td>Lower Cienega Creek</td>
<td>Pima County</td>
<td>Santa Cruz</td>
<td>extirpated</td>
<td>1 occurrence; 1 patch (2001; not relocated in 2013; altered habitat)</td>
</tr>
<tr>
<td>Monkey Spring</td>
<td>Private</td>
<td>Santa Cruz</td>
<td>unknown</td>
<td>1 occurrence; ? patches (1977)</td>
</tr>
<tr>
<td>Parker Canyon Lake</td>
<td>Forest Service</td>
<td>Santa Cruz</td>
<td>unknown</td>
<td>1 occurrence; one patch (2007; not relocated in 2014)</td>
</tr>
<tr>
<td>San Rafael Ranch SNA</td>
<td>Arizona State Parks</td>
<td>Santa Cruz</td>
<td>unknown</td>
<td>multiple occurrences; ? patches (2001; not relocated in 2013)</td>
</tr>
<tr>
<td>Santa Cruz River South of the town of Santa Cruz</td>
<td>Private; Sonora, Mexico</td>
<td>Santa Cruz</td>
<td>unknown</td>
<td>unknown (2005)</td>
</tr>
<tr>
<td>Scotia Canyon</td>
<td>Forest Service</td>
<td>Santa Cruz</td>
<td>extant</td>
<td>multiple occurrences; multiple patches (2013)</td>
</tr>
<tr>
<td>Sonoita Creek NA</td>
<td>Arizona State Parks</td>
<td>Santa Cruz</td>
<td>unknown</td>
<td>1 occurrence; 1 patch (2008; not revisited)</td>
</tr>
<tr>
<td>Sunnyside Canyon</td>
<td>Forest Service</td>
<td>Santa Cruz</td>
<td>extant</td>
<td>multiple occurrences; multiple patches (2013)</td>
</tr>
<tr>
<td>Tucson</td>
<td>Private</td>
<td>Santa Cruz</td>
<td>extirpated</td>
<td>1 occurrence; ? patches (1881; altered habitat)</td>
</tr>
<tr>
<td>Upper Sonoita Creek</td>
<td>Private</td>
<td>Santa Cruz</td>
<td>extant</td>
<td>2 occurrences; multiple patches (2013)</td>
</tr>
</tbody>
</table>

Table 2. Status of *Lilaeopsis schaffneriana* ssp. *recurva* occurrences and patches from locations in the United States and Sonora, Mexico, organized by Watershed, along with the year they were last seen. Observations from Mexico were primarily from one-time surveys; the current status of *L. schaffneriana* ssp. *recurva* at these locations is unknown. The symbol “?” is used to denote an unknown number.
7. Habitat

Lilaeopsis schaffneriana ssp. *recurva* inhabits cienegas (marshes), rivers, streams, and springs. It generally occurs in perennial, shallow, and slow-flowing or quiet waters or in active stream channels containing refugial sites where most plants can escape the effect of scouring floods (62 FR 665, p. 667; 64 FR 37441-37442); see Figures 4a and b which depict some of these habitats. Historically, drainages in southeastern Arizona consisted of broad, shallow waterways in valley bottoms that gradually collected overland flow from large watersheds. The San Pedro River, for example was reported to be a meandering marshy creek where beaver (*Castor canadensis*) and fish were described as plentiful (Bureau of Land Management 1993, p. 7). *Lilaeopsis schaffneriana* ssp. *recurva* appears to be adapted to this type of hydrological regime and resulting conditions. During larger flood events, small, weakly rooted clumps of the plant may tear off, float downstream, and are deposited elsewhere in the drainage. Some of these clumps survive if appropriate habitat conditions are present.

![Figure 4. Examples of *Lilaeopsis schaffneriana* ssp. *recurva* growing in a) slow moving water in Scotia Canyon and b) a scoured stream edge on the San Pedro River. Photos by J. Crawford, Service, October 18, 2011, and May 9, 2014, respectively.](image)

Historically, side channels and overflow depressions were usually hydrologically linked to the main channel by subsurface flow even when surface water was lacking, and likely served as important refugia for *L. schaffneriana* ssp. *recurva* and a host of other riparian species. For the last 150 years almost all of the drainages in southeastern Arizona have been drastically altered by anthropogenic change and, today most of these drainages consist of deeply incised channels that are disconnected from the former broad floodplains (Nichols 2007, pp. 46, 52). Surface and groundwater development has disrupted aquatic habitat connectivity that once provided opportunities for expansion into new, downstream habitats after floods. Accordingly, conservation of *L. schaffneriana* ssp. *recurva* habitat must include protection of the stability of the hydrologic system supporting the habitat (Haas and Frye 1997, pp. 10, 12-12). Because many watercourses are incised, scouring during flood events is much more intense and there are
few off-channel habitats suitable for new colonization. Drought and increased pumping of
groundwater have been correlated with the loss of perennial flow in many drainages throughout
the range of the taxon.

Found between 610 and 2,170 m (2,001 and 7,060 ft) elevation in the United States, the range of
the taxon crosses the Sky Island Region of southeastern Arizona and adjacent portions of Sonora,
Mexico where it reaches as high as 2,240 m (7,349 ft) elevation (Titus and Titus 2008c, p. 459;
Vernadero 2011b, p. 3; Vernadero Group and the Desert Botanical Garden 2012, p. A-16). Lilaeopsis schaffneriana ssp. recurva is found in riparian soils such as Glendale silt-loam. The Glendale series consists of deep soils formed in stratified alluvium on flood plains, stream
terraces, and alluvial fans (National Cooperative Soil Survey 2012, entire). Plant communities in
which L. schaffneriana ssp. recurva occur are described as: 1) Warm-Temperate Wetlands, 2)
Sonoran Riparian Deciduous Forest and Woodlands, and 3) Sonoran and Sinaloan Interior
Marshlands and Submergent Communities (Minckley and Brown 1994, pp. 248-249; 269-273,
282-283). These classifications encompasses a wide range of marshland communities that are
inhabited by Schoenoplectus pungens and other Schoenoplectus spp. (bulrush), Typha
domingensis (cattail), Eleocharis macrostachya and other Eleocharis spp. (spikerush), Juncus
spp. (rush), Carex spp. (sedge), Cynodon dactylon (Bermuda grass), Cyperus odoratus (fragrant
flatsedge), and Paspalum dilatatum (dallisgrass). Lilaeopsis schaffneriana ssp. recurva is
generally found along the margins of these habitats in 0-15 cm of water. The taxon occurs both
in full sun and in understory shade of Populus fremontii-Salix gooddingii (Fremont cottonwood-
Goodeling willow) forests (Simms pers. comm. October 26, 2011).

8. Reproduction

Based on greenhouse observations, flowering can begin within three months after germination
(Titus and Titus 2008a). The length of time a flower persists in the wild is unknown, but has
been relatively short (two to five days) in greenhouse observations. Flowering has been
observed episodically between March and October, peaking in July and occurring with
abundance irregularly (Warren et al. 1991, p.15). In a wild occurrence at Bingham Cienega
Preserve, flowering was observed in mid-May with hundreds of flowers per 1 square meters
(Titus and Titus 2008c). In plugs that had been outplanted from the greenhouse to Finley Tank
spring runs, flowers were observed in July, 1.5 years after plugs were outplanted, and flowers
and fruits were also observed the following September and May (Titus and Titus 2008a).
Flowers typically produced from five to seven seeds (Titus and Titus 2011, p. 19).

The pollination biology of the taxon is unknown. It is presumed to be insect pollinated due to
floral features and the predominance of insect pollination in the Apiaceae. Radke (pers. comm.
April 22, 2014) documented a Formica ant species feeding on the nectar of L. schaffneriana ssp.
recura flowers along the San Pedro River in both 2012 and 2013; he believes this may be an
important pollinator for the taxon. Whether or not the taxon is an obligate outcrosser or is self-
compatible is unknown, however experiments suggest that most if not all Lilaeopsis spp. are self-
compatible (Affolter 1985, p. 22) and self-compatibility is common in the Apiaceae (Schlessman

As the fruits of most Lilaeopsis species, including this taxon, mature, the peduncles and pedicels
re-curve and are pressed directly against the soil allowing fruits to go underwater or cause them
to be buried in the mud or sand (Affolter 1985, p. 27). This technique insures that some fruits remain in suitable habitat (Affolter 1985, p. 27). Most *Lilaeopsis* sp. seeds are spongy, making them buoyant and easily dispersed by water and birds, a trait believed to be responsible for the distribution of the genus throughout its extensive range (Affolter 1985, p. 57; Bone et al. 2011, pp. 790, 802).

Germination in *L. schaffneriana* ssp. *schaffneriana* occurs one to two weeks after seeds disperse (Gori 1995, p. 3). Similarly, Titus and Titus (2008a, p. 317) found *L. schaffneriana* ssp. *schaffneriana* to have a high germination rate (90 percent) in a greenhouse study with seed less than one year old. The seeds in this study were not cold stratified (a cold treatment that simulates natural winter conditions), so stratification does not appear to be a pre-requisite for germination (Titus and Titus 2008a, p. 317). The taxon reproduces both sexually via seed and asexually through rhizome spread and fragmentation. Clonal establishment following flooding events is thought to be important for maintaining diversity in the taxon (Vernadero and The Desert Botanical Garden 2012, p. i).

Although the research of Bone et al. (2011, pp. 792, 796-797) found little difference between *L. schaffneriana* ssp. *recurva* and *L. schaffneriana* ssp. *schaffneriana* at a higher-order genetic level, researchers with the Desert Botanical Garden in Phoenix, using the more sensitive genetic analysis tool of microsatellites, detected differences within and among *L. schaffneriana* ssp. *recurva* occurrences (Vernadero and The Desert Botanical Garden 2012, p. 9; Fehlberg and Allen 2014, p. 7). In these studies, occurrences in close geographic proximity to one another were typically most similar genetically, although some distant occurrences exhibited similarity (Vernadero and The Desert Botanical Garden 2012, p. i; Fehlberg and Allen 2014, p. 7). Genetic similarity suggests there is either current or historical connectivity among occurrences (Vernadero and The Desert Botanical Garden 2012, p. i; Fehlberg and Allen 2014, p. 8). Results of these studies indicate that conservation of large numbers of genetically distinct occurrences may contribute to the preservation of genetic diversity and avoid the effects of genetic drift (Vernadero and The Desert Botanical Garden 2012, p. 13; Fehlberg and Allen 2014, p. 9). These studies also recommend maintenance of dispersal pathways and the reduction of habitat fragmentation to facilitate downstream dispersal of detached clumps via stream currents (Vernadero and The Desert Botanical Garden 2012, p. 14; Fehlberg and Allen 2014, p. 10). In addition, these findings show the need to exercise caution in introducing new occurrences to avoid the introduction of foreign alleles and potential effects of outbreeding (Fehlberg and Allen 2014, p. 9).

Despite the importance of vegetative reproduction to the taxon, equally important is the seedbank, which can allow for recolonization following drought if hydric conditions return. It has been suggested that seed from this taxon may persist for five to ten years in drought situations (Titus and Titus 2008a, p. 319; Titus and Titus 2008b, p. 398; Titus and Titus 2008c, p. 463). At Bingham Cienega, *L. schaffneriana* ssp. *recurva* seeds were detected in the seedbank samples with densities of 0, 10±25 and 51±72 seeds (mean±sd) per 1 square meter at three sampling dates (Titus and Titus 2008b). This was a very small portion of the total seedbank, which was dominated by *Eleocharis macrostachya*, *Schoenoplectus pungens*, and *Typha domingensis*. At the Audubon Research Ranch reintroduction site, buried *L. schaffneriana* ssp. *recurva* seeds were detected two years after outplanting, indicating quick seedbank establishment.
On the San Bernardino National Wildlife Refuge, providing permanent water on bare soil around ponds and springs resulted in the appearance of *L. schaffneriana* ssp. *recurva* plants from an underground seedbank (K. Cobble, pers. comm. April 14, 2014).

9. Ecology

Lilaeopsis schaffneriana ssp. *recurva* competes poorly with other wetland plant species, making intermediate levels of disturbance from flooding, fire, grazing, or other sources necessary to reduce competition and promote dispersal and the preservation of genetic diversity (62 FR 665, pp. 671, 676; Vernadero and the Desert Botanical Garden 2012, p. 13). As *L. schaffneriana* ssp. *recurva* possesses weak and shallow roots, the need to be able to compete for sunlight, water, and nutrients must be balanced with some unknown extent of companion plants that enable bank stability along riparian channels. Refugial sites such as backwaters in active stream channels (62 FR 665, p. 667; 64 FR 37441, p. 37442) or cobble pavement in ephemeral streams afford an escape from scouring floods and hoof action, respectively (Service 2014a, p. 5). During scouring flood events, plants may be removed from areas of erosion and move downstream to areas of deposition or may be completely lost, if area of deposition is unsuitable habitat or plants are damaged.

The likelihood of fire in *L. schaffneriana* ssp. *recurva* wetland habitat is minimal due to the presence of both water and higher humidity than adjacent uplands; fire may occur in these areas, however, during dry periods. The response of *L. schaffneriana* ssp. *recurva* to fire is unknown, though it is suspected that low to moderate severity fire would not negatively impact plants over the long-term due to their ability to resprout from rhizomes. Unnatural high severity fire on site however, could damage rhizomes and seedbanks directly, or erosion and sedimentation from upland fire could bury plants (Service 2014c, pp. 32-33).

Competition for sunlight, water, and nutrients interferes with *L. schaffneriana* ssp. *recurva* growth and reproduction. In a monitoring study of *L. schaffneriana* ssp. *recurva* at Bingham Cienega, potentially competing vegetation, in this case bulrush (*Schoenoplectus pungens*), was clipped at ground level in treatment plots (Titus and Titus 2008c, p. 461). Results of the experiment showed that *L. schaffneriana* ssp. *recurva* in clipped plots had more leaves and produced flowers, whereas no flowers were present in control plots. Transplant studies by Titus and Titus (2008a, p. 318) at Finley Tank on the Audubon Research Ranch and Warren (1991, p. 5) at San Bernardino National Wildlife Refuge found that the success of transplants was partially related to competitive effects of surrounding vegetation and that *L. schaffneriana* ssp. *recurva* is susceptible to competition from wetland emergent species including *Schoenoplectus* sp., *Eleocharis* sp., *Carex pellita*, and others. In dry years, this effect can be exacerbated; in a 2004 monitoring effort at Garden Canyon, it was noted that drier local conditions had led to increased colonization by more drought-tolerant species including *Muhlenbergia rigens* (deergrass), which purportedly led to increased competition for sunlight and other resources (Engineering and Environmental Consultants 2004, p. 9). In a 2008 monitoring effort at Garden Canyon, researchers indicated that increased competition, with both native and non-native plants had a noticeable effect on the detectability of *L. schaffneriana* ssp. *recurva* (Vernadero Group 2009, p. 10).
Invasive non-native plants have increased their presence within aquatic habitat of southeastern Arizona, and this invasion and expansion of infestations are expected to continue. Invasive non-native plants are of concern because they often quickly colonize an area and aggressively compete with native species for sunlight, water, and nutrients. Commonly associated invasive non-native species in \(L. \) \textit{schaffneriana} ssp. \textit{recurva} habitat include \textit{Sorghum halepense} (Johnson grass), \textit{Hordeum jubatum} (foxtail), \textit{C. dactylon}, \textit{Nasturtium officinale} (watercress), and \textit{Rubus discolor} (Himalayan blackberry) (Engineering and Environmental Consultants 2004, p. 12; Titus and Titus 2008a, p. 317; Titus and Titus 2008a; Vernadero Group 2011a, p. 1; L. Kennedy pers. comm. February 3, 2014). The removal of more aggressive stoloniferous (runner that takes root at points along its length to form new plants) or rhizomatous competitors with \(L. \) \textit{schaffneriana} ssp. \textit{recurva} appears to be a principle component in stimulating \(L. \) \textit{schaffneriana} ssp. \textit{recurva} growth (Haas and Frye 1997, p. 12). For examples of \(L. \) \textit{schaffneriana} ssp. \textit{recurva} competitive interactions with invasive non-native and native plants refer to the 5-Year Review (Service 2014c, entire).

10. Reasons for Listing and Current Threats

In determining whether to list, delist, or reclassify a species under section 4(a) of the Act, we evaluate the threats to the species based on the five categories outlined in section 4(a)(1) of the Act: (A) the present or threatened destruction, modification, or curtailment of its habitat or range; (B) overutilization for commercial, recreational, scientific, or educational purposes; (C) disease or predation; (D) the inadequacy of existing regulatory mechanisms; and (E) other natural or manmade factors affecting its continued existence. The primary constituent elements of critical habitat for \(L. \) \textit{schaffneriana} ssp. \textit{recurva} include: 1) sufficient perennial baseflows to provide a permanently or nearly permanently wetted substrate for growth and reproduction of \(L. \) \textit{schaffneriana} ssp. \textit{recurva}; 2) a stream channel that is relatively stable, but subject to periodic flooding that provides for rejuvenation of the riparian plant community and produces open microsites for \(L. \) \textit{schaffneriana} ssp. \textit{recurva} expansion; 3) a riparian plant community that is relatively stable over time and in which non-native species do not exist or are at a density that has little or no adverse effect on resources available for \(L. \) \textit{schaffneriana} ssp. \textit{recurva} growth and reproduction; and 4) in streams and rivers, refugial sites in each watershed and in each reach, including but not limited to springs or backwaters of mainstem rivers, that allow each occurrence to survive catastrophic floods and recolonize larger areas.

Habitat degradation over historical time has resulted in decreased number and size of \(L. \) \textit{schaffneriana} ssp. \textit{recurva} occurrences, potentially decreasing genetic diversity, and making the taxon more vulnerable to extinction as a result of stochastic events (Vernadero Group and the Desert Botanical Garden 2012, p. 13). The clonal nature of the taxon may also reduce genetic diversity, increasing vulnerability to extinction. For instance, the restriction of \(L. \) \textit{schaffneriana} ssp. \textit{recurva} to a relatively small area in southeastern Arizona and adjacent areas of Mexico increases the chance that a single environmental catastrophe, such as a severe tropical storm or drought, could eliminate appreciable numbers of occurrences. Occurrences are in many cases isolated, as well, which makes the chance of natural recolonization after extirpation less likely. Research and consultation under section 7 of the Act have identified threats that could potentially impact \(L. \) \textit{schaffneriana} ssp. \textit{recurva}, which include: aquatic habitat degradation (Factor A); wildfire and resulting sedimentation (Factor A); invasive non-native plant competition (Factor...
A); livestock grazing (Factor A); recreation (Factor A); and the effects of drought and climate change (Factor E). A list of threats and associated recovery objectives, criteria, and actions can be found in Table 3.

Factor A: Present or threatened destruction, modification or curtailment of habitat or range

Aquatic Habitat Degradation
– All four primary constituent elements of critical habitat are impacted by this threat.

Groundwater pumping may lead to perennial reaches becoming intermittent or ephemeral and to springs drying out, resulting in the loss of *L. schaffneriana ssp. recurva* occurrences (Warren et al. 1991, p. 7; 60 FR 16836, p. 16838; Service 2014b, pp. 148-149). Along the upper San Pedro River, Stromberg et al. (1996, pp. 124–127) found that wetland herbaceous species are the most sensitive to the effects of a declining groundwater level. Webb and Leake (2005, pp. 302, 318–320) described a correlative trend regarding vegetation along southwestern streams from historically being dominated by marshy grasslands to currently being dominated by woody species that are more tolerant of declining water tables due to their deeper rooting depths.

It is important to discern the relative effects that groundwater pumping may have on shallow alluvial water and stream flows and the effects of water use by vegetation. The water use by riparian vegetation must also be evaluated with respect to its ecological benefits.

Groundwater systems exist in a state of equilibrium between sources of recharge (infiltration of precipitation along mountain fronts and in ephemeral channels) and discharges (water entering streams as base flow and riparian evapotranspiration). In a hypothetical, unaffected system, equilibrium exists and recharge and discharge volumes are equal. When pumping occurs in such a groundwater system, it alters this equilibrium and, given that groundwater gradients are typically oriented towards perennial streams, it results in less water being available for discharge to streams or to support riparian vegetation, which would include *L. schaffneriana var. recurva*.

There are many physical and spatial factors to consider in any groundwater system, but the basic tenets still apply; groundwater pumping of sufficient volume and duration will eventually reduce discharge (Alley et al. 1999, pp. 30-35). We therefore feel that our statement that groundwater pumping is a threat to *L. schaffneriana var. recurva* represents the best available science.

The subsequent narrative pertains largely to the ecological, hydrologic, and geomorphic conditions on the upper San Pedro River, which contains multiple occurrences and patches of *L. schaffneriana var. recurva* and 54.2 km (33.7 mi) of the taxon’s critical habitat. The ecology, hydrology, and climate of the San Pedro River and its watershed are exceptionally well-researched. The San Pedro River is also situated at a similar elevation and latitude as other lowland rivers and watersheds (Santa Cruz River, Cienega Creek, and Rio Yaqui) that are also occupied by *L. schaffneriana var. recurva*. All of these rivers exist within the same changing climate and have experienced (and are experiencing) similar natural and anthropogenic impacts. Analyses of the status of *L. schaffneriana var. recurva* on the San Pedro River therefore serve as a useful surrogate to describe threats faced by the taxon rangewide.
We reviewed Kennedy and Gungle (2010, entire) and Thomas and Pool (2006, entire), both of which concern the effects of riparian evapotranspiration on baseflows in the upper San Pedro River. Collectively, these investigators determined that regional groundwater pumping for human uses had not resulted in a detectable decrease in base flows within the period of record analyzed, but that changes in upland and riparian vegetation did exhibit an adverse influence. Kennedy and Gungle (2010, p. 35) specifically determined that riparian evapotranspiration can utilize the entirety of groundwater discharged from the regional aquifer (base flow) in lower reaches of the upper San Pedro River. Kennedy and Gungle (2010, p. 35) cautioned, however, that there is a possibility that the relationship between regional groundwater storage (water present in the aquifer) and alluvial groundwater storage (water present in stream alluvium) has changed between predevelopment conditions and the present.

If regional groundwater gradients have decreased over time, resulting in less regional groundwater discharge to the alluvial aquifer and thence to the stream channel, infiltration of streamflow back into the alluvial aquifer could increase as the system seeks equilibrium. In effect, this would result in alluvial aquifer storage becoming increasingly derived from streamflow rather than regional groundwater, while total discharge from the alluvial aquifer remains relatively constant. In other words, base flow reductions would actually be the indirect result of groundwater pumping rather than solely the direct effects of evapotranspiration. Kennedy and Gungle (2010) did not possess the data needed to evaluate this scenario. Thomas and Pool (2006, p. 63) qualified their conclusions by stating that regional groundwater pumping in the United States and Mexico could affect streamflow in the San Pedro River in the future, because regional groundwater pumping can have a delayed effect on streamflows (Alley et al. 1999, pp. 31-35). Wahi et al. (2008, p. 7) notes residence times (the time required for groundwater to travel from mountain front recharge zones to the San Pedro River) of up to 1,000 to 10,000 years with linear velocities of 1.4 to 4.0 m (4.6 to 13.1 ft) per year.

In an analysis conducted subsequent to Thomas and Pool (2006, entire) and Kennedy and Gungle (2010, entire), Nguyen et al. (2014, p. 222) found no support, based solely on trends in green plant cover over time, for the hypothesis that neither mesoriparian vegetation nor mesquite encroachment in uplands within the upper San Pedro River watershed were responsible for reduced stream flows. Moreover, Nguyen et al. (2014, p. 221) noted that a slow decline in mesoriparian vegetation (i.e. near the river and depending on alluvial and runoff-derived water) is already underway.

The findings of Nguyen et al. (2010, entire) with respect to riparian decline are also informative given the statement by Thomas and Pool (2006, p. 23) that, in a water budget-driven approach to watershed analysis, whereby discharge is equal to recharge, “…an increase in groundwater pumping must be balanced by a decrease in groundwater storage, baseflow, or evapotranspiration.” This provides further supporting evidence that pumping-driven storage change is occurring and is affecting groundwater discharges (base flow and evapotranspiration).

We feel that an eventual reduction in upper San Pedro River stream flow resulting from groundwater pumping is a plausible scenario from both the conceptual standpoint described by Alley et al. (1999, pp. 31-35) as well as a water-budget standpoint (Thomas and Pool 2006, p. 23), given the dissimilarities in the quantities of water withdrawn by wells relative to the water
consumed by vegetation. Approximately 1,850 hma (15,000 afa) are pumped from the regional aquifer for human uses, with 1,048.5 hma (8,500 afa) of active and passive recharge (projects to increase recharge) reducing the net removal of groundwater to approximately 801.8 hma (6,500 afa). By comparison the discharge apportioned to evapotranspiration is less than 30 percent of net pumping (approximately 234.4 hma) (1,900 afa) (Imperial values appear in Table ES-1 in Upper San Pedro Partnership 2013, p. v; conversions to International System units were made using standard conversions rather than the conversion factors appearing on p. vii). More importantly, the 1,850 hma (15,000 afa) that are pumped from the regional aquifer match the volume of natural recharge resulting from percolation of precipitation along the mountain fronts and in ephemeral channels. Again, there are active and passive recharge efforts being undertaken, but the net removal of 801.8 hma (6,500 afa) of groundwater represents 43 percent of natural recharge; it is inevitable that discharges of groundwater to the San Pedro River and its riparian vegetation will eventually be reduced by pumping. Historic pumping will also exhibit time-delayed effects; all groundwater previously pumped from the regional aquifer remains unavailable for future discharge to the stream and / or riparian vegetation, including *L. schaffneriana* var. *recurva*.

Leenhouts et al. (2006, p. 78) did not specifically evaluate the water needs of *L. schaffneriana* var. *recurva*, but the taxon is a component of the authors’ Hydric Herbaceous Perennial class, which includes a number of taxa that co-occur with *L. schaffneriana* var. *recurva*, including *Equisetum laevigatum* (smooth scouring rush), *Schoenoplectus acutus* (hardstem bulrush), *Juncus torreyi* (Torrey rush), *Typha latifolia* (hardstem bulrush), *T. domingensis* (cattail), *Rorippa nasturtium-aquaticum* (watercress), *Veronica anagallis-aquatica* (water speedwell), *Eleocharis montevidensis* (sand spikerush), and *Juncus arcticus* var. *balticus* (baltic rush). Leenhouts et al. (2006, p. 78) found that the occurrence of hydric herbaceous perennial plant cover was greatest in perennial sites and declined as streamflow became more intermittent and that the fluvial surfaces supporting these plants were frequently inundated and were underlain by shallow ground water. These are comparable to the hydrologic conditions that Leenhouts et al. (2006, p. 76) found to support cottonwood / willow vegetation.

The above-ground component of riparian vegetation present within stream channels represents an impediment to the passage of flood waters, which reduces flood velocities, dissipates flood energy, and causes lateral movement of water into floodplains where present. The reduced flood flow velocities, and the soil-stabilizing effect of root masses, in turn reduce the ability of flood waters to entrain sediment and concurrently facilitate the deposition of sediment on the flood plain. The lateral movement of low-velocity water results in increased alluvial and bank water storage, which lengthens the post-flood recession of flood water and, if of sufficient volume, can increase base flows for appreciable periods of time. Stream banks with perennial herbaceous vegetation tend to have better developed soils, which further increase infiltration capacity (Correll 1996, entire).

Riparian vegetation is also associated with increased ecological site conditions; organic matter produced by plants is a major contributor to soil development, structure, and fertility (Lewis et al. 2003, pp. 47-48). The below-ground component of riparian vegetation further enhances flood-plain and bank water storage because root growth and subsequent root decay can create soil aggregates and soil macropores that increase rates of infiltration of rainwater and flood
water, thereby enhancing groundwater recharge and baseflow replenishment (Lewis et al. 2003, p. 10; Leenhouts et al. 2006, p. 103; and Ghestem et al. 2011, pp. 870 and 875).

We also considered the statements of Webb et al. (2007, pp. 225-227) with respect to the increase in the extent of riparian vegetation in several sites in Arizona, including within the San Pedro River. The extensive, present-day riparian vegetation exists in San Pedro River reaches that historically (pre-1880s) likely existed as cienegas, or fluvial marshes, which exhibited a limited areal extent of woody riparian vegetation (Webb et al. 2007, pp. 223-225). The subsequent increases in riparian vegetation are the result of natural geomorphic process following historic (late nineteenth century) river-scale arroyo cutting and the subsequent establishment and succession of woody species as floodplains formed within the newly entrenched river (Jackson et al. 1988, pp. 29-35 and 59-72; Webb et al. 2007, p. 226; Fogg et al. 2012, pp. 6; National Riparian Service Team 2102, p. 16). The cessation of livestock overgrazing within the San Pedro Riparian National Conservation Area in the late 1980s further contributed to the increase in riparian vegetation (National Riparian Service Team 2012, p. 16).

The historic (1880s through 1950s) degradation of the San Pedro River's cienega-like conditions was followed by a period of riparian succession and interrelated geomorphic adjustment that continues to the present time (National Riparian Service Team 2012, pp. 16-17). Fogg et al. (2012, pp. 12-25) and Jackson et al. (1988, pp. 69-71 and 134), describe the crucial role of riparian vegetation in promoting the sediment aggradation, soil formation, and increased bank water storage that ultimately creates cienegas in riverine ecosystems. Fogg et al. (2012, p. 14) concluded that the progression of these physical and biological processes could result in the limited reestablishment of cienega-like conditions at certain locations along the San Pedro River. These reestablished cienegas would be capable of supporting the Hydric Herbaceous Perennial vegetation community (Leenhouts et al. 2006, p. 78) in which *L. schaffneriana* var. *recurva* occurs. The establishment and succession of woody riparian vegetation is thus driving the geomorphic and ecological processes by which additional *L. schaffneriana* var. *recurva* habitat will be created. Conversely, removal of woody riparian vegetation (such as under the auspices of increasing stream discharges) will reverse these geomorphic and ecological processes and halt the progression towards cienega habitat. This would be to the detriment of *L. schaffneriana* var. *recurva* recovery.

Again, we anticipate that the return of cienega conditions to the San Pedro River will occur at a small, site-specific scale. We also acknowledge that the historic (1880s), river-scale cienega that would be highly beneficial to *L. schaffneriana* var. *recurva* is unlikely to reestablish itself in the near-term. The National Riparian Service Team (2012, p. 17-18) stated that the historic upper San Pedro River cienega described by Webb et al. (2007, pp. 223-225) existed under hydrologic and climatic regimes and geomorphic conditions that may never occur again, and are not likely to develop during a management time scale of 5-50 years. Additional uncertainty with respect to the future evolution of large-scale cienega-like conditions results from the ongoing withdrawal of groundwater discussed below.

We have determined that the San Pedro River's current Fremont cottonwood and Goodding’s willow gallery forests are promoting the formation of spatially-limited cienega conditions favorable to the establishment of additional *L. schaffneriana* var. *recurva* occurrences. We have
also determined that these riparian forests likely represent the region’s highest-potential riparian communities for the near future (i.e. decades). It is therefore in the streams with which these woody vegetative communities presently exist that we seek to maintain existing occurrences of \textit{L. schaffneriana} \textit{var. recurva} and to ensure the taxon’s recovery.

Riparian vegetation co-occurs with \textit{L. schaffneriana} \textit{var. recurva} despite the appreciable water use of the woody plant community. Thomas and Pool (2006) conducted a quantitative evaluation of the water used by vegetation in the upper San Pedro River watershed and concluded (p. 22) that evapotranspiration from all sources (upland and riparian vegetation) represents 94 percent of the predevelopment water budget for the watershed of the San Pedro River at Charleston; the relative importance of upland versus riparian vegetation was not determined (p. 57). Thomas and Pool (2006, p. 23) further stated that evapotranspiration from the shallow water table in the floodplain of the San Pedro River represented 41 percent of the annual predevelopment water budget.

On a per-area basis in the Upper San Pedro River Basin, stands of \textit{Populus fremontii} (Fremont cottonwood) and \textit{Salix gooddingii} (Goodding's willow) exhibit relatively large evapotranspiration rates compared to \textit{Prosopis velutina} (velvet mesquite). Annual transpiration by \textit{P. velutina} in the Upper San Pedro River Basin is 689 mm (27.1 in) of water per unit of vegetation area from both groundwater and precipitation-based sources. Cottonwood-willow forests occurring in perennial reaches in the Upper San Pedro River Basin annually transpire 966 mm (38.0 in) of water per unit of vegetation area. In intermittent sites, cottonwood-willow forests annually transpire 410 mm (16.1 in) of water per unit of vegetation area. The areal extent of land occupied by mesquite (723-973 hectares) (ha) (1786.5- 2404.3 acres) (ac), however, appreciably exceeds the areal extent of cottonwood-willow woodlands (253 and 118 ha (625.2 and 291.6 ac) in perennial and intermittent sites, respectively). Consequently, the upper San Pedro Basin’s mesquite woodlands cumulatively transpire 498.3 to 670.6 hma (4,039.8 to 5,436.7 afa of water compared to 244.4 hma (1,981.4 afa) for cottonwood / willow in perennial reaches and 48.4 hma (392.4 afa) in intermittent reaches (see Table 52, p. 139 in Leenhouts et al. 2006).

Lastly, the upper San Pedro River’s riparian vegetation, despite its own water use, also moderates the direct evaporation of water from the river’s surface. Open water exhibits relatively high evaporation. Goodrich et al. 2000 (pp. 292-293) determined that annual open water evaporation in the upper San Pedro River was 1,156 mm (45.5 in) per unit area, representing 60 percent of what was predicted by standard evaporation calculations for an unsheltered area. The moderating factor that reduced evaporation from open water areas by 40 percent was entrenchment and shading from riparian areas. Leenhouts et al. (2006, p. 139), using the same shade and entrenchment-moderated open water evaporation value, found that open-water evaporation amounted to 49.7 hma (403 afa) of discharge from groundwater.

In summary, we have determined, based on extensive evaluation of the literature pertaining to the upper San Pedro River, that: (1) groundwater withdrawals have, and likely will, threaten the long-term persistence of \textit{L. schaffneriana} \textit{var. recurva}; and (2) the ecological benefits of woody riparian vegetation to co-occurring \textit{L. schaffneriana} \textit{var. recurva} exceed the effects of the former’s evapotranspiration.
The preceding narrative discusses the effects of reduced water availability. Conversely, increases in the availability of alluvial water will have a positive effect on the taxon. Over the past decade, Fort Huachuca has pursued a rigorous water use reduction plan to reduce groundwater consumption in the Sierra Vista subbasin (Harris et al. 2001, p. 15-5; Service 2014b, p. 27). Their efforts have focused primarily on reductions in groundwater demand both on-post and off-post and increased artificial and enhanced recharge of the groundwater system. In addition, Fort Huachuca and the City of Sierra Vista have increased the amount of water recharged to the regional aquifer through construction of effluent recharge facilities and detention basins that not only increase stormwater recharge, but mitigate the negative effects of increased runoff from urbanization. The total net effect of all the combined efforts initiated by Fort Huachuca has been to reduce the net groundwater consumption by approximately 71 percent (280.2 hma / 2,272 afa) since 1989 (Service 2007, pp. 41–42). Despite these efforts, residential water demand continues (Harris et al. 2001, p. 15-5) and the effect of increased water demand and withdrawals may be exacerbated by the current, long-term drought throughout the region (see Drought and Climate Change section below).

A 2007 computer model developed by the United States Geological Survey simulated the response of groundwater pumping in the San Pedro Basin from 1902 to 2003 (Pool and Dickinson 2007, entire). This model reflects a more than 100 foot drop in groundwater levels in the Sierra Vista area as a result of intensive pumping from Fort Huachuca, the Mexicana de Cananea in Sonora (one of the largest open-pit copper mines in the world), agricultural irrigation in Arizona and Sonora, municipal use, and domestic wells in unincorporated areas (Varady et al. 2000, p. 232; Harris et al. 2001, p. 15-5; 60 FR 16836, p. 16838; Pool and Dickinson 2007, pp. 2, 15, 37; Lacher Hydrological Consulting 2012, p. 1). Lacher Hydrological Consulting (2012, p. 2) modified the model to project future groundwater declines in the regional aquifer, finding that, without mitigation, groundwater levels would decline an additional 21.3 m (70 ft) between 2000 and 2100. This further reduction in groundwater dependent baseflows would result in reduced discharge to riparian vegetation, including hydric herbaceous perennials such as _L. schaffneriana_ ssp. _recurva_.

Elsewhere in _L. schaffneriana_ ssp. _recurva_ habitat, the Rosemont Copper Mine is proposed to be constructed in the northeastern area of the Santa Rita Mountains in Santa Cruz County, Arizona. This mine, if built as proposed, would include a mine pit that will be excavated to a depth greater than that of the regional aquifer and water will drain from storage in the aquifer into the pit (see the April 28, 2016, Amended Final Biological Opinion) (Service 2016, p. 23). The need to dewater the pit during mining operations would result in ongoing water removal via pumping of aquifer water storage. Upon cessation of mining, a pit lake would form, and evaporation from this water body will continue to remove water from storage in the regional aquifer (Service 2016, p. 23). This aquifer contributes to the baseflow for Cienega Creek and its tributaries, an area immediately east of the proposed project site which is designated as the Bureau of Land Management’s Las Cienegas National Conservation Area. Cienega Creek and its tributary, Empire Gulch, support numerous occurrences and more than 100 patches of _L. schaffneriana_ ssp. _recurva_.

Several groundwater models have been developed to analyze potential effects from the proposed mine on groundwater withdrawals throughout the affected area, including Cienega Creek and Empire Gulch. Independent models used in the Service (2016) effects analysis indicated that,
while some individual patches would fail to persist in Cienega Creek over time, the proposed action (construction of the Rosemont Mine) would not likely result in large reductions of perennial stream reaches and *L. schaffneriana* ssp. *recurva* would be unlikely to be extirpated from the Cienega Creek watershed (Service 2016 pp. 220-221). This model, however, did not consider the cumulative impact of drawdowns on baseflow in Cienega Creek in combination with similar effects to its tributaries. Multiple agencies and organizations have developed groundwater models to analyze potential effects from the proposed mine on groundwater withdrawals throughout the affected area; one of these groundwater models is anticipated to be updated in the future as part of complying with Terms and Conditions found in the Amended Final Biological Opinion (Service 2016, pp. 101 and 104).

Sand and gravel mining within the watersheds that support *L. schaffneriana* ssp. *recurva* in the United States has occurred and probably will continue (60 FR 16836, p. 16841). No mining occurs within the San Pedro Riparian National Conservation Area (60 FR 16836, p. 16841). Sand and gravel mining removes riparian vegetation and destabilizes the ecosystem, which could cause degradation of *L. schaffneriana* ssp. *recurva* habitat or patch losses upstream or downstream from the mining (60 FR 16836, p. 16841). These mines also pump groundwater for processing, and could locally affect groundwater reserves and perennial stream baseflows (60 FR 16836, p. 16841). In addition, flood control projects that permanently alter stream flow characteristics may reduce or eliminate stream sinuosity and associated pool and backwater habitats that are critical to *L. schaffneriana* ssp. *recurva*.

In summary, the best available scientific and commercial information indicates that any reduction in the presence or availability of water in *L. schaffneriana* ssp. *recurva* habitat is a threat to the taxon. The *L. schaffneriana* ssp. *recurva* occurrences in Cienega Creek and the San Pedro River are two of three major strongholds for this taxon and historical, current, and potential future dewatering is a serious threat to both areas. The third stronghold is the Huachuca Mountains where drought and climate change pose greater threats to *L. schaffneriana* ssp. *recurva* than groundwater pumping. Many more isolated occurrences of *L. schaffneriana* ssp. *recurva* have already become ephemeral or have been lost due to perennial waters becoming intermittent or ephemeral waters drying completely.

Wildfire and Associated Sedimentation and Scouring

– Primary constituent elements 2 through 4 of critical habitat are impacted by this threat.

Fire burns less commonly in the wetland habitat of *L. schaffneriana* ssp. *recurva* than in other systems due to high humidity and presence of water in these areas (Service 2009a, p. 21). Fires in adjacent upland habitats have the potential to be more intense and more frequent then they were historically due to a variety of land management actions, coupled with recent drought conditions (Westerling et al. 2006, p. 940; FireScape 2014, entire). Such fires have severe indirect effects on *L. schaffneriana* ssp. *recurva* and its habitat including increased runoff of floodwaters, deposition of debris and sediment originating in the burned area, and potential for scouring and / or burying of *L. schaffneriana* ssp. *recurva* individuals and habitat (Service 2014b, p. 145). Since the mid-1980s, wildfire frequency in western forests has nearly quadrupled compared to the average of the period 1970 to 1986 (Westerling et al. 2006, p. 941). The timing, frequency, extent, and destructiveness of wildfires are likely to increase as well.
Post-fire flooding and associated sedimentation can strip out, bury, or stunt growth of *L. schaffneriana* ssp. *recurva* patches, or transform habitat from wet or marshy to dry, sandy, or gravelly (Service 2009a, p. 24; Service 2013a, p. 4). For example, Freeman Spring is an area reported historically to contain springy soils and support *L. schaffneriana* ssp. *recurva* (Service 2013a, p. 4). Today, 10 years post-Ryan Fire and subsequent flooding and deposition, the taxon and the habitat no longer exist at this location and are being replaced with a thick sediment layer and prominence of more drought resistant species such as *M. rigens* (Service 2013a, p. 4).

Similarly, in 1998, a large culvert was installed by Santa Cruz County on the Cimarron Road to reduce sedimentation and alteration of habitat occupied by *L. schaffneriana* ssp. *recurva*. The mitigation measure was unsuccessful and sedimentation buried the plants, extirpating this occurrence below the road (Service 1999, p. 235).

In McClure Canyon on Fort Huachuca, an occurrence of *L. schaffneriana* ssp. *recurva* has shifted downslope due to the previously occupied habitat being covered in post-fire sediment (Vernadero Group 2010, p 12). In 2007, a flood at Twin-2 overflow on the San Bernardino National Wildlife Refuge resulted in the covering of *L. schaffneriana* ssp. *recurva* in sediment; as of 2014, no plants had grown through or around the sediment (Radke, pers. comm. Nov 3, 2014). In this instance, the sediment load was not the result of a fire (Radke, pers. comm. Nov 3, 2014). Between April and May, 2017, three wildfires (Sawmill, Mulberry, and Cienega) impacted the Cienega Creek watershed, burning both riparian and upland vegetation. While the impacts are still being assessed at the time of writing, they may include direct burning of *L. schaffneriana* ssp. *recurva*, increase in non-native plants, soil disturbance, fertilizer effect on plants due to fire retardant drops, burial of *L. schaffneriana* ssp. *recurva* patches from upland sedimentation and ash flow, and scouring from rains later in the season.

In 2009, the Huachuca FireScape project was created with participants from Fort Huachuca, the Coronado National Forest, and Coronado National Memorial (FireScape 2014, entire). This group works together to reduce the extent of fires by coordinating prescribed burns and thinning on over 161,874 ha (400,000 ac) across southeastern Arizona (FireScape 2014, entire). In addition, Fort Huachuca’s Integrated Wildfire Management Plan (Gebow and Hessil 2006, entire) and the San Bernardino and Leslie Canyon National Wildlife Refuges Fire Management Plan (Service 2006, p. 3) provide a planning framework for reducing the risk of fire and fire suppression effects on listed species. These combined efforts will help reduce, but not eliminate, the risk of catastrophic fire in and near *L. schaffneriana* ssp. *recurva* habitat.

At lower elevations, the spread of non-native invasive grasses has been increasing in recent decades. For example, *Eragrostis* species are now considered common or dominant on 1.5 million acres or more of the grasslands of the sky island region (Bodner et al. 2013, p. 403). In 2014, the South African *Melinis repens* (natal grass) was noted in great prevalence in several southern Arizona locations (Service 2014d, pp. 1-2; Service 2014e, p. 3); previously it was reported as widespread in Sonora and rapidly increasing (Van Devender and Reina 2005, p. 1).
These non-native grasses not only out-compete native grassland species, but they have a completely different fire regime than the native grasses, tending to form dense stands that promote higher intensity fires more frequently (Bodner et al. 2013, p. 403; Van Devender et al. 1997, p. 4).

In summary, although the direct impacts of fire are potentially reduced due to high humidity and the presence of water within its habitat, the indirect impact of fire on *L. schaffneriana* ssp. *recurva*, including post-fire flooding and sedimentation, may be great. High severity fire and flooding are both expected to increase in the future. Landscape managers have teamed up to help lower the risk of catastrophic fires in the sky island region of southeastern Arizona. However, it will take some time before the benefits from these efforts will be realized. For example, as recently as 2014, a fire occurred on Fort Huachuca and Coronado National Forest lands within 0.4 km (0.25 mi) of a known occurrence of *L. schaffneriana* ssp. *recurva* in Sawmill Canyon. Such fires will likely continue into the future with potential impacts to *L. schaffneriana* ssp. *recurva* and its habitat. The spread of non-native invasive grasses will likely continue to increase fire risk at lower elevations.

Plant Competition

– All four primary constituent elements of critical habitat are impacted by this threat.

Lilaeopsis schaffneriana ssp. *recurva* is most abundant in areas with ample sunlight and low competition with other native and non-native species (Titus and Titus 2008c, p. 459). In a clipping experiment, *L. schaffneriana* ssp. *recurva* leaf number and length, as well as flower production, increased when interspecific competition for sunlight, water, and nutrients was removed (Titus and Titus 2008c, p. 462). At Cienega Spring on the San Bernardino National Wildlife Refuge, newly transplanted *L. schaffneriana* ssp. *recurva* were eliminated in one location that exhibited intense competition with native *Eleocharis* sp. and *Schoenoplectus* sp. (Johnson et al. 1992, p. 7). Similarly, following a 2005 attempt to establish *L. schaffneriana* ssp. *recurva* at San Bernardino National Wildlife Refuge *L. schaffneriana* ssp. *recurva* was outcompeted by other wetland plants (Service 2009a, p. 18). In a 2008 monitoring effort at Garden Canyon, researchers indicated that increased competition, with both native plants and *N. officinale*, had a noticeable effect on the detectability of *L. schaffneriana* ssp. *recurva* (Vernadero Group 2009, p. 10). They also noted that *N. officinale* went from a status of “present” in 2002 to “a major threat” in 2009 when Garden Canyon was reported to be “now choked by a recent invasion of watercress” (Vernadero Group 2010, p. 12). In 2014, *L. schaffneriana* ssp. *recurva* was noted to be small and sparse when growing among dense *C. dactylon*, yet, tall and dense growing just feet away without this competition (Service 2014a, p. 4).

Sorghum halepense (Johnson grass) is a Mediterranean, perennial, invasive non-native grass hybrid between *S. bicolor* and *S. propinquum* (Rout et al. 2013, p. 328). With rhizomes 1.5 m (4.9 ft) deep (Stromberg 2013, p. 4), height of up to 2 m (6.6 ft) (Gould 1988, p. 310), and leachates (solution produced by leaching) produced by the foliage and the roots which inhibit growth of other plants (Rout et al. 2013, pp. 327-328), this highly competitive and rapidly spreading species is now dominant on many floodplains in the southwestern United States (Stromberg 2013, p. 4). Although considered a mesophyte (not adapted to wet or to dry
conditions) by Stromberg (2013, p. 4), others consider its distribution riparian (Hendrickson and Minckley 1985, p. 6) or most common in ecosystems with moist to mesic moisture regimes (Fire Effects Information System 2004, entire). In the Cienega Creek watershed, *S. halepense* is a common, invasive, non-native perennial grass most often associated with cienega wetlands or along stream channels and gravel bars (Tiller et al. 2013, p. 423).

In 1996, researchers noted that in Leslie Canyon, *L. schaffneriana* ssp. *recurva* coexists with invading *S. halepense* (Haas and Frye 1997, p. 6). They also note that the removal of more aggressive stoloniferous or rhizomatous competitors to *L. schaffneriana* ssp. *recurva* appears to be a principle component in stimulating plant growth (Haas and Frye 1997, p. 12). In several reports on the endangered *Spiranthes delitescens* at the Canelo Hills Cienega Preserve, a site also known to contain *L. schaffneriana* ssp. *recurva*, researchers suggest declines in *S. delitescens* may be due, in part, to an increase in *S. halepense* and have recommended control of this invasive grass (Gori 1993, pp 1-2; Gori 1994, p. 6; Gori and Backer 1999a, p. 1). The Nature Conservancy has made control of this invasive non-native taxon a priority, and currently there are some patches that they continue to work to eradicate, or at a minimum, keep from spreading further (Miller pers. comm. November 23, 2013).

Neighboring Turkey Creek and Freemont Springs, locations known to historically support *L. schaffneriana* ssp. *recurva*, were visited in 2013 and large stands of *S. halepense* were present in both locations; in addition, *Arundo donax* (giant reed) was discovered in one location within Turkey Creek (Service 2013a, p. 2). Also in 2013, *S. halepense* was noted to be present in large quantities in the vicinity of known occurrences of *L. schaffneriana* ssp. *recurva* in the San Rafael Valley. In one of these locations, Sheehy Spring, a patch of *R. discolor* was also noted to have increased in size since first reported years ago and could become a threat to *L. schaffneriana* ssp. *recurva* in the future (Service 2013b, p. 1).

Cover of invasive non-native plants such as *C. dactylon* and *N. officinale* in streams in the Huachuca Mountains and along the banks and within the San Pedro River pose a threat to *L. schaffneriana* ssp. *recurva* (Vernadero Group 2011a, p. i). In 2004, monitoring of *L. schaffneriana* ssp. *recurva* found common associates including *S. halepense*, *Hordeum jubatum* (foxtail), and *C. dactylon* (Engineering and Environmental Consultants 2004, p. 12). In an examination of the seedbank at the Finley Tank introduction site, a large number of competing seeds were present in some of the seedbank samples, particularly those of *C. dactylon* (Titus and Titus 2008a, p. 317). At the southern spring in Finley Tank, *R. discolor* was removed prior to the introduction effort by the 2002 Ryan Fire and, as predicted, is once again a problem at this location (Titus and Titus 2008a; L. Kennedy pers. comm. February 3, 2014). A researcher at the Appleton-Whittell Research Ranch noted that, if left untreated, *R. discolor* could become a problem in the north spring where *L. schaffneriana* ssp. *recurva* occurs (Kennedy pers. comm. February 3, 2014).

In summary, the best available scientific and commercial information indicates that *L. schaffneriana* ssp. *recurva* benefits from low to moderate intensity flooding, fire, or other forms of disturbance that lessen native and non-native plant competition. This competition also enables bank stability along riparian channels, another necessity for *L. schaffneriana* ssp. *recurva* which has shallow, weak roots and can be removed easily in high intensity flooding.
order for *L. schaffneriana* ssp. *recurva* to persist or expand, a balance must be reached between *L. schaffneriana* ssp. *recurva* and its associates such that both protection of the substrate and reduction of competition are achieved. Invasive non-native plants have increased their presence within aquatic habitat of southeastern Arizona, and the invasion and expansion of non-natives is expected to continue. Through monitoring at several locations, these interactions are being recorded, watched, and when possible, action taken to reduce this stressor. Because *L. schaffneriana* ssp. *recurva* is sensitive to competition from both native and non-native herbaceous plants, the added stressor of more competition from species such as *S. halepense*, *C. dactylon*, *N. officinale*, and *R. discolor* will likely lead to a decrease in the presence of *L. schaffneriana* ssp. *recurva*.

Livestock Grazing

– Primary constituent elements 2 and 3 of critical habitat are impacted by this threat.

Lilaeopsis schaffneriana ssp. *recurva* is affected by livestock grazing in the following ways: 1) trampling, 2) direct impacts from construction of range improvement projects, 3) changes in stream geomorphology that lead to erosion, sedimentation, and downcutting, and 4) watershed degradation and resulting adverse effects to stream hydrology, (Service 1999, p. 237; Anderson 2006, p. 28). Observations of *L. schaffneriana* ssp. *recurva*’s response to grazing indicate the taxon is capable of experiencing light to moderate grazing with negligible impact (Simms pers. comm. October 26, 2011; Anderson 2006, pp. 22, 31; Edwards pers. comm. February 21, 2001; Rorabaugh 2013, entire).

If not controlled, grazing during dry periods when cattle spend a disproportionate amount of their time, in riparian areas may result in harmful effects to *L. schaffneriana* ssp. *recurva* and other riparian obligates (Edwards pers. comm. February 21, 2001; Service 2002a, pp. 76-77; Krueper 1996, p. 287; Malcom and Radke 2008, p. 81; Service 2014a, pp. 3, 6-7). In such instances, severe and widespread trampling may occur; roots and soil structure can be damaged; vegetation, species composition, and structure can shift; soil can become compacted; stream banks can be degraded; runoff and soil erosion from storm events may increase with higher peak flows; and stream entrenchment may occur; all of which would have harmful effects on *L. schaffneriana* ssp. *recurva* habitat and existing occurrences (Service 2002a, p. 138; Krueper 1996, pp. 287-288; Simms pers. comm. October 26, 2011).

With the onset of earlier springtime temperatures (Cayan et al. 2005, entire) and continuing drought conditions (Weiss and Overpeck 2005, p. 2074; Archer and Predick 2008, p. 24), the period of winter vegetation dormancy and water availability has decreased in recent years. In Sunnyside Canyon, Lone Mountain Canyon and its tributaries, Bear Canyon, and Scotia Canyon, the current Coronado National Forest Grazing Management Plan recommends grazing in winter months only when adequate water is available to disperse cattle and reduce impact on riparian areas (Service 2002b, pp. 144-146). This stipulation should be amended to include more areas that support *L. schaffneriana* ssp. *recurva* and implementation enforced.

Higher intensity grazing of riparian areas has been shown to reduce the occurrence of *L. schaffneriana* ssp. *recurva* and damage its habitat (Falk 1998, p. 2; Dupée 1999, entire). Falk (1998, p. 2) noted that along the *L. schaffneriana* ssp. *recurva* monitoring transects, seven
occurrences in Bear Canyon and four occurrences in Scotia Canyon showed evidence of bank instability or trampling from livestock use. Six of seven *L. schaffneriana* ssp. *recurva* occurrences in Bear Canyon, and one of four in Scotia Canyon, no longer contained plants in 1995, providing some evidence that habitat degradation did occur and possibly contributed to patch extinction in localized areas (Falk 1998, p. 2). In Leslie Creek, researchers quantified the impacts of a single cow on individual *L. schaffneriana* ssp. *recurva* and concluded that even a small number of livestock left in one place could eradicate the taxon in that area (Malcom and Radke 2008, p. 81). Researchers studying the effects of livestock removal at Cottonwood Spring concluded that two years following livestock removal, streamside and aquatic vegetation, and thus channel stability, were increased, all of which provided a benefit to *L. schaffneriana* ssp. *recurva* (Gori and Backer 1999b, p. 3). In the spring of 2014, *L. schaffneriana* ssp. *recurva* growing outside of cattle exclosures were diminished in size and quantity compared to those plants inside exclosures (Service 2014a, pp. 3-7).

In summary, the best available scientific and commercial information indicates that periodic disturbance removes competing vegetation and allows recolonization or expansion of *L. schaffneriana* ssp. *recurva* occurrences (Service 1999, p. 237). In instances where natural disturbance is low or infrequent, occasional trampling and grazing by domestic livestock could improve habitat for *L. schaffneriana* ssp. *recurva*; poorly managed livestock use, however, can be detrimental to the taxon and its habitat (Falk 1998, p. 2; Service 1999, p. 237; Service 2002a, p. 137; Malcom and Radke 2008, p. 81; Service 2014a, pp. 3-7).

Recreation

Primary constituent elements 2, 3, and 4 of critical habitat are impacted by this threat.

Riparian areas and cienegas offer important recreational opportunities for the residents of southern Arizona and northern Sonora (62 FR 665, p. 683). This visitation is expected to increase in the future with increases in human population, as well as drought conditions and the desire to be near water. Recreational activities, such as hiking and camping, if poorly managed, can result in soil compaction, streambank destabilization, erosion and sedimentation, increases in the presence of invasive non-native plant species, and trampling of *L. schaffneriana* ssp. *recurva* and other riparian plant species, thus reducing habitat quality.

In summary, the best available scientific and commercial information indicates that *L. schaffneriana* ssp. *recurva* can be impacted by poorly managed recreational activities.

Factor B: Overutilization for commercial, recreational, scientific, or educational purposes

There are no primary constituent elements of critical habitat that are impacted by this threat.

While *L. schaffneriana* ssp. *recurva* is collected periodically for genetics studies, herbarium specimens, and for plugs for reintroduction efforts, these collections are monitored through permit processes to ensure over-collection on Federal and non-Federal lands is not a threat to the taxon or the primary constituent elements of critical habitat. In addition, *L. schaffneriana* ssp. *recurva* has the ability to reproduce vegetatively and can resprout following removal of vegetative material. Therefore, we find overutilization is not a threat to the taxon.
Factor C: Disease or predation

– There are no primary constituent elements of critical habitat that are impacted by this threat.

There is no evidence to suggest that disease is a threat to *Lilaeopsis schaffneriana* ssp. *recurva* or its primary constituent elements of critical habitat. Although javelina have been observed eating *L. schaffneriana* ssp. *recurva* at San Bernardino National Wildlife Refuge (Johnson 1991 p. 8), predation by native wildlife does not seem to have a large impact on the taxon. Domestic livestock will graze within *L. schaffneriana* ssp. *recurva* habitat, but are not known to directly consume *L. schaffneriana* ssp. *recurva* plants. Therefore, we find disease or predation is not a threat to the taxon.

Factor D: Inadequacy of existing regulatory mechanisms

– There are no primary constituent elements of critical habitat that are impacted by this threat.

Bureau of Land Management and the Forest Service. The 2008, Bureau of Land Management Manual 6840, Special Status Species Management, states, in part, that they will develop and implement plans and programs that will conserve listed species and the ecosystems upon which they depend, monitor and evaluate ongoing management activities to ensure conservation objectives, ensure that all activities affecting the occurrences and habitats of listed species are designed to be consistent with recovery needs and objectives, and ensure that all actions authorized, funded, or carried out by the Bureau of Land Management are in compliance with the Act (Bureau of Land Management 2008, entire).

The 2005 Forest Service Manual chapter 2670, Threatened, Endangered, and Sensitive Plants and Animals, states, in part, that National Forest system habitats and activities will be managed for listed threatened or endangered species to achieve recovery objectives so that listing under the Act is no longer necessary (Forest Service 2005, p. 4). In addition, the Forest Service, Coronado National Memorial, and Fort Huachuca are participating in the Huachuca FireScape project to reduce the risk of catastrophic fire and sedimentation impact in the sky islands of southeastern Arizona (FireScape 2014). Other land management agencies maintain fire management plans aimed at reducing threats from catastrophic fire which would benefit listed species.

On non-Federal lands, the Arizona Native Plant Law provides some protection for this taxon within Arizona. *Lilaeopsis schaffneriana* ssp. *recurva* is protected under the Arizona Native Plant Law as a highly safeguarded plant, which makes it unlawful for any person to destroy, dig up, cut, collect, mutilate, harvest or take, and place into possession any of these plants on non-Federal lands (Arizona Revised Statutes 2009, chapter 7). However, the Arizona Native Plant Law does not prohibit landowners from removing or destroying protected plants on their property, but they are required to notify the Arizona Department of Agriculture 20 to 60 days prior to destruction of a protected native plant.

Critical habitat designation provides an added layer of protection to the habitat of *L. schaffneriana* ssp. *recurva* for projects with a Federal nexus, such as Federal permitting or funding, or occurrence on Federal lands; seven critical habitat units have been designated for this taxon (64FR 37441, p. 37444; refer to Figure 3).
Lilaeopsis schaffneriana ssp. recurva is not included on the Mexican government’s list of protected species (SEMARNAT 2010) or on the CITES list (CITES 2014, p. 673). However, it occurs in two Federally-designated protected areas (Rancho El Aribabi and Arroyo El Tigre on the Bosque Nacional y Refugio de Vida Silvestre Los Ajos-Bavispe, Sonora) and other lands, including Rancho Los Fresnos, Sonora, where the landowners work to protect the habitat from a variety of threats. Collectively, these areas represent 8 of the 21 localities known to support L. schaffneriana ssp. recurva in Sonora.

In summary, the best available scientific and commercial information indicates that the status of L. schaffneriana ssp. recurva as a listed endangered taxon with critical habitat designated under the Act, a Bureau of Land Management and Forest Service sensitive taxon, and a highly safeguarded plant under Arizona State Law, afford some protection to the taxon within the United States. Federal designations and private reserves provide some level of protection to occurrences in Sonora, Mexico. There are no regulations in place that address threats to L. schaffneriana ssp. recurva and its habitat from drought and the effects of climate change. Therefore, we find current regulatory mechanisms are not a threat to the taxon, though we believe that regulations designed to protect the taxon and its habitat will have little impact to alleviate the threats caused by drought or the effects of climate change.

Factor E: Other natural or manmade factors affecting its continued existence:

Drought and Climate Change
– All four primary constituent elements of critical habitat are impacted by this threat.

Southeastern Arizona and much of the American Southwest have experienced serious drought in recent decades (Bowers 2005, p. 421; Garfin et al. 2013, p. 3; Climate Assessment for the Southwest 2017, entire) and precipitation is projected to be less in the future with climate change (Seager et al. 2007, p. 1181; Karl et al. 2009, pp. 24, 33). Most climate change scenarios predict that the American Southwest will also get warmer during the 21st century (Overpeck et al. 2012, p. 5; Karl et al. 2009, p. 129). The most recent water year in review (October 2015 to September 2016) indicated that most of southern Arizona experienced below average precipitation (Climate Assessment for the Southwest 2016, entire). Projections for the 2016-2017 water year suggest warmer and drier-than-average conditions over winter (Climate Assessment for the Southwest 2016, entire).

Instrumental and paleo-climatic records from the Southwest indicate the region has a history of multi-year and multi-decade drought (Hereford et al. 2002, p. 1; Karl et al. 2009, p. 130; Garfin et al. 2013, p. 3). Lilaeopsis schaffneriana ssp. recurva evolved in the Southwest and has persisted in many locations throughout its range through historical droughts such as those of the 1950s. It has been suggested that seed from this taxon may persist for only five to ten years in such situations (Titus and Titus 2008a, p. 319; Titus and Titus 2008b, p. 398; Titus and Titus 2008c, p. 463), however, given the severity and persistence of the present multi-decade drought coupled with ground water withdrawal, it is unknown how long L. schaffneriana ssp. recurva will maintain viability in de-watered habitat.
In recent decades there has also been a shift toward earlier spring onset across the western United States (Cayan et al. 2005, p. 3). Spring onset has important consequences for plant phenology; if leaf or flower buds are initiated earlier, they will be more vulnerable when frost occurs (Inouye 2008, p. 354). Many plant species have frost-sensitive buds, ovaries, and leaves, and can produce fewer flowers and seeds due to frost damage during times of the year when frost is unusual (Inouye 2000, p. 457). Although *L. schaffneriana* ssp. *recurva* is one of the earliest flowering taxa, we are unaware of frost damage to this taxon. Another concern of an earlier spring is an increased fraction of precipitation falls as rain, resulting in a reduced snow pack, an earlier snowmelt, and decreased summer baseflow (Christensen et al. 2004, p. 340; Regonda et al. 2005, p. 373). Earlier snowmelt and warmer air temperatures can lead to a longer dry season. Warmer air temperatures lead to increased evaporation, increased evapotranspiration, and decreased soil moisture. These three factors would lead to decreased streamflow even if precipitation increased moderately (Garfin 2005, p. 43). The effect of decreased streamflow is that streams become smaller, intermittent, ephemeral, or dry, and thereby reduce the amount of habitat available for aquatic taxa such as *L. schaffneriana* ssp. *recurva*.

Many springs (Robinson 2010, p. 6; Ehret 2008, p. 2), cienegas (Fonseca pers. comm. January 17, 2014), creeks (Bureau of Land Management 2012, entire), and rivers (Turner and Richter 2011, pp. 2-3) that have been perennial in the past are now intermittent, ephemeral, have more dry reaches, or have dried up entirely. As a result, many occurrences of *L. schaffneriana* ssp. *recurva* have become reduced in density or distribution, become ephemeral, or are now presumed extirpated (see the San Bernardino National Wildlife Refuge, Bingham Cienega, Freeman Spring, Leslie Canyon National Wildlife Refuge, Lower Cienega Creek, Tucson, and Winkelman sections in Appendix A). Reduced water flow can reduce the ability of *L. schaffneriana* ssp. *recurva* to grow, reproduce, and expand to new locations. Even if *L. schaffneriana* ssp. *recurva* can survive long periods of drought as seeds or rhizomes (Haas and Frye 1997, p. 12), at some point increasing aridity would eliminate the plant, including seed stock and rhizomes, from intermittent reaches (Service 1999, p. 237). For example, no *L. schaffneriana* ssp. *recurva* have been seen in Bingham Cienega since 2002 when the area was experiencing drought (Titus and Titus 2008c, p. 462); similarly, the decline and loss of *L. schaffneriana* ssp. *recurva* in Leslie Canyon in recent years was directly related to the reduction in rainfall and a lowering of the water table (Terry 2012, entire).

In addition, in a warmer environment, an enhanced hydrologic cycle is expected; rainfall events are to be less frequent, but more intense, and larger flood events more common (Karl et al. 2009, p. 24). Such large floods can destroy *L. schaffneriana* ssp. *recurva* patches, and even entire occurrences, if no niches in backwaters are present to ensure recolonization. For example, in September, 2014, Hurricane Odile hit the southeastern portion of Arizona leading to substantial rain and causing widespread flooding which severely impacted many *L. schaffneriana* ssp. *recurva* occurrences in the Huachuca Mountains and elsewhere. It is unknown at this time if any patches remain in several locations.

In summary, the best available scientific and commercial information indicates that there is a reasonable likelihood that the current drought and rise in temperatures will continue for many more years. The limited number of occurrences increases the chance that a single environmental catastrophe could decrease and / or eliminate the taxon. It is unknown how long *L. schaffneriana*
ssp. recurva can remain dormant during an extended drought. The projected drought will likely contain periods of high year-to-year precipitation variability characteristic of Southwest climate. Whether this variability will be enough to preserve occurrences of *L. schaffneriana* ssp. *recurva* remains unknown. Earlier spring onset and more intense storm events will likely continue to have negative impacts on the taxon.

Table 3. Threats tracking table for *Lilaeopsis schaffneriana* ssp. *recurva*.

<table>
<thead>
<tr>
<th>Listing Factors</th>
<th>Threats</th>
<th>Primary Constituent Elements*</th>
<th>Recovery Objectives</th>
<th>Recovery Criteria</th>
<th>Recovery Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Aquatic habitat degradation</td>
<td>1, 2, 3, 4</td>
<td>1, 2, 3</td>
<td>1, 2, 3</td>
<td>1.1, 1.2, 2.1, 2.2, 2.3, 3.1, 3.2, 4.1, 4.2, 4.4, 5.1, 5.2, 5.3, 6.1, 6.2, 6.3</td>
</tr>
<tr>
<td>A</td>
<td>Wildfire and resulting sedimentation</td>
<td>2, 3, 4</td>
<td>1, 2, 4, 5, 6</td>
<td>1, 2, 3</td>
<td>1.2, 4.1, 4.2, 4.4, 5.1, 5.2, 5.3, 6.1, 6.2, 6.3</td>
</tr>
<tr>
<td>A</td>
<td>Competition from invasive non-native plants</td>
<td>1, 2, 3, 4</td>
<td>3, 4, 5, 6</td>
<td>1, 2, 3</td>
<td>3.1, 3.2, 4.1, 4.2, 4.4, 5.1, 5.2, 5.3, 6.1, 6.2, 6.3</td>
</tr>
<tr>
<td>A</td>
<td>Livestock grazing</td>
<td>2, 3</td>
<td>3</td>
<td>3</td>
<td>1.2, 3.1, 3.2, 5.1, 6.1, 6.2, 6.3</td>
</tr>
<tr>
<td>A</td>
<td>Recreation</td>
<td>2, 4</td>
<td>3, 4, 5, 6</td>
<td>1, 2, 3</td>
<td>3.1, 3.2, 4.1, 4.2, 4.4, 5.1, 5.2, 5.3, 6.1, 6.2, 6.3</td>
</tr>
<tr>
<td>E</td>
<td>Effects of drought and climate change</td>
<td>1, 2, 3, 4</td>
<td>1, 2, 3, 4, 5, 6</td>
<td>1, 2, 3, 4, 5</td>
<td>1.1, 1.2, 2.2, 2.3, 4.1, 4.2, 4.3, 4.4, 5.1, 5.2, 5.3, 6.1, 6.2, 6.3</td>
</tr>
</tbody>
</table>

*The four primary constituent elements are described in section I.10.

11. Past Conservation Efforts

The following are conservation efforts that have occurred since *L. schaffneriana* ssp. *recurva* was listed in 1997:

1) There has been success in establishing *L. schaffneriana* ssp. *recurva* in locations with suitable habitat within the historical range of the taxon (e.g. Audubon Research Ranch, Las Cienegas National Conservation Area, Fort Huachuca, and on the San Pedro Riparian National Conservation Area). Other attempts to establish this taxon have ultimately failed (e.g. Sonoita Creek). Still other attempts have had mixed results (e.g. San Bernardino and Leslie Canyon National Wildlife Refuges).

2) Since 1990, The Nature Conservancy has held a conservation easement on one private property on Sonoita Creek that supports *L. schaffneriana* ssp. *recurva* (Killeen pers. comm. April 29, 2014). Although the easement is not set up for *L. schaffneriana* ssp. *recurva*, the taxon
benefits from this land protection. Several additional conservation easements on the Babocomari River are held by The Nature Conservancy, Fort Huachuca, and the Bureau of Land Management; collectively these easements protect several miles of perennial water in the Babocomari River (Duncan pers. comm. April 29, 2014). In 1999, Arizona State Parks purchased 1,440 ha (3,557 ac) of land in the San Rafael Valley including the Santa Cruz River which supports small occurrences of *L. schaffneriana* ssp. *recurva*. One management goal of the San Rafael State Natural Area is to protect, preserve, and enhance habitat for federally listed threatened and endangered species (Arizona State Parks 2013, p. 9). The land is rested from livestock grazing, protected from development through an easement, and is managed to minimize the impacts of invasive non-native species. In 2013, the Arizona Land Trust protected 3.2 km (2 mi) of Sonoita Creek on the Circle Z Ranch, including perennial stretches. Although no *L. schaffneriana* ssp. *recurva* have been surveyed for or documented on this property, the taxon has been found upstream and potential habitat exists for the taxon on this protected ranch. As such, *L. schaffneriana* ssp. *recurva* could already occur on site (perhaps expanding naturally from upstream sources).

3) In Sonora, Mexico, Rancho El Aribabi is a federally-designated private reserve, which contains an occurrence of *L. schaffneriana* ssp. *recurva*. This property is managed for its ecological values and ecotourism, and mineral entry is also precluded. Similarly, Rancho Los Fresnos in Sonora, also supports an occurrence of *L. schaffneriana* ssp. *recurva*, and is owned and managed for its ecological values by the conservation organization Naturalia. Livestock have been removed from the property and management includes the use of prescribed burning. At Rancho San Bernardino, in Sonora, the Cuenca los Ojos Foundation actively manages lands known to have historically supported *L. schaffneriana* ssp. *recurva*. Management includes extensive restoration of grasslands and waterways, resulting in the many-fold increase in extent of perennial water in Rio San Bernardino. It is not known if the property currently supports *L. schaffneriana* ssp. *recurva*, however these management actions have created suitable habitat for the taxon.

4) There are three conservation plans currently in place that provide some benefit to *L. schaffneriana* ssp. *recurva*. First, the 2008 Malpai Borderlands Habitat Conservation Plan (MBHCP) ensures no cattle grazing occurs within San Bernardino National Wildlife Refuge, thereby protecting *L. schaffneriana* ssp. *recurva* from trampling and grazing impacts (MBHCP Technical Working Group and Lehman 2008, p. 105). Second, the 2009 Leslie Canyon Watershed Safe Harbor Agreement incorporates management actions related to the recovery of the taxon, including its propagation and establishment in existing aquatic habitats, the maintenance of wetland levels, and the exclusion of humans and livestock that may excessively trample the taxon (Service 2009b, p. 7). Lastly, although most *L. schaffneriana* ssp. *recurva* occur outside of Pima County, the Pima County Multi-Species Conservation Plan includes a) work toward reestablishing occurrences where appropriate, with follow-up monitoring, b) monitoring County-owned sites where *L. schaffneriana* ssp. *recurva* may be found, c) protecting existing habitat in County-controlled mitigation lands from invasive species, d) seeking protection of water rights at Cienega Creek Natural Preserve and Bingham Cienega Natural Preserve to maintain and restore habitat, e) seeking opportunities to acquire water rights to protect habitat for any newly detected natural occurrences on Pima County preserves, and f) surveying for the taxon in suitable habitat (Pima County 2016, pp. A16-17).
5) Fort Huachuca participates in multiple water conservation efforts, including effluent reuse or recharge, the purchase of conservation easements, and storm water recharge; all which benefit *L. schaffneriana* ssp. *recurva* and its habitat (Service 2014b, p. 21). Fort Huachuca personnel and contractors monitor *L. schaffneriana* ssp. *recurva* both on Fort Huachuca and on the San Pedro National Conservation Area regularly (Service 2014b, p. 20). Fort Huachuca has an Integrated Natural Resource Management Plan which describes the taxon and its threats (Environmental and Natural Resources Division 2010, entire), as well as an Endangered Species Management Plan (Environmental and Natural Resources 2006, entire), which also describes conservation goals and management prescriptions. There is limited horse grazing on three pastures within Fort Huachuca and no cattle grazing is permitted (Environmental and Natural Resources 2010, pp. 41, 47). Measures are taken to ensure recreational trampling does not occur on Fort Huachuca (Service 2014b, p. 21). In addition, transplanting of *L. schaffneriana* ssp. *recurva* plugs has occurred in the past and may continue in the future (Environmental and Natural Resources 2010, p. 77; Service 2014b, p. 21).

6) The Bureau of Land Management manages the Las Cienegas National Conservation Area, which encompasses 16,986 ha (41,972 ac) and is surrounded by the 38 ha (95,609 ac) Sonoita Valley Acquisition Planning District which allows for future expansion. Much of the upper Cienega Creek watershed supports multiple patches of *L. schaffneriana* ssp. *recurva*. The area was set aside to conserve, protect, and enhance natural resources of the area in accordance with a comprehensive management plan that includes assurance that riparian and wetland sites are properly functioning (Bureau of Land Management 2003, pp. 7-9). The Bureau of Land Management also conducts periodic monitoring of *L. schaffneriana* ssp. *recurva* along upper Cienega Creek and has plans for introducing *L. schaffneriana* ssp. *recurva* plugs at up to 11 locations over a 10 year period (Service 2008, p. 3). In addition, to protect these sensitive riparian and wetland habitats, the Bureau of Land Management designated this area as the Empire-Cienega Area of Critical Environmental Concern. The goal of the designation is to protect and enhance watershed, grassland, and threatened / endangered wildlife resources, emphasizing total ecosystem management (Bureau of Land Management 2003, p. A6-1). The taxa is found in approximately 6.4 km (4 mi) Cienega Creek, Mattie Canyon, lower Empire Gulch, and 3 ponds created by habitat restoration at Cieneguita Wetlands: Egret, Crescent and Heart.

7) The Bureau of Land Management manages the San Pedro Riparian National Conservation Area which is a 23 ha (56,431 ac) area designated by Congress in 1988 as the nation’s first Riparian National Conservation Area. It was created to conserve, protect, and enhance the riparian area and the aquatic, wildlife, archaeological, paleontological, scientific, cultural, educational, and recreational resources of the Conservation Area. Management has been guided by the San Pedro Management Plan since it was first approved in 1989, as well as the Safford District Resource Management Plan written in 1993. These documents were created prior to the listing of *L. schaffneriana* ssp. *recurva* and do not cover this taxon specifically, however the stated goal of the San Pedro Management Plan, which is consistent with the Safford District plan, is the conservation, protection, and enhancement of the riparian ecosystem and related habitat and wildlife within the San Pedro Riparian National Conservation Area (Fredlake
et al. 1993, p. 11). A new Resource Management Plan is currently being drafted which may include management actions specific to *L. schaffneriana ssp. recurva*.

8) Between February, 1997 and June, 2017, there have been 48 section 7 consultations involving *L. schaffneriana ssp. recurva*. The consultations included measures to reduce adverse effects on the taxon, such as introduction of the taxon into stock tank and other suitable habitat, and non-native species management to decrease competition, and resulted in non-jeopardy determinations.

9) Several institutions, including the Arizona-Sonora Desert Museum, the Desert Botanical Garden, the Phoenix Zoo, and Pima County Native Plant Nursery, maintain potted specimens of *L. schaffneriana ssp. recurva* for education, research, and recovery purposes. The plants are used in displays to educate the public about rare and endangered species; they are used in research on propagation and genetics; and are grown for potential introduction of new occurrences or augmentation of existing occurrences. In addition both seeds and live plants are held for future conservation of the taxon.
Part II. Recovery

1. Recovery Strategy

The recovery strategy for *L. schaffneriana* ssp. *recurva* is to provide conservation and restoration of the taxon and its habitat to the extent that will allow stable, self-sustaining occurrences to persist throughout its range within the United States with some level of connectivity and opportunities for expansion, dispersal, and genetic exchange. Our recovery strategy focuses on minimizing or ameliorating the most significant long-term threats to the continued existence of the taxon which are: 1) aquatic habitat degradation, including unsustainable groundwater withdrawal; 2) the effects of drought and climate change; 3) wildfire and resulting sedimentation and scouring; 4) invasive non-native plant competition; and 5) poorly managed livestock grazing.

Our strategy to recover *L. schaffneriana* ssp. *recurva* entails: 1) protecting and restoring upland and aquatic habitats that contribute to, support, or could support *L. schaffneriana* ssp. *recurva*; 2) conserving historical and current occurrences and their seedbanks, augmenting existing occurrences, establishing new occurrences in appropriate habitat, maintaining plants in botanical gardens and other Service approved facilities, and seed at proper storage facilities; 3) reducing stressors by managing invasive non-native plants that crowd out *L. schaffneriana* ssp. *recurva* and managing areas where livestock congregate that further stress *L. schaffneriana* ssp. *recurva*; 4) using standardized monitoring methods over the long-term to determine trends and impacts from management actions and adapting management accordingly; 5) encouraging research to improve our understanding of *L. schaffneriana* ssp. *recurva* and its habitat in the United States and Mexico; and 6) developing partnerships within the region where *L. schaffneriana* ssp. *recurva* grows, and working with a variety of land owners in the United States and Mexico to adopt management actions that will encourage conservation of *L. schaffneriana* ssp. *recurva*.

2. Recovery Goal

The ultimate goal of this Recovery Plan is to outline specific actions that, when implemented, will sufficiently reduce the threats to *L. schaffneriana* ssp. *recurva*, ensure its long-term viability in the wild, and allow for its removal from the list of threatened and endangered species.

3. Recovery Objectives

To meet the recovery goal, the following objectives have been identified:

1) Protect and restore functional aquatic habitat and reduce dewatering threats to historical, exiting, newly discovered, and newly established *L. schaffneriana* ssp. *recurva* occurrences and habitat.

2) Conserve historical, exiting, newly discovered, and newly established *L. schaffneriana* ssp. *recurva* occurrences and their seedbanks; augment existing occurrences; establish new occurrences in appropriate habitat; establish plants at botanical gardens and other
Service approved facilities for research, recovery, and educational purposes; and maintain seeds for conservation and recovery at seed storage facilities.

3) Remove stressors related to invasive non-native plants and poorly managed livestock grazing to historical, existing, newly discovered, and newly established *L. schaffneriana* ssp. *recurva* occurrences and their habitats.

4) With the aid of affected parties, develop a standardized monitoring technique based on existing protocols; monitor historical, existing, newly discovered, and newly established *L. schaffneriana* ssp. *recurva* occurrences, threats, and outcomes from management actions allowing for adaptive management.

5) Encourage scientific study to improve our understanding of *L. schaffneriana* ssp. *recurva* geography, ecology, viability, genetics, propagation, habitat restoration, and threats in the United States and Mexico.

6) Develop public outreach, collaborative partnerships, agency management plans, and agreements with private land owners in the United States and Mexico that encourage *L. schaffneriana* ssp. *recurva* conservation.

4. Recovery Criteria

An endangered species is defined in the Act as a species that is in danger of extinction throughout all or a significant portion of its range. A threatened species is one that is likely to become endangered within the foreseeable future throughout all or a significant portion of its range. When we evaluate whether or not a species warrants downlisting or delisting, we consider whether the species meets either of these definitions. A recovered species is one that no longer meets the Act’s definitions of threatened or endangered due to amelioration of threats and no longer needs the protections of the Act. Determining whether a species should be downlisted or delisted requires consideration of the same five categories of threats that were considered when the species was listed and which are specified in section 4(a)(1) of the Act.

Recovery criteria are conditions that, when met, are likely to indicate that a species may warrant downlisting or delisting. Thus, recovery criteria are mileposts that measure progress toward recovery. Because the appropriateness of delisting is assessed by evaluating the five threat factors identified in the Act, the recovery criteria below address the applicable factors identified at the time the taxon was listed. These recovery criteria are our best assessment at this time of what needs to be completed so that the taxon may be removed from the list of threatened and endangered species. Because we cannot envision the exact course that recovery may take and because our understanding of the vulnerability of a species to threats is very likely to change as more is learned about the taxon and its threats, it is possible that a future status review may indicate that delisting is warranted although not all recovery criteria are met. Conversely, it is possible that the recovery criteria could be met and a future status review may indicate that delisting is not warranted.
To downlist *L. schaffneriana* ssp. *recurva* from endangered to threatened status, the following must occur:

1) A minimum cumulative extent of 2,000 square meters (0.2 ha / 0.5 ac) of naturally occupied habitat exists in the San Pedro Watershed, 20 percent of which occurs in tributary streams, springs, or cienegas; and a minimum of 2,000 square meters (0.2 ha / 0.5 ac) in the Santa Cruz Watershed, 90 percent of which occurs in tributary streams, springs, or cienegas, distributed among the areas of Cienega Creek (35 percent), Sonoita Creek (10 percent), the San Rafael Valley uplands and mainstem (10 percent), and the western Huachuca Mountains (35 percent); and a minimum of 125 square meters (0.01 ha / 0.03 ac) exists in the Rio Yaqui Watershed; this level of occupancy is sustained or improved for a minimum of 10 years over a 15 year period;

2) At least 3 separate introduced occurrences with a minimum cumulative extent of 150 square meters (0.015 ha / 0.037 ac) of occupied habitat are placed in each of the 3 United States watersheds and are stable or increasing over a 10 year period;

3) Threats to the taxon and its habitat have been managed and reduced, and long-term management is in place for a minimum of 20 years to ensure the persistence of occurrences with minimum cumulative extent (as reflected by the achievement and maintenance of downlisting criteria 1 and 2 measured above) in each of the three United States watersheds;

4) A living collection of as many plugs as resources allows, collected from genetically distinct regions (e.g. Fort Huachuca / SPRNCA north; San Rafael / Las Cienegas / Sonoita; SPRNCA south / San Bernardino), from both the San Pedro and the Santa Cruz watersheds is maintained in at least one botanical garden in southern Arizona for recovery and educational purposes; and

5) Seeds of *L. schaffneriana* ssp. *recurva* are collected following Center For Plant Conservation guidelines, which include collecting from no more than 10 percent of the standing seed crop from 50 individual seed bearing plants per population (if the population size permits), and collecting from a variety of microsites and physical characteristics within the stand of plants. These seeds are stored at both the Agricultural Research Service National Center for Genetic Resources Preservation in Fort Collins, Colorado and stored according to protocols at a local facility such as the Desert Botanical Gardens in Phoenix, Arizona, for long-term conservation and recovery purposes.

To delist *L. schaffneriana* ssp. *recurva*, the criteria for down-listing must be met and the level of occupancy in the downlisting criteria is sustained or increasing for a minimum of 20 years over a 30 year period.

5. Justification for Recovery Criteria

To determine downlisting and delisting criteria, we utilized monitoring data from the San Pedro River (cover has ranged from 326 square meters to 2,281 square meters [0.03 ha / 0.08 ac to 0.23 ac]).
between 2001 and 2013) and Las Cienegas National Conservation Area (1,455 square meters [0.15 ha / 0.36 ac] in 2011) in combination with percentage of occupancy by watershed (refer to Table 1) and personal knowledge of the plant and the systems in which it grows. As *L. schaffneriana* ssp. *recurva* cover has fluctuated between wetter and drier years, an additional temporal component was added to these criteria in order to account for long-term persistence of necessary water resources which support *L. schaffneriana* ssp. *recurva*. Because of this component of the criteria, restoration of regularly occurring water sources will likely be necessary in order to meet water needs over a sustained period. Given that 10 years is considered the maximum amount of time that *L. schaffneriana* ssp. *recurva* seeds are thought to persist, we selected a 15 year period to provide a buffer in time to accommodate dynamic environmental conditions and innate seed characteristics that drive the span of reproduction.

The importance of preventing excessive water drawdown and increasing water recharge into the San Pedro, Santa Cruz, and Rio Yacqui watersheds in the United States cannot be understated in the recovery of this and co-occurring listed species. Arizona is an arid state with finite water supplies, a population expected to double by 2050, and ongoing drought (Arizona Department of Water Resources [ADWR] 2014, entire; Marshall et al. 2010, p. 1). There is a potential for a long-term imbalance between available water supplies and projected water demands over the next 100 years if no action is taken (ADWR 2014, entire). A clean and sustainable water supply is essential for humans and the environment; water resources planning must embrace the need for water for urban growth, as well as environmental water needs (Marshall et al. 2010, p. 1). Using water more efficiently, reusing water, capturing water, and purchasing surface water rights are all methods whereby water availability can be increased for the benefit of *L. schaffneriana* ssp. *recurva*, and would have added benefit to many other co-occurring listed and unlisted plant and animal species, ecosystem services provided by healthy watersheds, and economic benefits such as from increased tourism.

6. **Stepdown Recovery Outline**

The stepdown outline lists actions, including site-specific management actions, required to meet the recovery objectives of this Recovery Plan. Please refer to Table 3 for a clear association among threats, primary constituent elements that define critical habitat, and recovery actions that will address both.

1. **Protect and restore functional aquatic habitat and reduce dewatering threats to *L. schaffneriana* ssp. *recurva* occurrences and habitat.**

 1.1. Maintain or enhance groundwater hydrology, as measured by both well observations and stream gages, by reducing water withdrawal and increasing water conservation and recharge; all measures should be prioritized to occur in locations where either the effect of water withdrawals on streams will be minimized and for recharge projects, in locations where the recharge is most likely to result in increased surface flows.

 a. Acquire surface water rights and convert them to in-stream uses or apply for rights anew and defend them in a court of law.
b. Acquire conservation easements to protect larger lands from being subdivided into smaller lots with increased residential pumping per acre.

c. Encourage incentive programs to reduce water use across the range of *L. schaffneriana* ssp. *recurva*.

d. Upgrade wells and check for leaks to reduce water loss.

e. Promote stormwater recapture projects.

f. Promote use of treated effluent to offset outdoor irrigation.

1.2. Manage lands to increase watershed health, thus reducing downcutting, headcuts, scouring floods, and sedimentation, and increasing infiltration and ground water recharge that supports perennial flow to rivers, streams, springs, and cienegas.

a. Remove invading trees and shrubs in upland grasslands; reduce heavy fuel loads in upland forests; create in-channel structures in upland tributaries; and introduce beaver where appropriate.

b. Maintain low to moderate intensity disturbance regimes that reduce competing vegetation and allow for *L. schaffneriana* ssp. *recurva* establishment and growth in lotic habitats.

c. Maintain low to moderate intensity disturbance regimes that reduce competing vegetation and allow for *L. schaffneriana* ssp. *recurva* establishment and growth in lentic habitats.

2. Conserve historical, existing, newly discovered, and newly established *L. schaffneriana* ssp. *recurva* occurrences and their seedbanks; augment existing occurrences; establish new occurrences in appropriate habitat; establish plants at botanical gardens and other Service approved facilities for research, recovery, and educational purposes; and maintain seeds for conservation and recovery at seed storage facilities.

2.1. Protect *L. schaffneriana* ssp. *recurva* occurrences and associated habitat, including unoccupied, intervening drainages that provide connectivity among occurrences.

a. Acquire private lands, wells, and associated surface water rights which support *L. schaffneriana* ssp. *recurva* occurrences and manage for the protection of the taxon.

b. Develop conservation agreements and easements for protection of *L. schaffneriana* ssp. *recurva* occurrences on private lands.

c. Develop and monitor conservation mitigation banking to promote the protection of high quality *L. schaffneriana* ssp. *recurva* habitat.
2.2. Augment existing and establish new *L. schaffneriana* ssp. *recurva* occurrences in appropriate habitat using appropriate genetic stock to increase the redundancy (number of occurrences) and resiliency (size of occurrences) of the taxon. This includes surveying for and locating potential donor sites, working with landowners and managers to complete all necessary compliance and approvals, growing out propagules (if necessary), transporting plants, developing / utilizing transplant protocols, and monitoring results.

2.3. Maintain plants in captivity at botanical gardens and other Service approved facilities and seeds at seed storage facilities.

3. **Remove stressors to *L. schaffneriana* ssp. *recurva* occurrences and their habitats.**

3.1. Protect occupied habitats from congregating livestock and recreation activities, especially during dry periods.

3.2. Control invasive non-native plants and prevent their spread in *L. schaffneriana* ssp. *recurva* habitat (see Ecology and Current Threats sections for a list of the most commonly associated invasive non-native plants, and action 6.2 regarding the development of management plans).

4. **With the aid of affected parties, develop a standardized monitoring technique based on existing protocols; monitor *L. schaffneriana* ssp. *recurva* occurrences, threats, and outcomes from management actions allowing for adaptive management.**

4.1. With the aid of affected parties, develop a range-wide standardized monitoring approach based on existing approaches (see Cienega Creek National Conservation Area and the San Pedro National Conservation Area as examples) that will be adopted by all land managers, land owners, and conservation partners which will enable an understanding of current status and knowledge of when recovery criteria have been met. This will include:

 a. timing of survey,

 b. presence of the plant (occupancy),

 c. protocol for measuring square meters covered by the plant (density), and

 d. assessing the health of occurrences, as well as, threats.

4.2. Monitor historical and current natural and augmented occurrences at least every three years.

4.3. Monitor water availability through time.

4.4. Review the status of the taxon periodically to assess the effectiveness of management and recovery actions.
5. Encourage scientific study to improve our understanding of *L. schaffneriana* ssp. *recurva* geography, ecology, viability, genetics, propagation, habitat restoration, and threats in the United States and Mexico.

5.1. Identify information gaps, compatible land uses, and appropriate management actions that promote the conservation of the taxon.

5.2. Conduct surveys in appropriate habitat to better understand the range of the taxon.

5.3. Conduct research into biology, ecology, and genetics of the taxon.

6. Develop public outreach, collaborative partnerships, agency management plans, and agreements with private land owners in the United States and Mexico that encourage *L. schaffneriana* ssp. *recurva* conservation.

6.1. Work with others to increase public outreach regarding stressors, threats, and conservation measures relating to *L. schaffneriana* ssp. *recurva* in both the United States and Mexico.

6.2. Develop collaborative partnerships and agreements with private land owners that result in management plans or that otherwise encourage *L. schaffneriana* ssp. *recurva* conservation in the United States and Mexico.

6.3. Develop a recovery implementation team comprised of taxon experts, agency and non-government agency partners, landowners, and stakeholders to meet regularly, review progress, discuss problems, and revise this plan as needed.

7. Recovery Narrative

1. Protect and restore functional aquatic habitat and reduce dewatering threats to *L. schaffneriana* ssp. *recurva* occurrences and habitat.

1.1 Maintain or enhance groundwater hydrography by reducing water withdrawal and increasing water conservation and recharge.

 a. Acquire surface water rights and convert them to in-stream uses or apply for rights anew and defend them in a court of law; as necessary tie surface water flow to ground water levels to assist in defending surface water rights.

 The acquisition of surface water rights to change the consumptive use (municipal, agricultural, and industrial) to in-stream use results in long-term legal protection of stream flow.

 b. Acquire conservation easements to protect larger lands from being subdivided into smaller lots with increased residential pumping per acre.
Land and water conservation organizations may acquire conservation easements on larger properties containing or in the vicinity of perennial waterways throughout the range of *L. schaffneriana* ssp. *recurva*. Such easements would prevent the subdivision of land and future groundwater withdrawals for residential water use. In addition, easements may be purchased to retire agricultural groundwater use providing direct benefit to stream flow. Easements may also provide sites for enhancing recharge.

c. Encourage incentive programs to reduce water use across the range of *L. schaffneriana* ssp. *recurva*.

Present opportunities for municipalities whose water use may affect the taxon to create incentive programs to reduce the use of water for household consumption and landscaping purposes. These programs could include the installation of low-flow or dual flush toilets and water-saving shower heads, as well as, the repair of leaky faucets. Other incentives could include the removal of lawns, the promotion of xeric landscaping, and the promotion of grey water systems for watering lawns and other plants and flushing toilets.

d. Upgrade wells and check for leaks to reduce water loss.

Present opportunities for municipal and private water providers to reduce the direct loss of water through discovering and repairing leaks, as well as indirect loss of water due to evaporation.

e. Promote storm water recapture projects.

Agencies, municipalities, and land owners would be encouraged to capture urban rainfall runoff through such devices as rooftop capture for landscaping or dry well capture and storm water detention basins for recharge.

f. Promote use of treated effluent to offset outdoor irrigation.

Treated effluent should be used to replace irrigation with groundwater or surface water in parks, golf courses, and other such large scale landscaping.

1.2 Manage lands to increase watershed health, thus reducing downcutting, headcuts, scouring floods, and sedimentation, and increasing infiltration and recharge which support perennial flow to rivers, streams, springs, and cienegas.

a. Remove invading trees and shrubs in upland grasslands; reduce heavy fuel loads in upland forests; create in-channel structures in upland tributaries and; introduce beaver where appropriate.

Managers should focus on watershed health including promotion of perennial flow. Enhanced hydrograph would increase the amount of available habitat for *L.*
schaffneriana ssp. *recurva* including the establishment of functioning corridors that reconnect isolated habitat fragments. Such management activities as described above will improve regional and alluvial groundwater conditions and reduce erosion and sedimentation. In addition, cienega habitats that were common historically and have since been largely destroyed may benefit from the reintroduction of beaver which can help recreate areas with cienega-like characteristics (Bureau of Land Management1993, p. 7; Service 1998, p. 31).

b. Maintain low to moderate intensity disturbance regimes that reduce competing vegetation and allow for *L. schaffneriana* ssp. *recurva* establishment and growth in lotic habitats.

Management of ecosystems that support *L. schaffneriana* ssp. *recurva* should include the promotion of upland and riparian forest health such that regular disturbance is low to moderate intensity and ecosystems are resilient to periodic high intensity flooding. Management may include thinning and prescription fire, removal of non-native or encroaching vegetation, or similar treatments as appropriate. Management should strive to restore stream function of downcut and straightened streams by returning them to the proper channel dimensions (channel width and depth), pattern (sinuosity) and profile (slope). Creation and maintenance of niches where *L. schaffneriana* ssp. *recurva* can survive high intensity flooding and enable recolonization are essential.

c. Maintain low to moderate intensity disturbance regimes that reduce competing vegetation and allow for *L. schaffneriana* ssp. *recurva* establishment and growth in lentic habitats.

Management of wetland (cienega) ecosystems that support *L. schaffneriana* ssp. *recurva* should include the promotion of open habitat and plant community dynamics by the use of fire or moderate to light grazing. Management may include thinning of invasive plants that crowd out *L. schaffneriana* ssp. *recurva* and prescription fire, removal of non-native or encroaching vegetation, or similar treatments as appropriate. The use of limited grazing by ungulates may be used with appropriate safeguards. Promote the creation and maintenance of habitat diversity that supports niches where *L. schaffneriana* ssp. *recurva* can survive plant succession or a moderately managed plant community that allows for the long-term coexistence of *L. schaffneriana* ssp. *recurva*.

2. **Conserve** *L. schaffneriana* ssp. *recurva* occurrences and their seedbanks; augment existing occurrences; establish new occurrences in appropriate habitat; establish plants at botanical gardens and other Service approved facilities for research, recovery, and educational purposes; and maintain seeds for conservation and recovery at seed storage facilities.

2.1. Protect *L. schaffneriana* ssp. *recurva* occurrences and associated habitat, including unoccupied, intervening drainages that provide connectivity among occurrences.
a. Acquire private lands, wells, and associated surface water rights which support *L. schaffneriana* ssp. *recurva* occurrences and manage for the protection of the taxon.

The protection of *L. schaffneriana* ssp. *recurva* on privately-owned lands may occur through the purchase and management of said lands by government agencies or other conservation partners. Management of said property would prohibit habitat conversion to non-aquatic uses or the diversion or pumping of water within *L. schaffneriana* ssp. *recurva* habitat. Managers of such lands would develop and implement management plans promoting the conservation of *L. schaffneriana* ssp. *recurva*. Potential sources of funding for the purchase of such properties include section 6 acquisition funds for habitat conservation plans, bond monies through county governments, or Wildlife Refuge acquisition funds.

b. Develop conservation agreements and easements for protection of *L. schaffneriana* ssp. *recurva* occurrences on private lands.

Conservation agreements are voluntary agreements between the Service and one or more public or private parties whereby threats and measures to address the threats are identified and implemented to conserve the taxon. In addition, the protection of *L. schaffneriana* ssp. *recurva* on privately-owned lands may occur through the voluntary donation or sale of a conservation easement by a willing landowner to a qualified non-profit organization or branch of government. The deed of easement must identify compatible and incompatible land uses and other management considerations for the taxon and its habitat. At a minimum, the deed of easement must prohibit habitat conversion to non-aquatic uses or the diversion or pumping of water within *L. schaffneriana* ssp. *recurva* habitat. Such lands must be covered by a management plan with best management practices that benefit *L. schaffneriana* ssp. *recurva*. With Conservation agreements and or easements in place, additional funding to support conservation may be more easily attained.

c. Develop and monitor conservation mitigation banking to promote the protection of high quality *L. schaffneriana* ssp. *recurva* habitat.

The development of conservation mitigation banks could aid in the protection of high quality *L. schaffneriana* ssp. *recurva* habitat that is being lost to dewatering and other threats and stressors. Such banks offer a market framework where the purchase of conservation bank credits for section 7 project related impacts can be offset through a one-time credit purchase.

2.2. Augment existing and establish new *L. schaffneriana* ssp. *recurva* occurrences in appropriate habitat using appropriate genetic stock to increase the redundancy (number of occurrences) and resiliency (size of occurrences) of the taxon.

Lilaeopsis schaffneriana ssp. *recurva* has been proven to grow with ease in artificial environments and to transplant easily into the wild. Care should be given to ensure appropriate genetic stock is collected based on the area into which plants are to be
introduced. In addition, care should be given to transplant into environments that can be expected to maintain water, at least throughout the majority of the year, over the foreseeable future, and have minimal threats or stressors. Therefore this task includes surveying for and locating potential establishment and donor sites, working with landowners and/or managers to complete all compliance and approvals, growing out propagules (if necessary), transporting plants to the new location, developing and/or utilizing accepted protocols for transplanting and monitoring results. Such recovery projects could involve the public, including school groups. Restore habitat conditions where habitat is not suitable currently to improve habitat quality to accommodate this taxon.

2.3. Maintain plants in captivity at botanical gardens and other Service approved facilities and seeds at seed storage facilities.

It is important for research, education, and conservation purposes to maintain individual \textit{L. schaffneriana} ssp. \textit{recurva} plants from a variety of locations, representing genetically distinct occurrences. Vegetative material generated in greenhouse settings can be used for the reestablishment of occurrences should they become locally extirpated. Vegetative material could also be used in experiments regarding response to contaminants, propagation and transplanting techniques, and other pertinent studies. In addition, ensure that seed is collected following the Center for Plant Conservation guidelines, is collected across both wet and dry years, and from a variety of geographic areas to ensure maximum genetic variability. Seed should be stored at both the Agricultural Research Service National Center for Genetic Resources Preservation in Fort Collins, Colorado and stored according to protocols at a local facility such as the Desert Botanical Gardens in Phoenix, Arizona. In accordance with protocol, seed would be tested regularly for viability and replacement as necessary. Seeds would be used for research, seed banking, augmentation, and reintroduction.

3. \textbf{Remove stressors to \textit{L. schaffneriana} ssp. \textit{recurva} occurrences and their habitats.}

3.1. Protect occupied habitats and watersheds from congregating livestock and recreation activities, especially during dry periods.

High levels of livestock use can accelerate erosion and sedimentation of \textit{L. schaffneriana} ssp. \textit{recurva} habitat. In particular, high levels of livestock can occur during periods of drought when livestock congregate around drying pools that provide water and forage. Livestock can directly trample plants and leave habitat vulnerable to accelerated erosion that degrades future habitat suitability. It is important to work with land managers, leasees, and land owners to remove livestock from such areas at times when adequate water is unavailable to disperse cattle and thus reduce impacts.

3.2. Control invasive non-native plants and prevent their spread in \textit{L. schaffneriana} ssp. \textit{recurva} habitat.
Although both native and non-native plants compete for nutrients, water, and light, the additional competition caused by non-native plants puts undue stress on *L. schaffneriana* ssp. *recurva* and its habitat. Efforts should be made to prevent further introduction or spread of non-natives in systems that support *L. schaffneriana* ssp. *recurva*. Whenever possible, established non-native plants should be removed from systems that support *L. schaffneriana* ssp. *recurva*. Refer to the Ecology and Current Threats sections for a list of the most commonly associated invasive non-native plants, and action 6.2 regarding the development of management plans that would include plans to control invasive non-natives.

4. With the aid of affected parties, develop a standardized monitoring technique based on existing protocols; monitor *L. schaffneriana* ssp. *recurva* occurrences, threats, and outcomes from management actions allowing for adaptive management.

4.1. With the aid of affected parties, develop a range-wide standardized monitoring approach based on existing approaches (see Cienega Creek National Conservation Area and the San Pedro National Conservation Area as examples) that will be adopted by all land managers, land owners, and conservation partners which will enable an understanding of current status and knowledge of when recovery criteria have been met. This will include: 1) timing of survey, 2) presence of the plant (occupancy), 3) protocol for measuring square meters covered by the plant (density), and 4) assessing the health of occurrences and threats. Augmented and newly established occurrences should be monitored at least every three years.

Currently there is no standard protocol for monitoring *L. schaffneriana* ssp. *recurva*, with different land management agencies using different protocols. Divergent methods make data analysis difficult, at best. To evaluate changes in habitat, taxon occurrence size and distribution, extent of occurrences per the recovery criteria, level of threats at each occurrence, and demographic processes of *L. schaffneriana* ssp. *recurva* occurrences throughout the range, repeated measurements at least every three years are needed.

4.2. Monitor historical and current natural, augmented, and newly established occurrences at least every three years.

By repeatedly monitoring occurrences, we can determine if the recovery criteria are being met and adapt management accordingly. Several land management agencies already conduct regular monitoring of established plots and survey areas; it is critical that this monitoring continue, as it provides needed long-term data allowing managers to make informed decisions based on trends. Additional monitoring for long term trends should be established throughout the range of the taxon.

4.3. Monitor water availability through time.

Much of the range of *L. schaffneriana* ssp. *recurva* is impacted by climate change and drought, as well as groundwater pumping. This taxon is particularly vulnerable to even small losses in groundwater availability. Therefore, it is important to monitor water
availability through time, in addition to monitoring the response of *L. schaffneriana* ssp. *recurva*.

4.4. Review the status of the taxon periodically to assess the effectiveness of management and recovery actions.

Management actions must be monitored to assess their effectiveness or discover unintended consequences. Management plans need to be modified if they are unsuccessful at providing protection and promoting recovery of *L. schaffneriana* ssp. *recurva* and its habitat. This will facilitate the implementation of an adaptive management approach to recovery.

5. Encourage scientific study to improve our understanding of *L. schaffneriana* ssp. *recurva* geography, ecology, viability, genetics, propagation, habitat restoration, and threats in the United States and Mexico.

5.1. Identify information gaps, compatible land uses, and appropriate management actions that promote the conservation of the taxon.

It is important to identify gaps in our current understanding of the taxon and how it relates to certain land management practices. Such information will inform better management of the taxon for its continued protection and recovery.

5.2. Conduct surveys in appropriate habitat to better understand the range of the taxon.

There is potential habitat in both the United States and Mexico that has not been surveyed for the presence of *L. schaffneriana* ssp. *recurva*. Additional surveys are needed and repeat measures conducted to confirm continued presence at known locations.

5.3. Conduct research into biology, ecology, and genetics of the taxon.

Although we currently know more about *L. schaffneriana* ssp. *recurva* then at the time of listing, there remains a great deal of biology, ecology, and genetics that we still do not understand. The following research to help recover this taxon is needed:

a. how long this taxon is able to withstand dewatering,

b. how it interacts with invasive native and non-native plants,

c. its tolerance to grazing and trampling,

d. its ability to come back following floods of various intensity,

e. how the two varieties in Mexico are related genetically,

f. what are the major pollinators of the taxon, and
g. many other questions, would aid in the management and recovery of the taxon.

6. Develop public outreach, collaborative partnerships, agency management plans, and agreements with private land owners in the United States and Mexico that encourage *L. schaffneriana* ssp. *recurva* conservation.

 6.1. Work with others to increase public outreach regarding stressors, threats, and conservation measures relating to *L. schaffneriana* ssp. *recurva* in both the United States and Mexico.

 Work with both United States and Mexican government agencies, academic institutions, non-government organizations, and private citizens to promote public outreach and ultimately recovery of the taxon throughout its range.

 6.2. Develop collaborative partnerships and agreements with private land owners that result in management plans or that otherwise encourage *L. schaffneriana* ssp. *recurva* conservation in the United States and Mexico.

 Develop partnerships with both United States and Mexican government agencies, academic institutions, non-government organizations, and private citizens to promote study, conservation, and recovery of the taxon throughout its range. The creation and adherence to management plans that address threats are necessary to protect the taxon and its habitat. Plans should include prescriptions to protect *L. schaffneriana* ssp. *recurva* from habitat degradation, invasive non-native plant species, and that address the timing and duration of livestock grazing.

 6.3. Develop a recovery implementation team comprised of taxon experts, agency and non-government agency partners, landowners, and stakeholders to meet regularly, work on recovery actions, review progress, discuss problems, and revise this plan as needed.

 This plan may need to be revised to address changing conditions, incorporate new findings, and update recovery actions. To ensure plan use and usefulness, the involvement of an implementation team is suggested. Recovery actions such as restoring watersheds, introducing plugs into suitable habitat, and purchasing water rights and easements are essential to the recovery of this taxon.
Part III. Implementation

The following implementation schedule is comprised of three overarching elements that then tier down to individual recovery actions for implementation. The implementation schedule outlines actions and estimated costs for this draft Recovery Plan. It is a guide for meeting the objectives discussed in Chapter II. This schedule also prioritizes actions, provides an estimated timetable for performance of actions, and proposes the responsible parties for actions. For the sake of brevity in the Implementation Schedule, annual costs are shown for the first five years, along with an estimated total cost over a twenty year period. Actions are subject to modification as dictated by new findings, changes in taxon status, and the completion of recovery actions. The most detailed actions are assigned a priority number for implementation. The actions in the Implementation Schedule, when accomplished, should result in the recovery and conservation of the taxon.

Key to Terms and Acronyms Used in the Recovery Action Narrative and Implementation Schedule:

Priority numbers are defined per Service policy (Service 1983) as:

Priority 1: An action that must be taken to prevent extinction or to prevent the taxon from declining irreversibly.

Priority 2: An action that must be taken to prevent a significant decline in the taxon population / habitat quality or some other significant negative impact short of extinction.

Priority 3: All other actions necessary to provide for full recovery of the taxon.

Explanation of Time Estimates:

20 Years – An action that involves continuous implementation throughout the recovery time frame (minimum duration of 20 years), but is not yet underway, such as acquiring surface water rights.

1-19 Years – A discrete action that will be implemented and completed within the specified time frame, such as a scientific study.

O = Ongoing – An action that is currently underway and will continue to be implemented throughout the recovery time frame (minimum duration of 20 years), such as outreach.

P = Periodic – An action that will be implemented on a fairly regular or rotating basis, such as monitoring.
Responsible Parties:

ALWT Arizona Land and Water Trust
ASDM The Arizona Sonora Desert Museum
ASU Arizona State University
BLM Bureau of Land Management
DBG The Desert Botanical Garden
FTH United States Army Fort Huachuca
FWS U.S. Fish and Wildlife Service
GOV State or local governments and municipalities
NGO Non-government organization
PVT private citizens
SNAT Secretaría de Medio Ambiente y Recursos Naturales
TNC The Nature Conservancy
UA University of Arizona
FS Forest Service
USGS United States Geological Survey
UNAM Universidad Nacional Autónoma de Mexico
USON Universidad de Sonora

Responsible parties are those agencies who may voluntarily participate in implementation of particular actions listed within this draft Recovery Plan. Responsible parties may willingly participate in project planning, or may provide funding, technical assistance, staff time, or any other means of implementation; however, responsible parties are not obligated to implement any of these actions. Other parties are invited to participate in the recovery of *L. schaffneriana* ssp. *recurva*, as well.
Implementation Schedule.

Costs are shown in 1,000s of dollars; Total Cost is shown for a 20 year period. Total cost over a 20 year period is $52,006,000.

The importance of preventing excessive water drawdown and increasing water recharge into the San Pedro, Santa Cruz, and Rio Yaqui watersheds in the United States cannot be understated in the recovery of this and co-occurring listed species. Arizona is an arid state with finite water supplies, a population expected to double by 2050, and ongoing drought (ADWR 2014, entire; Marshall et al. 2010, p. 1). There is a potential for a long-term imbalance between available water supplies and projected water demands over the next 100 years if no action is taken (ADWR 2014, entire). A clean and sustainable water supply is essential for humans and the environment; water resources planning must embrace the need for water for urban growth, as well as environmental water needs (Marshall et al. 2010, p. 1).

Using water more efficiently, reusing water, capturing water, and purchasing surface water rights are all methods whereby water availability can be increased for the benefit of *L. schaffneriana* ssp. *recurva*, and would have added benefit to many other co-occurring listed and unlisted plant and animal species, ecosystem services provided by healthy watersheds, and economic benefits such as from increased tourism. It is unknown if all of the below-listed methods will need to be or even can be employed to down-list or de-list this taxon. Issues surrounding water are complex and the political, social, economic, and environmental aspects of water are constantly changing, and may affect the scope and scale of the implementation of these recovery actions. In addition, actions taken to improve aquatic habitats for *Spiranthes delitescens* (Canelo Hills ladies’ tresses), *Chiricahua leopard frog* (*Lithobates chiricahuensis*), Northern Mexican gartersnake (*Thamnophis eques megalops*), beautiful shiner (*Cyprinella formosa*), desert pupfish (*Cyprinodon macularius*), Gila chub (*Gila intermedia*), Gila topminnow (*Poeciliopsis occidentalis occidentalis*), Yaqui catfish (*Ictalurus pricei*), Yaqui chub (*Gila purpurea*), Yaqui topminnow (*Poeciliopsis occidentalis sonoriensis*), southwestern willow flycatcher (*Empidonax traillii extimus*), and yellow-billed cuckoo (*Coccyzus americanus*), and *L. schaffneriana* ssp. *recurva*; therefore costs listed below may not reflect the actual cost of recovery as such costs may be distributed across a variety of efforts targeting riparian and aquatic restoration, reducing the recovery cost per species.
Implementation Schedule for *Lilaeopsis schaffneriana* ssp. *recurva*; Threats*: a) Aquatic habitat degradation; b) Wildfire and resulting sedimentation; c) Competition and resulting sedimentation; d) Livestock grazing; e) Recreation; f) Effects of drought and climate change.

<table>
<thead>
<tr>
<th>Priority Number</th>
<th>Threats*</th>
<th>Action Number</th>
<th>Action Description</th>
<th>Time Estimate (Years)</th>
<th>Responsibility</th>
<th>Total Cost ($1,000s)</th>
<th>Cost ($1,000s) for Years 1-5</th>
<th>Cost ($1,000s) for Years 6-10</th>
<th>Cost ($1,000s) for Years 11-15</th>
<th>Cost ($1,000s) for Years 16-20</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 a; e</td>
<td>1.1a</td>
<td>Acquire surface water rights and convert them to in-stream uses or apply for rights anew and defend them in a court of law.</td>
<td>20</td>
<td>ALWT BLM FTH FWS GOV PVT TNC FS</td>
<td>12,000</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>Continuous through recovery. Cost for acquisition of surface water rights is ~$1,000 / acre foot.</td>
</tr>
<tr>
<td>1 a; e</td>
<td>1.1b, 2.1b</td>
<td>Acquire conservation easements to protect larger lands from being subdivided into smaller lots with increased residential pumping per acre.</td>
<td></td>
<td>ALWT BLM FTH FWS GOV TNC FS</td>
<td>9,200</td>
<td>2,300</td>
<td>2,300</td>
<td>2,300</td>
<td>2,300</td>
<td>2,300</td>
<td>Acquire conservation easements (~$1,500 / acre).</td>
</tr>
<tr>
<td>1 a; e</td>
<td>1.1c</td>
<td>Encourage incentive programs to reduce water use across the range of L. schaffneriana ssp. recurva.</td>
<td>O</td>
<td>FTH GOV</td>
<td>3,900</td>
<td>975</td>
<td>975</td>
<td>975</td>
<td>975</td>
<td>975</td>
<td>Implement existing programs, promote and implement new water saving incentive programs (~195,000 / year).</td>
</tr>
<tr>
<td>1 a; e</td>
<td>1.1d</td>
<td>Upgrade wells and check for leaks to reduce water loss.</td>
<td>20</td>
<td>ALWT BLM FTH GOV PVT TNC FS</td>
<td>500</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>Continuous through recovery. Cost for promoting and implementing well upgrades and repairs is ~25,000 / year.</td>
</tr>
<tr>
<td>1 a; e</td>
<td>1.1e</td>
<td>Promote storm water recapture projects.</td>
<td>O</td>
<td>FTH GOV</td>
<td>2,200</td>
<td>550</td>
<td>550</td>
<td>550</td>
<td>550</td>
<td>550</td>
<td>Implement existing programs, promote and implement new storm water recapture programs. Cost estimated at ~$110,000 / year.</td>
</tr>
<tr>
<td>Priority Number</td>
<td>Threats</td>
<td>Action Number</td>
<td>Action Description</td>
<td>Time Estimate (Years)</td>
<td>Responsibility</td>
<td>Total Cost ($1,000s)</td>
<td>Cost ($1,000s) for Years 1-5</td>
<td>Cost ($1,000s) for Years 6-10</td>
<td>Cost ($1,000s) for Years 11-15</td>
<td>Cost ($1,000s) for Years 16-20</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>a; e</td>
<td>1.1f</td>
<td>Promote use of treated effluent to offset outdoor irrigation.</td>
<td>O</td>
<td>FTH GOV</td>
<td>2,200</td>
<td>550</td>
<td>550</td>
<td>550</td>
<td>550</td>
<td>Implement existing programs, promote and implement new effluent treatment programs. Cost estimated at--$110,000 / year.</td>
</tr>
<tr>
<td>1</td>
<td>a; b; d; f</td>
<td>1.2a</td>
<td>Remove invading trees and shrubs in upland grasslands; reduce heavy fuel loads in upland forests; create in-channel structures in upland tributaries and; introduce beaver where appropriate.</td>
<td>20</td>
<td>ALWT BLM FTH FWS PVT TNC FS</td>
<td>5,000</td>
<td>2,000</td>
<td>1,500</td>
<td>1,000</td>
<td>500</td>
<td>Continuous through recovery. Cost based on existing management and restoration projects of similar scale (San Pedro ($396,409) and Babocomari ($118,125) River projects funded by the Arizona Water Protection Fund in 2014).</td>
</tr>
<tr>
<td>1</td>
<td>a; b; d; f</td>
<td>1.2b, 1.2c</td>
<td>Maintain disturbance regimes that reduce competing vegetation and allow for L. schaffneriana ssp. recurva establishment and growth in lotic and lentic systems.</td>
<td>20</td>
<td>ALWT BLM FTH FWS PVT TNC FS</td>
<td>5,000</td>
<td>2,000</td>
<td>1,500</td>
<td>1,000</td>
<td>500</td>
<td>Continuous through recovery. Cost based on existing management and restoration projects of similar scale (San Pedro ($396,409) and Babocomari ($118,125) River projects funded by the Arizona Water Protection Fund in 2014).</td>
</tr>
<tr>
<td>Priority Number</td>
<td>Threats*</td>
<td>Action Number</td>
<td>Action Description</td>
<td>Time Estimate (Years)</td>
<td>Responsibility</td>
<td>Total Cost ($1,000s)</td>
<td>Cost ($1,000s) for Years 1-5</td>
<td>Cost ($1,000s) for Years 6-10</td>
<td>Cost ($1,000s) for Years 11-15</td>
<td>Cost ($1,000s) for Years 16-20</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>---------------</td>
<td>---</td>
<td>------------------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>2.1a</td>
<td>Acquire private lands and associated surface water rights which support occurrences and manage for the protection of the taxon.</td>
<td>20</td>
<td>BLM FWS TNC F S</td>
<td>10,000</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>1,000</td>
<td>Continuous through recovery. Cost based on cost of similar property (452.58 acre property which includes 6 miles of the San Pedro River for $1,035,000).</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>2.1c</td>
<td>Develop and monitor conservation mitigation banking to promote the protection of high quality L. schaffneriana ssp. recurva habitat.</td>
<td>20</td>
<td>ALWT FWS GOV Private TNC</td>
<td>55</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>13</td>
<td>Continuous through recovery. Cost based on private conservation bank development and monitoring for the Pima pineapple cactus (Coryphantha scheeri var. robustispina) of southern Arizona.</td>
</tr>
<tr>
<td>2</td>
<td>a; e</td>
<td>2.2</td>
<td>Augment existing and establish new L. schaffneriana ssp. recurva occurrences in appropriate habitat using appropriate genetic stock to increase the redundancy / resiliency of the taxon.</td>
<td>O</td>
<td>ALWT BLM FTH FWS GOV TNC F S</td>
<td>100</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>Cost based on propagation of the taxon in greenhouses. Planting with volunteer assistance, as well as direct planting (no greenhouse time), will reduce cost.</td>
</tr>
<tr>
<td>2</td>
<td>a; e</td>
<td>2.3</td>
<td>Maintain plants in captivity at botanical gardens and other Service approved facilities and seeds at seed</td>
<td>O</td>
<td>ASDM DBG</td>
<td>202</td>
<td>50.5</td>
<td>50.5</td>
<td>50.5</td>
<td>50.5</td>
<td>Maintain existing and future specimens. Cost based on estimates from two botanical gardens to care for 40 plants; costs to care for seeds are ~$100 / year and are incorporated into the 20 year total.</td>
</tr>
<tr>
<td>Priority Number</td>
<td>Threats*</td>
<td>Action Number</td>
<td>Action Description</td>
<td>Time Estimate (Years)</td>
<td>Responsibility</td>
<td>Total Cost ($1,000s)</td>
<td>Cost ($1,000s) for Years 1-5</td>
<td>Cost ($1,000s) for Years 6-10</td>
<td>Cost ($1,000s) for Years 11-15</td>
<td>Cost ($1,000s) for Years 16-20</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>---------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>2</td>
<td>a; c; d; e</td>
<td>3.1</td>
<td>Protect occupied habitats and watersheds from congregating livestock and recreation activities, especially during dry periods.</td>
<td>O ALWT BLM PVT TNC FS</td>
<td>300</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>Continue implementing existing protective measures. Cost based on two people ($32 / hour, 30 days / year) checking and maintaining throughout the range of the taxon: a) pasture and exclosure fences, b) occurrences, especially during the driest times of the year, and c) enforcing trespass cattle removal if necessary.</td>
</tr>
<tr>
<td>2</td>
<td>a; c; d; e</td>
<td>3.2</td>
<td>Control invasive non-native plants and prevent their spread in L. schaffneriana ssp. recurva habitat.</td>
<td>O ALWT BLM FTH FWS GOV PVT TNC FS</td>
<td>650</td>
<td>300</td>
<td>200</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>Continue implementing existing control measures. Cost based on a FS estimate of treating exotic invasive plants with herbicide ($200 / ac) and ~ 3,236 acres of land surrounding known occurrences of the taxon in the U.S. Volunteer labor for hand pulling efforts may also be necessary for maintenance.</td>
</tr>
<tr>
<td>Priority Number</td>
<td>Threats*</td>
<td>Action Number</td>
<td>Action Description</td>
<td>Time Estimate (Years)</td>
<td>Responsibility</td>
<td>Total Cost ($1,000s)</td>
<td>Cost ($1,000s) for Years 1-5</td>
<td>Cost ($1,000s) for Years 6-10</td>
<td>Cost ($1,000s) for Years 11-15</td>
<td>Cost ($1,000s) for Years 16-20</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>2</td>
<td>a; b; c; e; f</td>
<td>4.1</td>
<td>With the aid of affected parties, develop a range-wide standardized monitoring approach based on existing approaches that will be adopted by all land managers which will enable an understanding of the current status and knowledge of when recovery criteria have been met.</td>
<td>5</td>
<td>ALWT BLM FTH FWS GOV PVT TNC FS</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Monitoring approach will be developed during years 1-5. Cost based on interagency attendance at meetings and time in the field to develop methodology; also will need input of statistician ($32 / hour, 20 people, 2 days total).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See above</td>
<td>1</td>
<td>ALWT BLM FTH FWS GOV PVT TNC FS</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Cost based on time for interagency personnel to evaluate ($32 / hour, 20 people, 1 day total)</td>
</tr>
<tr>
<td>2</td>
<td>a; b; c; e; f</td>
<td>4.2</td>
<td>Monitor historical and current natural and augmented occurrences.</td>
<td>P</td>
<td>BLM FTH FWS TNC FS</td>
<td>200</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>At least every 3 years. Cost based on personnel and travel to monitor occurrences on a rotating basis, with at least some occurrences being monitored each year ($32 / hour, 10 hours / day, 3 people, $50 gas per trip, 10 days / year).</td>
</tr>
<tr>
<td>Priority Number</td>
<td>Threats*</td>
<td>Action Number</td>
<td>Action Description</td>
<td>Time Estimate (Years)</td>
<td>Responsibility</td>
<td>Total Cost ($1,000s)</td>
<td>Cost ($1,000s) for Years 1-5</td>
<td>Cost ($1,000s) for Years 6-10</td>
<td>Cost ($1,000s) for Years 11-15</td>
<td>Cost ($1,000s) for Years 16-20</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------------</td>
<td>--------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>4.3</td>
<td>Monitor water availability through time.</td>
<td>P</td>
<td>BLM FTH FWS GOV TNC FS USGS</td>
<td>40</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>Every 5 years. Cost based on personnel and travel to monitor groundwater pumping and drought ($32 / hour, 10 hours / day, 3 people, $50 gas per trip, 10 days / year).</td>
</tr>
<tr>
<td>2</td>
<td>a; b; c; e; f</td>
<td>4.4</td>
<td>Review the status of the taxon periodically to assess the effectiveness of management and recovery actions.</td>
<td>P</td>
<td>ALWT BLM FTH FWS GOV PVT TNC FS</td>
<td>22</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>Every 5 years. Cost based on time for interagency personnel to analyze data and attend meetings to discuss management effectiveness ($32 / hour, 20 people, 1 8-hour day / review, $50 gas / every 2 people / review).</td>
</tr>
<tr>
<td>2</td>
<td>a; b; c; d; e; f</td>
<td>5.1</td>
<td>Identify information gaps, compatible land uses, and appropriate management actions that promote the conservation of the taxon.</td>
<td>15</td>
<td>ALWT ASDM ASU BLM DBG FTH FWS GOV PVT SNAT TNC UA FS USON UNAM</td>
<td>90</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>One study per 5-year period for the first 15 years. Cost based on previous scientific studies of Arizona’s rare plants that have been funded through our section 6 program (~$30,000 per study).</td>
</tr>
<tr>
<td>2</td>
<td>a; b; c; e; f</td>
<td>5.2</td>
<td>Conduct surveys in appropriate habitat to better understand the range of the taxon.</td>
<td>10</td>
<td>ALWT ASDM ASU BLM DBG FTH FWS GOV PVT SNAT TNC UA FS USON UNAM</td>
<td>60</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>One study per 5-year period for the first 10 years. Cost based on previous scientific studies of Arizona’s rare plants that have been funded through our section 6 program (~$30,000 per study).</td>
</tr>
<tr>
<td>Priority Number</td>
<td>Threats*</td>
<td>Action Number</td>
<td>Action Description</td>
<td>Time Estimate (Years)</td>
<td>Responsibility</td>
<td>Total Cost ($1,000s)</td>
<td>Cost for Years 1-5 ($1,000s)</td>
<td>Cost for Years 6-10 ($1,000s)</td>
<td>Cost for Years 11-15 ($1,000s)</td>
<td>Cost for Years 16-20 ($1,000s)</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>---------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>2</td>
<td>a; b; c; e; f</td>
<td>5.3</td>
<td>Conduct research into biology, ecology, and genetics of the taxon.</td>
<td>20</td>
<td>ALWT ASDM ASU BLM DBG FTH FWS GOV PVT SNAT TNC UA FS USON UNAM</td>
<td>150</td>
<td>60</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>Two studies in the first 5-year period, one study per 5-year period thereafter. Cost based on scientific studies of Arizona’s rare plants that have been funded through our section 6 program (~$30,000 per study).</td>
</tr>
<tr>
<td>2</td>
<td>a; b; c; d; e; f</td>
<td>6.1</td>
<td>Work with others to increase public outreach regarding stressors, threats, and conservation measures relating to L. schaffneriana ssp. recurva in both the United States and Mexico.</td>
<td>O</td>
<td>ALWT BLM FTH FWS GOV NGO PVT SNAT TNC FS</td>
<td>50</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
<td>Continue implementing existing programs, pursue new outreach projects. Cost based on creation of outreach materials, conservation agreements and management plans, as well as developing relationships through presentations and field trip participation ($32 / hour, 8 hour days, 10 / year, 1 person, printing, gas, and other costs).</td>
</tr>
<tr>
<td>Priority Number</td>
<td>Threats*</td>
<td>Action Number</td>
<td>Action Description</td>
<td>Time Estimate (Years)</td>
<td>Responsibility</td>
<td>Total Cost ($1,000s)</td>
<td>Cost ($1,000s) for Years 1-5</td>
<td>Cost ($1,000s) for Years 6-10</td>
<td>Cost ($1,000s) for Years 11-15</td>
<td>Cost ($1,000s) for Years 16-20</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>---------------</td>
<td>---</td>
<td>-----------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>2</td>
<td>a; b; c; d; e; f</td>
<td>6.2</td>
<td>Develop collaborative partnerships and agreements with private land owners that result in management plans or that otherwise encourage L. schaffneriana ssp. recurva conservation in the United States and Mexico.</td>
<td>20</td>
<td>ALWT BLM FTH FWS GOV NGO PVT SNAT TNC FS</td>
<td>50</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
<td>Continuous through recovery. Cost based on creation of outreach materials, conservation agreements and management plans, as well as developing relationships through presentations and field trip participation ($32 / hour, 8 hour days, 10 / year, 1 person, printing, gas, and other costs).</td>
</tr>
<tr>
<td>3</td>
<td>a; b; c; d; e; f</td>
<td>6.3</td>
<td>Develop a recovery implementation team comprised of taxon experts, agency and non-government agency partners, landowners, and stakeholders to meet regularly, review progress, discuss problems, and revise this plan as needed.</td>
<td>P</td>
<td>ALWT ASDM DBG FTH FWS GOV NGO PVT TNC FS</td>
<td>22</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>Every 5 years. Cost based on interagency attendance at meetings to discuss recovery (costs include travel to central location, hotel rooms, and per diem).</td>
</tr>
</tbody>
</table>
Literature Cited

Arizona Game and Fish Department . 2011. Locations of *Lilaeopsis schaffneriana* ssp. *recurva* from the Heritage Data Management System GIS layer, Arizona Game and Fish Department, Phoenix, Arizona.

Deecken, T. 1994. Fax to Sue Rutman on April 11, 1994; Map showing Mababi, Mexico *Lilaeopsis schaffneriana* ssp. *recurva* occurrence noting “numerous plants at spring”.

(*Lilaeopsis schaffneriana recurva*) Fort Huachuca monitoring and San Pedro Riparian
National Conservation Area inventory report. 25 pp.

Environmental and Natural Resources Division Directorate of Public Works. 2006. Endangered

Environmental and Natural Resources Division Directorate of Public Works. 2010. Integrated

Environmental and Natural Resources Division Directorate of Public Works. 2012. 2011
Huachuca water umbel (*Lilaeopsis schaffneriana ssp. recurva*) monitoring report - Fort
Huachuca. 34 pp.

Ehret, S., T. Robinson, and C. Carter. 2007. Arizona Game & Fish Department Post Canyon,

Ehret, S. 2008. Arizona Game and Fish Department Region V Fisheries Program - Welch and
Freeman Spring brief trip report. 3 pp.

July 13, 1998 memorandum to Jeanne Wade, District Ranger, Sierra Vista Ranger
District, Coronado National Forest, Hereford, AZ.

Fehlberg and Allen 2014. Improved genetic resources for the study of Huachuca water umbel
(*Lilaeopsis shaffneriana ssp. recurva*). Final report for Section 6, Segment 17 – 2013-

http://www.fs.fed.us/database/feis/plants/graminoid/sorhal/all.html accessed November

2014.

the southwest slope of Lone Mountain; Sycamore Canyon above Sycamore Spring.
Growing at outlet of small pond in riparian forest in oak woods, Cochise County,
Arizona. Catalogue number 306551; Record number 1315; Collected August 13, 1993.

Fogg, J., W. Elmore, and M. Gonzales. 2012. Riparian Conditions Along the San Pedro River:
Potential Natural Communities and Factors Limiting Their Occurrence. 27 pp.

Powell, B. 2013. Water resource trends in the Cienega Creek Natural Preserve, Pima County, Arizona. An unpublished report to the Pima County Flood Control District, Tucson, AZ.

Stefferd, J. and S. Stefferud. 2004. Aquatic and riparian surveys of selected stream courses on Sierra Vista and Nogales Ranger Districts, Coronado National Forest, Cochise and Santa Cruz Counties, Arizona. Submitted to Dr. Paul Marsh, Arizona State University School of Life Sciences – In fulfillment of Forest Service Agreement No. 11CS110305-17-032 / Cooperator Agreement No. 02-0164, dated 9/7/01. 636 pp.

U.S. Forest Service (Forest Service). 2003. Decision notice and finding of no significant impact: Grazing authorization and allotment management plan Lone Mountain Allotment. 9 pp.

Personal Communication

Titus, P. and J. Titus. 2006a. E-mail correspondence from Priscilla Titus, Ecologist and John Titus, Assistant Professor of Biology, SUNY at Fredonia, to Kerry Baldwin, Pima County. Re: Lilaeopsis schaffneriana ssp. recurva survey summary at Cienega Creek Preserve. June 20, 2006.

Appendix A - Status and trends of the occurrences within the United States and Mexico as of November 2014
(slightly modified from the August 2014 Lilaeopsis schaffneriana ssp. recurva Five-Year Review)

United States Army Fort Huachuca:
Lilaeopsis schaffneriana ssp. recurva occurs in four canyons on Fort Huachuca, all of which are monitored regularly by Fort Huachuca personnel and discussed individually below. Inventory, monitoring, and management of this taxon have been implemented on Fort Huachuca since 1999 (Brewer pers. comm. May 2, 2014). In addition, Fort Huachuca has conducted an inventory of all potential L. schaffneriana ssp. recurva habitat on the installation every four years. The inventory encompasses 16 marshland sites (inventory segments), originally identified during the 1999 installation-wide inventory of potential water umbel habitat, which are surveyed to determine presence, distribution, and percentage of critical habitat occupied by L. schaffneriana ssp. recurva using Service approved methodology (Vernadero Group 2010, p. iii). Inventory surveys were conducted in 1999 and subsequently in 2002, 2005, 2009 (Vernadero Group 2010, pp. iii-1), and 2013 (Brewer pers. comm. January 17, 2014). Monitoring surveys have been conducted in 2000, 2001, 2003, 2004, 2006, 2008, and 2011 (Environmental and Natural Resources 2012, p. 1). Although occurrences were last inventoried in 2013 following a heavy monsoon season, no report was completed at the time of this review (Brewer pers. comm. January 17, 2014). The most recent monitoring report identified that the percent of transect occupied generally increased between 2008 and 2011 (the dates for which data comparison is possible). Although the percentage of occupied habitat has decreased over the years, the general distribution has been consistent since 1999 (Vernadero Group 2009, p. 2; Directorate of Public Works 2013, p. 2). Monitoring results suggest that water umbel has become either less prevalent or more difficult to detect as time passes (or perhaps some combination of the two) (Vernadero 2010).

Garden Canyon – Lilaeopsis schaffneriana ssp. recurva was first noted in Garden Canyon in 1958 (Gooding 1958, entire). Warren et al. (1991, p. 19) noted two separate occurrences in this canyon; one having widely scattered patches, the other, thick mats. Multiple patches of L. schaffneriana ssp. recurva, primarily located between upper Garden Canyon pond and the upper Garden Canyon picnic area, are monitored regularly (e.g. Engineering and Environmental Consultants 2001, entire; Engineering and Environmental Consultants 2002, entire; Environmental and Natural Resources Division Directorate of Public Works 2005, entire; Vernadero Group 2009, entire; Vernadero Group 2010, entire; Directorate of Public Works 2013, entire). Areas below middle Garden Canyon Picnic area do not contain suitable habitat for L. schaffneriana ssp. recurva (Vernadero Group 2010, p. 10). Much of the Canyon contains high cover of bunchgrasses and marshland species, including the invasive exotic Nasturtium officinale (watercress), making detection difficult and some historical occurrences have not been relocated in recent years (Vernadero Group 2009, p. 10). This canyon supports the greatest extent of L. schaffneriana ssp. recurva on Fort Huachuca (Environmental and Natural Resources 2012, p. 8). In July 2014, a monsoon-related flood within Garden Canyon removed 2 of 14 monitored patches of L. schaffneriana ssp. recurva along with nearby competing vegetation (Brewer pers. comm. July 17, 2014).
Sawmill Canyon – A single occurrence of *L. schaffneriana* ssp. *recurva* was documented in this tributary of Garden Canyon in 1979 (Yatskievych 1979, entire). In 1991, Warren et al. (p. 19) reported this occurrence contained five small patches. In 2000, the staff at Fort Huachuca set up a permanent monitoring transect in the Sawmill Canyon *L. schaffneriana* ssp. *recurva* occurrence. In 2004, Engineering and Environmental Consultants (p. 4) reported Sawmill Canyon supports a Madrean montane marshland dominated by deergrass. In 2009, this occurrence was reported to have a patch size of 4.15 by 2.7 m (13.6 by 8.9 ft) (Vernadero Group 2009, p. 6). As of the 2013 surveys, this occurrence was 4.62 by 1.24 m (15.2 by 4.1 ft) (Directorate of Public Works 2013, p. 2; Brewer pers. comm. May 2, 2014). A second occurrence was detected in 2002, but has not been detected since (Engineering and Environmental Consultants 2004, p. 9; Environmental and Natural Resources 2006, p. 3; Vernadero Group 2009, p. 13).

McClure Canyon – A single occurrence containing a single patch of *L. schaffneriana* ssp. *recurva* 3.62 by 2.76 m (11.9 by 9.1 ft) across was documented in McClure Canyon in 1997 (Vernadero Group 2009, p. 3). The patch has been documented in subsequent years of survey, including 2013 (Vernadero Group 2009, p. 9; Directorate of Public Works 2013, p. 2). This occurrence is near McClure Spring in a small pool surrounded by *Muhlenbergia rigens* (deergrass - a native, warm-season, perennial bunchgrass, and a possible competitor), *Carex ultra* (Cochise sedge), and *Eleocharis* sp. (spikerush) (Vernadero Group 2009 p. 2). The exact location of the *L. schaffneriana* ssp. *recurva* patch has shifted downslope; the previous site now is filled with sediment (Vernadero Group 2010, p 12).

Huachuca Canyon – A single occurrence of *L. schaffneriana* ssp. *recurva* that likely dispersed from transplanted plugs (small containerized plants with roots encased in potting soil) was documented in Huachuca Canyon in 2013 (see Augmented and Newly Established Occurrences section below; Directorate of Public Works 2013, p. 2).

Forest Service: *Lilaeopsis schaffneriana* ssp. *recurva* occurring on Forest Service lands are monitored periodically by Forest Service personnel. The last monitoring in Scotia, Sunnyside, and Bear Canyons occurred in the fall of 2013; no report was completed at the time of this review (Kraft pers. comm. November 22, 2013). While some Forest Service occurrences seem to be stable, others are in decline or are now considered extirpated.

Scotia Canyon – *Lilaeopsis schaffneriana* ssp. *recurva* was first noted in Scotia Canyon in 1988 where it was documented from an upper and lower portion of the canyon, separated by a dry middle section (Gori et al. 1990). Monitoring of permanent transects began in 1989 along the upper section (Gori et al. 1990); in 1995, the Forest Service began monitoring plants in both the upper and lower sections and this continued in 2013. In 2003, *L. schaffneriana* ssp. *recurva* was found throughout reach 2 of this canyon where there were reported marshy areas and shallow pools, though the banks were lined with *M. rigens* (Stefferd and Stefferud 2004, p. 511). Significant flows from the 2013 monsoon season scoured this canyon and because of this, larger patches of *L. schaffneriana* ssp. *recurva* were not as prevalent in the lower canyon portion as in previous years of survey; the flood also removed competing vegetation (Kraft pers. comm. February 26, 2014). Patches were found at roughly the same frequency in 2013 as in past
surveys (Kraft pers. comm. November 22, 2013). In late August, 2014, severe monsoon flooding again caused scouring within Scotia Canyon. At the time of writing, the impact to the patches of *L. schaffneriana* ssp. *recurva* in Scotia Canyon is unknown. Plants in this canyon have historically represented some of the densest occurrences of *L. schaffneriana* ssp. *recurva* known (Service 2001, p. 7; Falk 1998, p. 1).

Sunnyside Canyon – *Lilaeopsis schaffneriana* ssp. *recurva* was first noted in Sunnyside Canyon in 1991 (McLaughlin 1991, entire); the plants were surveyed in 2000, followed by every other year through 2007, then again in 2013 (Service 2001, p. 2; Deecken pers. comm. September 7, 2013). In 2013, significant flows from the monsoon season scourged this canyon, although larger patches of *L. schaffneriana* ssp. *recurva* were found, the overall extent of *L. schaffneriana* ssp. *recurva* in this canyon is believed to have contracted from previous years (Kraft pers. comm. November 22, 2013). In late August 2014, severe monsoon flooding again caused scouring within Sunnyside Canyon. At the time of writing, the impact to the patches of *L. schaffneriana* ssp. *recurva* in Sunnyside Canyon is unknown. In 2003, the Stefferuds reported competition from *M. rigens* was moderately high (Stefferud and Stefferud 2004, p. 542); in 2013, it was said to be high in a few places (Kraft pers. comm. November 22, 2013).

Bear Canyon – *Lilaeopsis schaffneriana* ssp. *recurva* was first collected in Bear Canyon in 1949 (Gooding 1949, entire). In 1989, Warren et al. (p. 60) noted that *L. schaffneriana* ssp. *recurva* occurred in two small patches within Bear Creek and was not doing as well as in its tributary canyons that contained less rocky habitat with a lower stream gradient. In 2013, *L. schaffneriana* ssp. *recurva* was found in Bear Canyon where there was substrate for rooting, both as a few large patches and as singular plants in several instances (Kraft pers. comm. November 22, 2013). In 2013, *M. rigens* competition was high in portions of the canyon (Kraft pers. comm. November 22, 2013).

Lone Mountain Canyon – A single *L. schaffneriana* ssp. *recurva* occurrence of medium to high density was reported at the confluence of Lone Mountain Canyon and Bear Creek in 1988, 1990, and 1997 (Gori et al. 1990, p. 65; Warren et al. 1989, p. 60). The winter of 1999 was very dry; heavy use by congregating cattle on *L. schaffneriana* ssp. *recurva* habitat in Lone Mountain Canyon and associated tributaries was observed (Service 2002b, p. 146). This same year, the Forest Service proposed the creation of a livestock exclosure fence encompassing 2.8 has (7 ac) of canyon bottom near the confluence with Bear Canyon to protect the plants (Service 1999, p. 240). The Forest Service also decided that winter grazing outside of the exclosure in this canyon would be permitted only when sufficient water was available to promote cattle dispersal (Service 1999, p. 240).

The timing of when the Lone Mountain Canyon exclosure was erected is not known by this author, however a 2003 Grazing Authorization and Allotment Management Plan for the Lone Mountain Allotment indicates an exclosure *would be* established on behalf of *L. schaffneriana* ssp. *recurva* in Lone Mountain Canyon at the confluence with Bear Canyon (Forest Service 2003, p. 5). In 2004, Stefferud and Stefferud (p. 335) reported the exclosure fencing around the *L. schaffneriana* ssp. *recurva* in the wetted area of Lone Mountain Canyon near the confluence with Bear Creek was torn down and extensive cattle grazing occurred. They reported many areas that were completely denuded of vegetation and littered with fecal material; green plants in the
riparian area were mostly grazed to the root crown or trampled (Stefferud and Stefferud 2004, p. 335). Within this and other exclosures (e.g. see the San Pedro River National Conservation Area above), it is important to monitor and remove trespass livestock.

In 2014, areas both inside and outside of the (intact) exclosure were visited and *L. schaffneriana* ssp. *recurva* was found in both locations. Inside the exclosure, it occurred in multiple small patches in slow-moving shallow water along a narrow waterway and growing among moss and other aquatic and semi-aquatic wetland vegetation (Service 2014a, p. 5). Approximately 250 m (829 ft) upstream and outside of the exclosure, approximately 10 small patches of *L. schaffneriana* ssp. *recurva* were found growing among protective river cobble in an area containing other aquatic habitat indicators, but which was drying out and had no water or wet soil present. Approximately 10 m (33 ft) further upstream from this location, four additional patches were located growing on the slumping edges of a water-filled mud hole heavily utilized by livestock (Service 2014a, p. 6). These plants were small in stature and the patches very sparse, occurring within the hoof-prints of cattle, with adjacent cow pies and slumping stream banks (Service 2014a, p. 6). In July, 2014, this site was revisited following monsoon-related flooding. The mud hole had been filled with sediment and no *L. schaffneriana* ssp. *recurva* were discovered, though it is possible they could grow through the sediment (Kraft pers. comm. July 30, 2014).

Wakefield Mine springbox – An occurrence was discovered by US Forest Service personnel in 2008 at the springbox of the Wakefield Mine and was revisited in 2014 (Kraft, pers. comm. July 30, 2014). The springbox overflows creates two shallow pools and a perennial “stream” approximately 50 m (164 ft) in length. In 2014, *L. schaffneriana* ssp. *recurva* occurred in the pools and along the “stream” in one large patch.

Parker Canyon Lake – First collected in 1968, this occurrence was not visited again until 2007 when some small plants were noted near the inlet channel with Merrit Canyon along the lake margin (Arizona Game and Fish Department Heritage 2011, entire; Rorabaugh 2013, p. 1). In March of 2014, researchers combed the inlet channels of both Merrit Canyon and Collins Canyon (Service 2014a, pp. 1-2). Although no *L. schaffneriana* ssp. *recurva* was detected at this time, other aquatic habitat indicators were found among the thick thatch of dried aquatic vegetation. Because the winter of 2013-2014 was particularly warm and dry and the lake level was down, it is probable *L. schaffneriana* ssp. *recurva* still occurs at the Merrit Canyon inlet, and possibly the Collins Canyon inlet as well. Further searches should be conducted in a wet year and reduction of the dead thatch is recommended.

Freeman Spring – In September 1998, *L. schaffneriana* ssp. *recurva* was discovered at Freeman Spring (Service 1999, p. 241). In October 1998, the site was reported to be severely grazed, with utilization over 70 percent and the spring site trampled with little vegetative growth on the banks; the site was fenced from cattle in 1998 (Service 1999, p. 242). In 1999, the *L. schaffneriana* ssp. *recurva* occurrence at Freeman Spring was thought to be small and the habitat reported to be primarily exposed bedrock with a lack of soil, not capable of supporting a large stable occurrence of *L. schaffneriana* ssp. *recurva* (64FR37441, 1999 p. 34777; Lefevre 1999, entire). This occurrence was deemed important, though not essential to the conservation of the taxon (64 FR 37441, p. 34777).
In 2004, Stefferud and Stefferud noted Freeman Spring was a seep with *L. schaffneriana* ssp. *recurva* present. They noted the reach likely once had cienega attributes before erosional downcutting of the channel (Stefferud and Stefferud 2004, p. 249). In 2007, Ehret et al. (2007, p. 1) noted the presence of cienega habitat from Freeman Spring downstream for approximately 48 m (157 ft). In 2008, Freeman Spring was reported to be completely dry due to the drought (Ehret 2008, p. 1). Although these biologists were focused on quantifying fish habitat, they did note vegetation in their reports and no *L. schaffneriana* ssp. *recurva* were mentioned in either 2007 or 2008. In 2010, personnel from the National Audubon Society’s Appleton-Whittell Ranch communicated that Freeman Springs tends to dry every year during the early summer (Robinson 2010, p 6). A December site visit in 2013 revealed a single small pool at Freeman Springs with no *L. schaffneriana* ssp. *recurva* present and no potential habitat available (Service 2013a, p. 4).

Sycamore and Mud Springs – In 1993, a herbarium specimen was collected from the outlet of Sycamore Spring; associates included *Muhlenbergia* sp. and *Juncus* sp., but no *Cynodon dactylon* (Bermuda grass), a non-native, invasive species, was listed (Fishbein 1993, entire). No specimens have been collected from Mud Spring. In 1999, the *L. schaffneriana* ssp. *recurva* occurrences at Sycamore and Mud Springs were thought to be small and the habitat not capable of supporting a large stable occurrence (64 FR 37441, 1999 p. 34777). These occurrences were deemed important, though not essential to the conservation of the taxon (64 FR 37441, p. 34777). In 2003, reach 2 of Sycamore Canyon, containing Sycamore Spring, supported *L. schaffneriana* ssp. *recurva* along with *C. dactylon*, *M. rigens*, *Carex* spp. and other riparian vegetation that was badly damaged, hedged, and cropped by past and present livestock grazing (Steff erud and Stefferud 2004, p. 557). This same survey found the exclosure fence around Mud Spring that was intended to protect *L. schaffneriana* ssp. *recurva* was in disrepair (Steff erud and Stefferud 2004, p. 558). At Mud Spring, cattle heavily impacted the area, and the only riparian plants found were grasses, *Eleocharis* sp. and *Carex* spp. (Steff erud and Stefferud 2004, p. 558).

L. schaffneriana ssp. *recurva* has been seen regularly in visits by the Forest Service to Sycamore Spring (Kraft pers. comm. February 26, 2014). The area is noted to have had intensive grazing in the past, but this has improved in recent years (Kraft pers. comm. February 26, 2014). In 2014, a survey of Mud Spring revealed many patches of *L. schaffneriana* ssp. *recurva* occurring outside and inside of an erect bullfrog fence. Patches outside the exclosure occurred in two separate spring runs, one of which was heavily impacted by livestock trampling (Service 2014a, p. 3). These patches were small in stature and sparse, but appeared healthy otherwise. Patches within the exclosure on the south and southeast edges of the spring pool were small and sparse, growing among thick *C. dactylon* (Service 2014a, p. 4). Patches on the north and northwest edges of the spring pool and within the water there were dense, over 30 cm tall (11.8 in), and healthy with little competition from other vascular plants (Service 2014a, p. 3).

O’Donnell Canyon – see The Nature Conservancy below.

Joaquin Canyon – In July 2001, Deecken (2002, entire) surveyed Joaquin Canyon as part of the Lone Mountain Land Exchange. He noted that no *L. schaffneriana* ssp. *recurva* were observed in the portion of the canyon north of FS61, however he did find two new occurrences, each containing several patches, in an area to the south of FS61 and east of FS196 (Deecken 2002, p. 3).
2). These occurrences are north of the Cave Canyon confluence occurrence now in private ownership (see Private – Joaquin Canyon section below). The site was described as intermittent riparian stream bottom with a few perennial small pools and less than ten percent canopy cover of riparian trees. Tom Deecenek recalls these plants were mostly in areas where water was quite shallow and were most susceptible to drought conditions (Deecenek pers. comm. February 2014a, b). In 2003, this area was described as having surface water in wide shallow glides, pools, and marshy areas, with sparse vegetation that was severely hedged by livestock; no *L. schaffneriana* ssp. *recurva* was noted at that time (Stefferus and Stefferus 2004, p. 293). In 2014, this site was revisited and two locations containing species of aquatic habitats were located (Service 2014a, pp. 2-3). A single puddle of water approximately 10 cm (4 in) across was found, but no *L. schaffneriana* ssp. *recurva* was detected (Service 2014a, pp. 2-3). The winter of 2013-2014 was very warm and dry; it is likely *L. schaffneriana* ssp. *recurva* still occurs at these locations within Joaquin Canyon and a survey in a wetter year should be conducted.

Bureau of Land Management:

Lilaeopsis schaffneriana ssp. *recurva* occurring on Bureau of Land Management lands are monitored regularly by Bureau personnel. The Las Cienegas National Conservation Area and the San Pedro River represent two of the densest occurrences of *L. schaffneriana* ssp. *recurva* known.

Las Cienegas National Conservation Area – There are multiple occurrences of *L. schaffneriana* ssp. *recurva* from Empire Gulch, Gardner Canyon, Mattie Canyon, and Narrows Powerlines Road areas in Cienega Creek that have been detected as early as 1991, though these were not considered in the critical habitat designation of 1999 (Figures 1 and 2; Rebman 1991, entire; Warren pers. comm. April 4, 1996; 64 FR 37441, entire). In addition, there is one occurrence nearby the Narrows in Fresno Canyon on State Land. All of these occurrences are monitored regularly by personnel of the Bureau of Land Management and were last measured in full in 2011 when approximately 100 patches were detected over a 12.9 km (8 mi) section of creek (Bureau of Land Management 2011, entire). In 2014, a partial survey was conducted with similar results, though the area was reported to be drier than in the past (Radke pers. comm. June 16, 2014). This area may be impacted in the future through groundwater draw-down from the proposed Rosemont Mine adjacent Cienega Creek on the west. At this writing, three wildfires (Sawmill, Mulberry, and Cienega) have burned within the watershed and/or adjacent to Cienega Creek and/or Empire Gulch. The Bureau of Land Management and other agencies are currently conducting an assessment of the fires’ effects on the area, including *L. schaffneriana* ssp. *recurva*.

San Pedro River – In 1878, the St. David area of the San Pedro River was described as marshy, though an earthquake in 1887 altered hydrology and dried some marshy areas, as well as, created new springs (Geraghty and Miller 1995, p. 9). Severe flooding began as early as 1881 and by 1908, the San Pedro River channel was entrenched up to 10 m (33 ft) below the former floodplain; river channel expansion decreased after 1955 (Hereford 1993, p. iv). From 1957 to 1967, daily rainfall was above average, improving conditions for growth and establishment of vegetation (Hereford 1993, p. iv). Despite this, the two *L. schaffneriana* ssp. *recurva* occurrences at Zinn Pond in the St. David area along the San Pedro River that were first detected in 1951 were last seen in 1953 and are believed extirpated (Gooding 1951, entire; Warren and
Reichenbacher 1991, p. 18; Johnson et al. 1992, p. 6; 64FR 37441, p. 37443). In 2017, a single sparse patch 10 m long and 0.5 m wide was detected at the Holy Trinity Monastery in St. David (Rorabaugh pers. comm. May 4, 2017).

There are multiple occurrences of \textit{L. schaffneriana} ssp. \textit{recurva} for roughly 55 km (34 mi) along the San Pedro River near Sierra Vista in the San Pedro Riparian National Conservation Area. Personnel of Fort Huachuca monitor these occurrences. They were last measured in 2010, when it was noted that most occurrences were sparsely populated, that competitive exotic plants threatened \textit{L. schaffneriana} ssp. \textit{recurva}, and that erosion was noticeable between the dry 2009 and wetter 2010 (Vernadero Group 2011a, pp. 11, 21, 22). They also noted that the greatest quantity of \textit{L. schaffneriana} ssp. \textit{recurva} occurred south of Hwy 90 and that areas of higher concentrations remain higher from one monitoring period to the next (Vernadero Group 2011a, p. 21). This area is impacted through groundwater draw-down from Fort Huachuca, the city of Sierra Vista, agriculture use, and the Cananea Mine in Sonora.

\textbf{Service:}

\textit{Lilaeopsis schaffneriana} ssp. \textit{recurva} occurring on U.S. Fish and Wildlife Service lands are monitored periodically by Service personnel. The last monitoring occurred in 2013 when a few plants were relocated on Leslie Canyon National Wildlife Refuge and no plants were relocated on the San Bernardino National Wildlife Refuge.

\textbf{Leslie Canyon National Wildlife Refuge –} Haas and Frye (1997, p. 6) reported a single natural occurrence of \textit{L. schaffneriana} ssp. \textit{recurva} in Leslie Canyon National Wildlife Refuge. The refuge manager at that time does not recall this occurrence, but reports transplanting plugs into two locations within Leslie Canyon (Cobble pers. comm. April 14, 2014; see Augmented and Newly Established Occurrences section below). Drying of Leslie Creek during the summer of 2002 led to the disappearance of some previously existing, large, healthy patches of \textit{L. schaffneriana} ssp. \textit{recurva} on the refuge, though some patches likely persisted until 2012, during which the streambed became completely dry and no plants were seen. This changed in 2013 when groundwater levels rose enough so that flow resumed in Leslie Creek, and individual plants (probably sprouting from an existing seedbank rather than from surviving rhizomes) were documented at scattered locations along Leslie Creek during an October 31 refuge-conducted survey for the taxon. (Radke pers. comm., April 22, 2014). Several small patches along Leslie Creek remained healthy through 2014.

\textbf{San Bernardino National Wildlife Refuge –} In 1981, a single occurrence of \textit{L. schaffneriana} ssp. \textit{recurva} was discovered at House Pond located on the privately owned Slaughter Ranch adjacent to San Bernardino National Wildlife Refuge, but is believed to have been destroyed when the pond was dredged around 1990 (Warren et al. 1991, p. 7; Johnson et al. 1992, p. 6). Former Refuge Manager Kevin Cobble reported finding \textit{L. schaffneriana} ssp. \textit{recurva} in wet areas of Ramsower Draw at the upstream side of this pond in the 1990s and suspects it might still be present (pers. comm., April 14, 2014). He also reports finding \textit{L. schaffneriana} ssp. \textit{recurva} at Mesquite Pond and Twin-2 Pond following rehabilitation of these sites, as well as at a fourth pond, possibly Cienega Pond, and Cottonwood Spring (pers. comm. April 14, 2014). In working on these ponds, Cobble suspected a seedbank was responsible for these occurrences, stating that “it just took putting permanent water on bare soil and they would appear.” However, multiple
surveys of these aquatic habitats by refuge staff since 2003 have not documented the taxon, likely due to resulting plant succession and competition with other species (Radke pers. comm., April 22, 2014).

One occurrence of *L. schaffneriana* ssp. *recurva* at Black Draw comprising four patches was first noted in 1989, co-occurring with *Sorghum halepense* and surviving with 4-6 months per year of zero surface flow (Haas and Frye 1997 p. 6). This occurrence was last documented in 1991 (Warren et al. 1991, p. 7; Warren and Reichenbacher 1991, p. 18) and was, at that time, considered unstable due to human-induced watershed deterioration and climate-induced periodic drying (Johnson et al. 1992, pp. 3, 4, and 6). Johnson et al. (1992, p. 6) also noted that the occurrence of *L. schaffneriana* ssp. *recurva* along the San Bernardino River in Mexico was extirpated. Here, on the Río San Bernardino side of the border, the river became incised, with streamside cienegas drained and much watershed deterioration occurred due to cattle grazing by the 1960s (Service 1999, p. 291). Roughly 24 km (15 mi) further south in Sonora, Mexico, Jim Rorabaugh photographed *L. schaffneriana* ssp. *recurva* near the confluence of the Río San Bernardino and Cajon Bonito during April 2008 (Rorabaugh pers. comm. April 29, 2008), and Peter Warren stated that *L. schaffneriana* ssp. *recurva* “is common along the Río San Bernardino” (Warren pers. comm. April 28, 2008). Much restoration work has been done in both the United States and in Mexico in the past few decades to reduce scouring floods and headcutting, resulting in increased water-holding capacity and positive riparian vegetation response (Radke pers. comm. October 21, 2013).

Pima County:

Lilaeopsis schaffneriana ssp. *recurva* occurring on Pima County lands are monitored periodically by County personnel. No plants have been found in recent years and are presumed extirpated from both Bingham Cienega and Lower Cienega Creek.

Bingham Cienega – In 2001, two patches of *L. schaffneriana* ssp. *recurva* in one occurrence were discovered at Bingham Cienega (Titus 2001, entire); by 2002, the plants were no longer present due to the drought (Titus and Titus 2008c, p. 458). The cienega has fluctuated in discharge and extent over the years, with it being reduced to a small mud hole during the 1952 to 1953 drought (Fonseca 1998 p. 113). Although 11.3 ha (28 ac) of wetlands were reported to occur at Bingham Cienega in 1998 (Fonseca 1998, p. 113), the area has remained mostly dry since 2003 and has undergone repeated fires and resulting sediment deposition (Titus and Titus 2008c, p. 460; Fonseca pers. comm. January 17, 2014). This occurrence is now considered extirpated.

Lower Cienega Creek in Cienega Creek Preserve – A single *L. schaffneriana recurva* occurrence was detected in lower Cienega Creek in 2001 when researchers noted a few leaves that did not persist beyond the season in which they were discovered (Engineering and Environmental Consultants 2001, p. 9). A survey in June 2006 revealed no *L. schaffneriana* ssp. *recurva* at this site and a deeply entrenched stream channel 2.1 to 2.7 m (7 to 9 ft) below the former marsh (Titus and Titus pers. comm. June 20, 2006). A 2013 survey indicated no plants at this location and *L. schaffneriana* ssp. *recurva* is believed to be extirpated (Powell pers. comm. October 1, 2013).
State Parks:
Lilaeopsis schaffneriana ssp. *recurva* occurring on State Parks lands are not monitored and have not been seen in recent years.

San Rafael Ranch State Natural Area – Historically, *L. schaffneriana* ssp. *recurva* has occurred in low densities at Sharp and Heron Springs, as well as along the Santa Cruz River near the border with Mexico (McGill 1978, entire; Warren et al. 1991, pp. 7, 12). Both springs are reported to support similar cienega habitat and have slow moving water in marshy drainages (Warren et al. 1991, p. 12). In 2013, these sites were visited and while habitat exists for this taxon at each location, only a few plants were found at the Santa Cruz River occurrence (Service 2013b, entire). All locations likely still support *L. schaffneriana* ssp. *recurva* in small quantities, but they were undetectable due to quantity of competing understory vegetation and possibly due to the time of year when the survey was conducted. Johnson et al. (1992, p. 7) note that *L. schaffneriana* ssp. *recurva* appears to grow year-round in the absence of killing frost, while other aquatic plants tend to die off during the winter allowing this plant to more effectively colonize open space following low-level disturbance (Johnson et al. 1992, p 7). Throughout much of its range, however, killing frosts are common and *L. schaffneriana* ssp. *recurva* becomes difficult to detect after the first frost (Service 2011, p. 1; Service 2013a pp. 2-3; Service 2013b pp. 1, 3).

Sonoita Creek Natural Area – Fresno Canyon supported one small occurrence of *L. schaffneriana* ssp. *recurva* near the confluence with Coal Mine Canyon. This occurrence was discovered in 2008 and has not been revisited (Rorabaugh 2013, p. 1).

The Nature Conservancy:
Lilaeopsis schaffneriana ssp. *recurva* occurring on The Nature Conservancy’s Canelo Hills Preserve historically were monitored by Conservancy personnel. No plants have been reported there or in the adjacent O’Donnell Creek since 2002.

O’Donnell Creek – *Lilaeopsis schaffneriana* ssp. *recurva* had been found historically in a spring-fed cienega near the bunkhouse at the old Ewing Ranch, now The Nature Conservancy’s Canelo Hills Preserve (Titus pers. comm. February 27, 2014a). Priscilla Titus (pers. comm. February 27, 2014) remembers this as a well-known and large patch situated among a few small willows and in close proximity to another well-known patch occurring on adjacent private property. At this location in the fall of 2013, the soil was dry to the touch and a nearby dying cottonwood and field of *Juncus* sp. stood testament to historical water availability (Service 2013a, p. 3). No *L. schaffneriana* ssp. *recurva* were present (nor were there any *Spiranthes delitescens* (Canelo Hills ladies’ tresses orchid), which historically co-occurred with *L. schaffneriana* ssp. *recurva* at this site), and it is doubtful this area could support these species again without intervention.

Historically, there were multiple occurrences of *L. schaffneriana* ssp. *recurva* both on private and Forest Service lands within O’Donnell Creek (Correll 1970a, entire). On February 14, 2002, Priscilla Titus noted one occurrence was a very small clump in flowing water near, or within, the Forest Service boundary (Titus pers. comm. February 27, 2014a). In the fall of 2013 on lands in O’Donnell Creek administered by The Nature Conservancy and the Forest Service, there were pockets of suitable habitat for *L. schaffneriana* ssp. *recurva*, though no plants were found (Service 2013a, p. 3). Further surveys are recommended.
Private Lands:
Lilaeopsis schaffneriana ssp. *recurva* occurring on private lands are not monitored and, with the exception of Upper Sonoita Creek where umbel has been seen recently, their current status is unknown.

Turkey Creek – First detected in 1989, the *L. schaffneriana* ssp. *recurva* occurrence within Turkey Creek was thought to be small and the habitat not capable of supporting a large stable occurrence (Gori et al. 1990, p. 64; Warren et al. 1991, p. 7; 64FR37441, 1999, p. 37444). Although, historically, Turkey Creek was considered habitat for a number of native fishes, on a few occasions in recent years this creek has gone dry or mostly dry (Robinson 2010, p.5). In the fall of 2013, Turkey Creek was intermittent with a few small pools; there was extensive understory cover, including the exotic *S. halepense*, and no *L. schaffneriana* ssp. *recurva* was found (Service 2013a, p. 2). Because habitat does still occur here, the plant may also still occur in this creek, though in low frequency and cover, making detectability among the grasses and sedges difficult (Service 2013a, p. 2). Further surveys are recommended.

Joaquin Canyon – In 1998, the Service proposed a 0.64 km (0.4 mi) reach of Joaquin Canyon managed by the Forest Service as critical habitat for *L. schaffneriana* ssp. *recurva*; this reach began at the confluence with Cave Canyon and ran north (Map Unit 7; 63FR 71838, p. 71842). Because the stream channel in this reach is largely bedrock and not easily disturbed, the Service considered this area as not requiring special management consideration or protection, and the area was removed from consideration for designation as critical habitat (64FR 37441, p. 37445). In August 2001, a Biological Opinion for the Lone Mountain Land Exchange noted that most of Joaquin Canyon had perennial flow and supported 922 m (0.57 mi) of stream bottom occupied by *L. schaffneriana* ssp. *recurva* that was disposed of by the Forest Service and placed into private ownership (Service 2001, pp. 6-7). Due to the private status of the land, this occurrence has not been revisited and the status remains unknown.

San Rafael Ranch – Historically, *L. schaffneriana* ssp. *recurva* has occurred in low densities at Sheehy Spring which has slow moving water in a marshy drainage (McGill 1978, entire; Warren et al. 1991, pp. 7, 12). In 2013, this site was visited and while habitat exists for this taxon at this location, no plants were found (Service 2013b, entire). This location likely still supports *L. schaffneriana* ssp. *recurva* in small quantities, but they were undetectable due to quantity of competing understory vegetation and possibly due to the time of year when the survey was conducted. Johnson et al. (1992, p. 7) note that *L. schaffneriana* ssp. *recurva* appears to grow year-round in the absence of killing frost, while other aquatic plants tend to die off during the winter allowing this plant to more effectively colonize open space following low-level disturbance (Johnson et al. 1992, p 7). Throughout much of its range, however, killing frosts are common and *L. schaffneriana* ssp. *recurva* becomes difficult to detect after the first frost (Service 2011, p. 1; Service 2013a pp. 2-3; Service 2013b pp. 1, 3).

Upper Sonoita Creek – There are two occurrences of *L. schaffneriana* ssp. *recurva* in Upper Sonoita Creek. In 1988, the upper *L. schaffneriana* ssp. *recurva* occurrence was reported at low density across a 0.8 km (0.5 mi) stretch of creek (Gori et al. 1990, p. 65). In 1994 and 1996, transects in the upstream and downstream occurrences revealed *L. schaffneriana* ssp. *recurva*
was more abundant upstream in the more stable site (Holdsworth and Gori 1996, p. 1). Yearly conservation easement site visits by personnel of The Nature Conservancy between 2006 and 2013 detected *L. schaffneriana* ssp. *recurva* easily and abundantly in this upstream location, with greater abundance in the northern area of the occurrence (Killeen pers. comm. October 25, 2013).

The downstream occurrence, which begins at Cottonwood Spring and extends downstream, was characterized as having a high density of plants in 1988, prior to a flood which removed *L. schaffneriana* ssp. *recurva* below Hog Canyon (Gori et al. 1990, p. 65). By 1989, the taxon had recolonized the area and was once again found to support a high density of plants (Gori et al. 1990, p. 65). In 1992, the Service, The Nature Conservancy, and the property owner of Cottonwood Spring began a cooperative project under the Partners in Wildlife Program. This project involved excluding domestic livestock from Cottonwood Spring and the riparian area, which had been grazed since the late 1800s, and stabilizing two active headcuts (Holdsworth and Gori 1996, p. 1).

Between 1994 and 2005, surface water in the stream channel, the number of pools, and presence of *L. schaffneriana* ssp. *recurva* were monitored post-restoration (Holdsworth and Gori 1996, p. 1). Results indicate a decrease in both water availability and presence of *L. schaffneriana* ssp. *recurva* between 1994 and 2005 (The Nature Conservancy 1994-2005, entire). Although not monitored since, in 2013, the downstream portion of Cottonwood Spring was dominated by *M. rigens* and *L. schaffneriana* ssp. *recurva* was difficult to detect (Killeen pers. comm. October 25, 2013). Continuation of this monitoring is highly recommended by the Service. In addition, in February 2014, the Service was informed that in 2013, a private land owner with a back hoe may have altered the habitat at this spring; impacts to *L. schaffneriana* ssp. *recurva* and a variety of other listed species are unknown and should be investigated (Killeen pers. comm. February 6, 2014).

Monkey Spring – Herbarium collections were made five times between 1965 and 1977 documenting the occurrence of *L. schaffneriana* ssp. *recurva* in Monkey Spring (Minckley 1965 and 1967, entire; Pinkava 1967, entire; Correll 1970b, entire; Reeves 1977, entire). Warren et al. (1991b, p 18) were unable to relocate this occurrence and concluded *L. schaffneriana* ssp. *recurva* had been extirpated from the spring. Although this site has not been revisited by botanists in recent years, in February of 2010 and again in June of 2012, fish researchers collected Gila topminnow (*Poeciliopsis occidentalis*) from this spring (Marsh and Associates 2010, entire; Marsh and Associates 2012, entire). Their memoranda of the trips included photographs of Monkey Spring which show potential *L. schaffneriana* ssp. *recurva* habitat, including slow-moving water and hydrophytic plants. Therefore, as of 2012, the site still held some potential of supporting *L. schaffneriana* ssp. *recurva* and should be visited to look for *L. schaffneriana* ssp. *recurva* if this can be arranged with the land owner.

Babocomari River – In May of 2006, a single occurrence containing seven patches of *L. schaffneriana* ssp. *recurva* was discovered on the Babocomari River within the Babocomari Ranch (Titus and Titus 2006a, p. 1). These patches were re-visited in October, 2006, following a significant flood event resulting in intense scouring and sediment deposition. All but one patch was relocated and appeared in good condition, and two additional patches were discovered (Titus
and Titus 2006b, p. 1). Herbarium collections were made of *L. schaffneriana* ssp. *recurva* from this location in 2008 (Titus 2008, entire; Titus and Anderson 2008, entire). Continued monitoring of this occurrence is warranted.

An unpublished note in the Service files states that, in 1998, *L. schaffneriana* ssp. *recurva* was possibly seen in Lyle Canyon (a tributary of the Babocomari) by the then manager of the Audubon Research Ranch, Bill Brannon. This potential occurrence has not been revisited or confirmed.

In 2013, an employee of the Bureau of Land Management discovered a single, small patch of *L. schaffneriana* ssp. *recurva* during one of several five-mile river surveys. The employee noted the plant was found in a heavily grazed area, roughly 6.4 km (4 mi) from the confluence with the San Pedro River.

Winkelman area – A 1967 herbarium specimen collected from the edge of a drying pool in the San Pedro River, 9.7 km (6 mi) south of Winkelman, documents an historical occurrence of *L. schaffneriana* ssp. *recurva* (Crutchfield 1967, entire). At some time close, but prior to, 2003, on several occasions, Priscilla Titus and others surveyed the Dudleyville Preserve, an area roughly 9.7 km (6 mi) south of Winkelman on the San Pedro River with aquatic habitat present; no *L. schaffneriana* ssp. *recurva* were found (Titus pers. comm. February 27, 2014b). In 2013, The Nature Conservancy published a Water Budget map (entire) which clearly shows the area 9.7 km (6 mi) to the south of Winkelman has perennial flow. Additional surveys are warranted.

Tucson area – An 1881 herbarium collection from somewhere along the Santa Cruz River in Tucson documents the oldest known occurrence of *L. schaffneriana* ssp. *recurva* (Warren et al. 1991, p. 5). Because the Santa Cruz River in the vicinity of Tucson is now dry, this occurrence is presumed extirpated (Warren et al. 1991, p. 5; Johnson et al. 1992, p. 3).

Mexico:

The distribution of *L. schaffneriana* ssp. *recurva* in Mexico is not well studied or understood. Affolter (1985) reported only two localities from Chihuahua and none from Sonora; Hendrickson et al. (1980, pp. 96-97) reported *Lilaeopsis* sp. from one locality in northeastern Sonora at Rancho Mababi and from La Junta, Chihuahua. Our current understanding of the distribution in Mexico comes from two primary sources: a section-6 funded survey for *L. schaffneriana* ssp. *recurva* from 2004-2005 conducted by Greta Anderson and a 2007 Service study of gartersnakes (*Thamnophis* sp.) by Jim Rorabaugh, in which locations that supported *Lilaeopsis* sp. were documented (Anderson 2006, entire; Rorabaugh 2013, entire). These two studies indicate that *L. schaffneriana* ssp. *recurva* is currently known only from the state of Sonora in Mexico. *Lilaeopsis* species are found in Chihuahua, but they are not known to be *L. schaffneriana* ssp. *recurva*.

Sonora – From these two studies (Anderson 2006, entire; Rorabaugh 2013, entire) we have confirmed observations of *L. schaffneriana* ssp. *recurva* from the following 15 locations in Sonora: (1) Arroyo el Tigre; (2) Arroyo Los Fresnos (numerous patches; also noted by Warren et al. 1991, p. 13); (3) cienega near the Casa Grande (abundant); (4) Las Nutrias (one occurrence with sparse small patches); (5) Las Pamitas (one occurrence with small patches); (6) Ojo de
Agua (one occurrence with a very small patch; also noted in Gori et al. 1990, p. 64); (7) Rancho El Aribabi along the Rio Cocospera (occurs sparingly along 6 km (3.7 mi) of river; also recently noted by T. Van Devender in 2009, K. Fehlberg in 2010 [SEINET observations], and J. Rorabaugh in 2014 [Rorabaugh pers. comm. April 9, 2014]); (8) Rancho Los Fresnos including: Arroyo los Alisos (one occurrence with one small patch), (9) Cienega Los Fresnos (uncommon), (10) La Cieneguita (one occurrence with one small patch), and (11) Portrero del Álamo (one occurrence with one small patch); (12) Río Casa Blanca (one occurrence with frequent patches); (13) Río San Pedro (patchy occurrence); (14) Río San Rafael (one occurrence with scattered plants; also noted by Warren et al. 1991, p. 13); and (15) Villa Verde (one occurrence with dense patches).

From other studies in Sonora, there are observations of five additional occurrences (numbered below) of *L. schaffneriana* ssp. *recurva*. Observations were reported by Esther Saucedo Monarque (1990, pp.48-54) from: (1) Arroyo El Tapiro, (2) La Cienega La Atascosa, and (3) La Saucedo in Sonora. Tom Deecken observed numerous *L. schaffneriana* ssp. *recurva* at (4) Mababi Spring west of Presa Cuquiarichi in Sonora (Deecken 1994, entire). Warren et al. (1991, p. 10) found an occurrence with two small patches along the (5) Río San Bernardino in Sonora in May of 1988; both were destroyed in an August 1988 flood. Phil Jenkins collected *L. schaffneriana* ssp. *recurva* along the (6) Santa Cruz River south of the town of Santa Cruz in Sonora in 2005 (Jenkins, 2005, entire).

Chihuahua – From the two studies mentioned above (Anderson 2006, entire; Rorabaugh 2013, entire) we have also confirmed observations of *Lilaeopsis* sp. from the following 7 locations in Chihuahua: Arroyo Rincón (two patches); La Junta; Río Casas Grandes (one occurrence with a few patches); Río Conchos tributary (moderately abundant); Río Papogochic (several occurrences); Río east of Cusarare (moderately abundant); and the Río Santa Clara (one occurrence with two patches). It is unknown if the *Lilaeopsis* from Chihuahua are *L. schaffneriana* ssp. *recurva* or *L. recurva* ssp. *schaffneriana*. No collections were made from these observations, however, photographs were taken. Historically, it was thought that *L. recurva* ssp. *recurva* only occurred on the west side of the Continental Divide, and that ssp. *schaffneriana* occurred on the east (64 FR 37441, p. 37442). Due to the work of J. Rorabaugh and others, we are aware of addition small occurrences of *L. schaffneriana* to the south and east of this divide at Río Casas Grandes, Río Santa Clara, Río Papogochic, and Río Conchos. It is unknown which variety these plants represent and these occurrences were excluded from this analysis. It is currently not believed that hybridization occurs between subspecies.

Augmented and Newly Established Occurrences:
In recent decades, a variety of efforts have been initiated in order to determine if planting clumps of *L. schaffneriana* ssp. *recurva* propagated in a greenhouse setting, or transplanted directly, could serve as a viable tool with which to establish new occurrences, restore lost occurrences, and to serve as reserves in which *L. schaffneriana* ssp. *recurva* would be preserved in the event that naturally occurring occurrences were subjected to catastrophic loss.

Audubon Research Ranch – In December 2003, a total of 128 10 x 10 cm (4 x 4 in) *L. schaffneriana* ssp. *recurva* plugs were planted in four spring runs at Finley Tank on the Audubon Research Ranch (Titus and Titus 2008a, p. 314). This area was chosen because it is located in
the San Pedro watershed but is hydrologically isolated from extant *L. schaffneriana* ssp. *recurva* sites, thus preventing potential contamination by differing genetic stock. Prior to the transplant, *L. schaffneriana* ssp. *recurva* was propagated in a greenhouse using plugs obtained from the Desert Botanical Garden in Phoenix that had originated from Cottonwood Springs on Sonoita Creek. *Lilaeopsis schaffneriana* ssp. *recurva* established quickly at Finley Tank and, by 2004, many of the plugs had merged and formed contiguous patches in two of the spring runs. These transplants are still flourishing to date, although *L. schaffneriana* ssp. *recurva* no longer appears to be present in drier portions of the site or within two of the spring runs with greater interspecific competition. In 2014, Kennedy (pers. comm. February 3, 2014) noted *L. schaffneriana* ssp. *recurva* was doing well in north Finley Spring, but that the non-native, aggressive invasive, *Rubus discolor* (Himalayan blackberry), was a problem in the south spring and will become a problem in the north spring, unless it is controlled or removed.

Leslie Canyon National Wildlife Refuge – Haas and Frye (1997, p. 7) report two transplanted plugs of *L. schaffneriana* ssp. *recurva* taken from the San Bernardino Black Draw occurrence and placed into Leslie Canyon. One plug was placed above a U.S.G.S. stream gauge along a pool; the second plug was placed near large *Juglans major* (walnut) trees at the end of permanent water in the creek downstream from the weir (Cobble pers. comm., April 14, 2014). The plug near the pool reportedly became very robust, spreading to cover between 9.1 and 12.2 m (30 and 40 ft) of pool edge (Cobble pers. comm., April 14, 2014). The previous Refuge manager, Kevin Cobble, reported that, in 1999, this occurrence was thriving. However, a drought period during 2001 and 2002 eliminated the occurrence near the walnut trees (Radke pers. comm., April 22, 2014). Additionally, a more severe drought beginning in 2009 and extending through 2012 eventually completely dried Leslie Creek and all remaining occurrences disappeared until October, 2013, when individual plants were found scattered upstream from the U.S.G.S. stream gauge during a systematic survey for the taxon, responding to a resumption of flow in Leslie Creek (Radke pers. comm., April 22, 2014). These small patches along Leslie Creek remained healthy through 2014.

In 2003, an estimated 27.11 square meters (291.8 square feet) of *L. schaffneriana* ssp. *recurva* occupied Leslie Canyon (Malcom 2004, p. 2), and a formal monitoring program for the taxon was initiated at Leslie Canyon National Wildlife Refuge in 2004. Monitoring of the plant’s introduced occurrence along Leslie Creek occurred seven times between 2004 and 2013 (Malcom 2007, entire; Malcom 2008, entire; Lohrengel 2010, entire; Perkins 2011, entire; Terry 2012, entire; Mendoza 2013).

In 2004, 59 square meters (635 square feet) of *L. schaffneriana* ssp. *recurva* occupied Leslie Canyon. By 2007, this number had dropped to 45 square meters (484.4 square feet) and by 2010 it had dropped to 23.5 square meters (253 square feet) (Lohrengel 2010, p. 1). During the annual surveys conducted from 2004 through 2013, *L. schaffneriana* ssp. *recurva* was not found in Leslie Canyon. The decline in *L. schaffneriana* ssp. *recurva* in Leslie Canyon is directly related to insufficient amounts of precipitation and a subsequent lowering of the water table (Terry 2012, entire). Due to extended drought, and with the exception of periodic seasonal flood events, surface water availability in Leslie Creek has been sustained only through a series of disconnected pools and did not exist as a flowing stream between November, 2009, and about
November, 2012 (Radke pers. comm., April 22, 2014). The resumption of surface flow in Leslie Creek during 2013 and 2014 may not be sustainable due to continuing drought conditions.

San Bernardino National Wildlife Refuge – In a transplant study at San Bernardino National Wildlife Refuge during 1990-1991, 12.7 x 12.7 cm (5 x 5 in) plugs of *L. schaffneriana* ssp. *recurva* attained from Black Draw exhibited excellent growth and vigor in a pond, newly-created by using flow from Cienega Spring, which was relatively free of competing vegetation (Warren 1991, p. 4). However, at Cienega Spring *L. schaffneriana* ssp. *recurva* was eventually eliminated in one location that exhibited intense competition with spike-rush (*Eleocharis* sp.) and bulrush (*Schoenoplectus* sp.), and it failed to thrive in a second Cienega Spring location that had a moderate amount of competing native and non-native vegetation (Warren 1991, p. 5). At a third transplant site on the north side of the pond, *L. schaffneriana* ssp. *recurva* expanded in size and vigor (Warren 1991, p. 5).

Ongoing efforts to reestablish *L. schaffneriana* ssp. *recurva* in aquatic habitats at San Bernardino National Wildlife Refuge took place during 2005, 2007, 2008, 2010, and 2014 (Radke pers. comm. April 22, 2014). Transplants into pond edges during the July 2005 reintroduction effort were ultimately outcompeted and eliminated by other plants of aquatic habitat (Service 2009a, p. 18). During 2007, additional transplants were made at the Minckley Pond Outflow and the Twin-2 Pond Outflow (Malcom 2008, entire). During 2008, transplants were made at the Twin-2 Pond Outflow, Minckley Pond Outflow, North Pond Outflow, and Hay Hollow Wash Pond Outflow (Malcom 2008, entire). The transplant at Twin-2 Pond Outflow persisted until at least September, 2012, but ultimately did not succeed (Radke pers. comm., April 22, 2014). As of 2013, the transplants at Minckley Pond outflow were 8 square meters (86.1 square feet), down from 12.3 square meters (132.4 square feet) in 2007 (Lohrengel 2010, p. 1; Mendoza 2013 p. 1). The transplant at Hay Hollow Wash Pond Outflow was thriving during March, 2009, but was negatively impacted by flooding later that summer (Radke pers. comm., April 22, 2014). *Lilaeopsis* could not be found at North Pond Outflow during October 2014.

During 2010, additional transplants were placed in Hay Hollow Wash at the pond outflow. While the *Lilaeopsis* transplants initially responded very well in Hay Hollow Wash, they eventually failed after being covered by tons of sediment following several floods during 2009 and 2010 (Lohrengel 2010, p. 3; Radke pers. comm., April 22, 2014). Multiple transplants during March 2014 into Snail Spring run on Slaughter Ranch and into Hay Hollow Wash at the pond outflow on San Bernardino National Wildlife Refuge were thriving as of August 2014. Following heavy rain associated with Hurricane Odile, flood flows in Black Draw reached over 25-feet deep in places and over five-feet deep in Hay Hollow Wash during September 2014. The volume of water scouring some areas, widened the stream channels, and transported tons of sediment. After this severe flood, some *Lilaeopsis* patches remained intact at the Minckley Pond Outflow through 2014, but could no longer be located in Hay Hollow Wash (Radke pers. comm., February 10, 2015). Work to document and evaluate the success of transplanted plugs on San Bernardino National Wildlife Refuge was conducted during 2007, and showed that transplants appeared to be most successful in areas where water saturation levels remained constant, where herbaceous competitors were rare, and where water velocity was low (Radke pers. comm. April 22, 2014).
Las Cienegas National Conservation Area – In June, 2013, representatives of the Bureau of Land Management and the Service, aided by school children, collected 50 plugs from Cienega Creek and planted them directly into a newly dug pond at Cieneguita wetlands (Crescent wetland; Rorabaugh pers. comm. June 26, 2013). These plugs were planted at a dry time with reduced water levels, but gained hold after monsoon rain came (Simms pers. comm. July 18, 2013). In October, 2014, representatives from the Bureau of Land Management and the Service collected 25 plugs from the pond at Cieneguita where *L. schaffneriana* ssp. *recurva* has thrived since its introduction in 2013. These plugs were moved to two additional ponds on Bureau of Land Management Land; Goucho Wildlife Pond and Clyne Pond. As of June, 2016, the plugs at Goucho Wildlife Pond have taken hold, while those at Clyne Pond have not been relocated and may not have survived (Simms, pers. comm. July 11, 2016). In addition, a second pond nearby that introduced into in 2013 also now contains *L. schaffneriana* ssp. *recurva*, presumably due to the movement of water fowl or shore birds.

The Desert Botanical Garden – The Desert Botanical Gardens maintains a sizable occurrence of *L. schaffneriana* ssp. *recurva* in an artificial pond in the botanical garden that is useful for educational purposes. The Desert Botanical Gardens also maintains living collections in pots in the greenhouse for use in research and for potential use in reintroduction efforts. The greenhouse material originated from Sonoita Creek, Scotia Canyon, San Pedro River, and Garden Canyon. The collections are labeled and propagated separately in order to retain the genetic integrity of each collection.

The Arizona Sonora Desert Museum – The Arizona Sonora Desert Museum in Tucson maintains 25, 20.3 x 20.3 cm (8 x 8 in) nursery pots of *L. schaffneriana* ssp. *recurva* in a greenhouse on the museum grounds, and two same sized pots on the grounds in a public display (Montgomery 2012, entire). These plants were cultivated using material obtained from the Desert Botanical Garden. The Museum planted some material in a marsh exhibit in the spring of 2012, and periodically includes living specimens in an educational display at the museum entrance that highlights Threatened and Endangered plants. In addition eight potted plants grown at the Desert Botanical Garden were transferred to the Arizona Sonora Desert Museum in 2014.

Sonoita Creek – In 1995, representatives of The Nature Conservancy installed a total of 57 10 x 10 cm (4 x 4 in) diameter *L. schaffneriana* ssp. *recurva* plugs into 4 different habitats in Sonoita Creek, within the Sonora-Patagonia Preserve, using material collected at Cottonwood Springs, a perennial stretch of Sonoita Creek approximately 16 km (10 mi) upstream from the transplant location (Warren 1996, p. 4). The four habitats consisted of the main Sonoita Creek channel, a sand bar, an unnamed tributary stream, and a spring on the north side of the canyon (Warren 1996, p. 4). Initially, *L. schaffneriana* ssp. *recurva* grew vigorously, but when the sites were revisited in 2002 and 2006, the taxon could not be relocated, and it is presumed extirpated from all four habitats at this location. The two nearest the stream were lost to flood scour, one spring site dried up and the other spring site was anaerobic and did not sustain *L. schaffneriana* ssp. *recurva* (Warren pers. comm. February 6, 2014).

San Pedro Riparian National Conservation Area – Fort Huachuca has implemented two *L. schaffneriana* ssp. *recurva* transplant efforts in recent years. These efforts were undertaken in compliance with the 2007 Biological Opinion for proposed ongoing and future military
operations and activities at the Fort (Service 2007, entire). The Biological Opinion stipulated that efforts should include off-post activities including *L. schaffneriana* ssp. *recurva* collection, propagation and planting in suitable habitat along the San Pedro Riparian Natural Conservation Area, and assisting the Bureau of Land Management, the Coronado National Forest, and other land owners/managers responsible for *L. schaffneriana* ssp. *recurva* (Service 2007, p. 65).

In December, 2010, Fort Huachuca representatives in partnership with the Bureau of Land Management transplanted 32, 16, and 16 *L. schaffneriana* ssp. *recurva* plugs respectively, in Murray Spring, Horse Thief Canyon, and Frog Spring within the San Pedro Riparian Natural Conservation Area (Simms pers. comm. October 26, 2011; Vernadero Group 2011b, p. 3). Plugs for the transplant effort were propagated by the Desert Botanical Gardens using material obtained from within the San Pedro Riparian Natural Conservation Area in 2007. In August of 2011, the Bureau of Land Management noted in visits to the Horse Thief Draw site that *L. schaffneriana* ssp. *recurva* was scoured by floods, but was re-sprouting from the root at most locations (Simms pers. comm. October 26, 2011). The most recent monitoring of these plugs, in 2013, revealed that percentage of occupied habitat continues to expand three years post-transplant in both Horse Thief Draw and Murray Springs (Directorate of Public Works 2013, p. 1). The extent of occupied habitat at Frog Spring has decreased in each year since the transplant (Directorate of Public Works 2013, p. 2).

Fort Huachuca – In 2009, Fort Huachuca staff transplanted 64 *L. schaffneriana* ssp. *recurva* plugs (material grown from two plugs each from the Garden Canyon Picnic area and McClure Canyon) into 6 locations within Huachuca Canyon Creek, McClure Canyon, and Cave Spring. The purpose of the transplant was to establish *L. schaffneriana* ssp. *recurva* in suitable habitat outside of known locations in order to increase the number of occurrences and decrease the likelihood of a stochastic event, such as flood or drought, eliminating the currently existing occurrences (Brewer, pers. comm. February 18, 2009). As of the most recent monitoring of these plugs in the spring of 2013, all but one of these locations showed continued expansion of occupied habitat. While one location in Huachuca Canyon Creek has shown a decrease in percentage of occupied habitat since 2012, occupied habitat remains higher than in 2010 (Directorate of Public Works 2013, p. 2).
Appendix B – Public comments and our responses

<table>
<thead>
<tr>
<th>Submitted by</th>
<th>Issue</th>
<th>Our Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anonymous</td>
<td>Commenter is concerned about grazing being destructive and leading to dewatering of habitat.</td>
<td>Lilaeopsis is listed under the Act with designated Critical Habitat. Therefore, Federal land management agencies are required to consult with the Fish and Wildlife Service (FWS) to ensure that any action, such as livestock grazing, is not likely to jeopardize the continued existence of a listed species or result in the destruction or adverse modification of critical habitat.</td>
</tr>
<tr>
<td>Anonymous</td>
<td>The commenter questioned the FWS’ roll in livestock management.</td>
<td>The commenter confuses the FWS with an agency that manages livestock grazing. Lilaeopsis occurs or has historically occurred on the San Bernardino and Leslie Canyon National Wildlife Refuges, where livestock grazing is prohibited.</td>
</tr>
<tr>
<td>The Center for Biodiversity (CBD)</td>
<td>The commenter is concerned with the term reduce rather than eliminate dewatering threats.</td>
<td>The threat posed by dewatering cannot be eliminated. Dewatering as a result of human activities (i.e. pumping of water for municipal, industrial, and agricultural uses) is expected to be persistent through time. Climate change, which is likely to exacerbate the effect aforementioned, cannot be reversed or entirely mitigated via implementation of the Recovery Tasks.</td>
</tr>
<tr>
<td>CBD</td>
<td>The commenter feels that reduction of dewatering threats to known and newly discovered populations is too narrow and should also consider connectivity to include genetic viability.</td>
<td>We have addressed this comment in the Final Recovery Plan.</td>
</tr>
<tr>
<td>CBD</td>
<td>The commenter feels that livestock grazing is a major threat to Lilaeopsis via trampling, consumption of the plant, erosion of waterway banks, and alteration of fire frequency and intensity in uplands and subsequent deposition of soil onto Lilaeopsis occurrences.</td>
<td>As stated in the Draft and Final Recovery Plans, the best available scientific and commercial information indicates that low or infrequent disturbance by domestic livestock removes competing vegetation and allows recolonization or expansion of Lilaeopsis occurrences, however excessive livestock use, can be detrimental to the taxon and its habitat. Federal land management agencies are required to consult with FWS to ensure that any action, such as livestock grazing, is not likely to jeopardize the continued existence of a listed species or result in the destruction or adverse modification of critical habitat.</td>
</tr>
<tr>
<td>Submitted by</td>
<td>Issue</td>
<td>Our Response</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>CBD</td>
<td>The commenter misunderstands the delisting criteria, stating that it would allow delisting with less than five percent of critical habitat occupied.</td>
<td>Critical habitat is designated for the areas occupied by Lilaeopsis, as well as surrounding habitat that offer recovery habitat and provide for movement of plants (83.2 kilometers (km) (51.7 miles (mi)). The actual extent of individual Lilaeopsis patches is far smaller than the critical habitat extent. For example, the Recovery Plan calls for 2,000 square meters occupied on the San Pedro River and recent surveys indicate a known extent of 868 square meters on the SPRNCA.</td>
</tr>
<tr>
<td>CBD</td>
<td>The commenter states that Lilaeopsis habitat was likely much larger historically, and that the recovery criteria will not allow for a) large occurrences to avoid genetic drift, b) dispersal pathways, and c) reduction of habitat fragmentation.</td>
<td>The recovery outline includes the actions of protection and restoration of functional habitat, improved water availability, acquisition of conservation easements to prevent habitat fragmentation, and the introduction of occurrences to increase redundancy and resiliency of the taxon. All of these actions will reduce genetic drift and habitat fragmentation and increase dispersal pathways.</td>
</tr>
<tr>
<td>CBD</td>
<td>The commenter states that vastly more water rights must be secured to ensure habitat maintenance for Lilaeopsis.</td>
<td>The Draft and Final Recovery Plans call for using water more efficiently, reusing water, capturing water, and purchasing surface water rights as methods to increase water availability.</td>
</tr>
<tr>
<td>Pima County</td>
<td>The commenter wishes the section regarding impacts from Rosemont Mine be updated now that much analysis has been completed.</td>
<td>We have addressed this comment in the Final Recovery Plan.</td>
</tr>
<tr>
<td>Pima County</td>
<td>The commenter would like the protection and restoration of functional aquatic habitat and reduction of dewatering threats to extend beyond known and newly discovered occurrences and include historical and newly established occurrences as well.</td>
<td>Although it was the intent of the Draft Recovery Plan to include historical and newly established occurrences, specific language was altered in the Final Recovery Plan to clarify that protection of historical, current, newly discovered, and newly established occurrence are intended.</td>
</tr>
<tr>
<td>Submitted by</td>
<td>Issue</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Pima County</td>
<td>The commenter suggests language modification to explain that recharge should take place in areas where infiltration and recharge can benefit shallow groundwater systems.</td>
<td></td>
</tr>
<tr>
<td>Our Response</td>
<td>We have addressed this comment in the Final Recovery Plan.</td>
<td></td>
</tr>
<tr>
<td>Pima County</td>
<td>The commenter suggests language modification to expand captive maintenance of plants beyond botanical gardens to include other facilities approved by the FWS.</td>
<td></td>
</tr>
<tr>
<td>Our Response</td>
<td>We have revised language within the document to reflect maintenance of plants at botanical gardens and other FWS approved facilities.</td>
<td></td>
</tr>
<tr>
<td>Pima County</td>
<td>The commenter suggests more information of current and proposed monitoring protocols be provided. They also request language be added about seeking input from affected parties.</td>
<td></td>
</tr>
<tr>
<td>Our Response</td>
<td>We have altered the language regarding proposed monitoring protocols and including language regarding seeking input from affected parties.</td>
<td></td>
</tr>
<tr>
<td>Pima County</td>
<td>The commenter suggests that it will be difficult to separate the impacts of climate change from the impacts of groundwater pumping, stating that the description within the action, water availability, a more appropriate wording choice.</td>
<td></td>
</tr>
<tr>
<td>Our Response</td>
<td>We have renamed Action 4.3 in the Final Recovery Plan.</td>
<td></td>
</tr>
<tr>
<td>Pima County</td>
<td>The commenter suggests combining Actions 5.1 and 5.3 with discussion of involving interested parties.</td>
<td></td>
</tr>
<tr>
<td>Our Response</td>
<td>The involvement of interested parties is implied in all Subactions under Action 5.</td>
<td></td>
</tr>
<tr>
<td>Pima County</td>
<td>The commenter suggests recovery actions can be brought under actions for other aquatic species through broader efforts.</td>
<td></td>
</tr>
<tr>
<td>Our Response</td>
<td>We note in the Draft and Final Recovery Plans that many of the recovery actions within the plan would have added benefit to many other co-occurring listed and unlisted plant and animal species, ecosystem services, and economic benefit.</td>
<td></td>
</tr>
<tr>
<td>Submitted by</td>
<td>Issue</td>
<td>Our Response</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Pima County</td>
<td>The commenter provides a number of minor edits to promote accuracy and understanding.</td>
<td>These edits were considered and altered as needed for clarity and accuracy.</td>
</tr>
<tr>
<td>Sierra Vista Cochine Co.</td>
<td>The commenter states that gray literature, including population data, was not provided to the public and they request the comment period be reopened after the FWS provide all literature cited to them.</td>
<td>A complete list of all references cited within the document was made available upon request from the Arizona Ecological Services Field Office. This information is written in the Federal Register Notice under the heading Supplemental Information. A Recovery Plan is not a regulatory document; therefore we can take public comment at any period.</td>
</tr>
<tr>
<td>Sierra Vista Cochine Co.</td>
<td>The commenter states that verifiable science was not utilized in the original listing of this species and requests a review of taxonomy by scientists independent of the FWS, the listing research or advocacy groups.</td>
<td>We have written the Draft and Final Recovery Plans on a federally listed species. The taxonomy of this taxon is not part of this document.</td>
</tr>
<tr>
<td>Sierra Vista Cochine Co.</td>
<td>The commenter states that the Draft Recovery Plan was developed based on hypothetical threats and recommends the development of conservation measures based on actual threats.</td>
<td>We have used the best available commercial and scientific data to assess the threats and stressors to the plant in the Draft and Final Recovery Plans.</td>
</tr>
<tr>
<td>Sierra Vista Cochine Co.</td>
<td>The commenter states that the downlisting and delisting criteria within the Draft Recovery Plan were politically based regarding Federal control over water and recommends the development of these criteria based on biology.</td>
<td>We have used the best available commercial and scientific data to develop the downlisting and delisting criteria in the Draft and Final Recovery Plans. Our objective is to conserve, protect, and enhance Lilaeopsis and its habitat.</td>
</tr>
<tr>
<td>Submitted by</td>
<td>Issue</td>
<td>Our Response</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sierra Vista</td>
<td>The commenter suggests we incorporate provisions of the City of Sierra</td>
<td>We did not incorporate provisions of any city or county land use plans into the Draft or Final Recovery Plans, instead we incorporated the needs of the taxon and its habitat.</td>
</tr>
<tr>
<td>Cochise Co.</td>
<td>Vista and Cochise County land use plans into the Draft Recovery Plan.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sierra Vista</td>
<td>The commenter states that they have conducted an independent review</td>
<td>We have used the best scientific and commercially available data on which to base our conclusions, including referenced cited by the commenter, as well as other references from the scientific literature. See below our responses to comments in_rows (rows 18-20 and 22, 24-37).</td>
</tr>
<tr>
<td>Cochise Co.</td>
<td>of the threats to the species using available data and their conclusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>contradicts the Fish and Wildlife conclusions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sierra Vista</td>
<td>The commenter suggests that the FWS is forcing imposition of spurious</td>
<td>The recovery actions listed within a Recovery Plan are not regulatory and therefore no requirements are being imposed on governments or the public.</td>
</tr>
<tr>
<td>Cochise Co.</td>
<td>requirements on local governments and the public with the goal of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Federal control over local water.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sierra Vista</td>
<td>The commenter suggests FWS failed to incorporate local government in</td>
<td>The FWS had a 60 day comment period when any information helpful to the drafting of the Recovery Plan was considered.</td>
</tr>
<tr>
<td>Cochise Co.</td>
<td>their planning.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sierra Vista</td>
<td>The commenter suggests that surveys conducted by agencies occur in the</td>
<td>Surveys for this taxon occur along entire drainages with clumps measured wherever they are located and tallied across each occurrence.</td>
</tr>
<tr>
<td>Cochise Co.</td>
<td>exact same place and therefore data is inaccurate to detect a species</td>
<td></td>
</tr>
<tr>
<td></td>
<td>that moves up and down streams naturally.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sierra Vista</td>
<td>The commenter requests a complete inventory of all populations and</td>
<td>A complete inventory of all populations and potential locations both within the United States and Mexico is not available.</td>
</tr>
<tr>
<td>Cochise Co.</td>
<td>potential locations both within the United States and Mexico.</td>
<td></td>
</tr>
<tr>
<td>Submitted by</td>
<td>Issue</td>
<td>Our Response</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sierra Vista Cochise Co.</td>
<td>The commenter states that there is no historical population data and minimal baseline data, and no way to compare population health over time.</td>
<td>A table of all known occurrences, their locations, number of patches, and current believed status is provided in the Draft and Final Recovery Plans. Several occurrences are monitored regularly and status of these occurrences over time is provided in Appendix A of the Draft and Final Recovery Plans. There are no occurrences that appear to be increasing in size and many are reported from single patches.</td>
</tr>
<tr>
<td>Sierra Vista Cochise Co.</td>
<td>The commenter states that Lilaeopsis data are incomplete, analysis inappropriate, and the FWS uncritically used unpublished work. Further they state that subsequent analysis is necessary to draw conclusions.</td>
<td>The FWS utilized all available data, including that collected by private non-profit, Federal Government, and private individuals. There is little published information on this species. Data are provided within the Draft and Final Recovery Plans in Table 2 and in Appendix A.</td>
</tr>
<tr>
<td>Sierra Vista Cochise Co.</td>
<td>The commenter suggests that commercial gain for Recovery Plan authors, species specialists, and environmental organizations may be a factor.</td>
<td>The Recovery Plan was written by a FWS employee with the recovery of L. schaffneriana var. recurva as the goal. The plan was peer reviewed by employees of the Bureau of Land Management, the US Forest Service, and taxon experts. The plan was open for public comment.</td>
</tr>
<tr>
<td>Sierra Vista Cochise Co.</td>
<td>The commenter reiterates all the original reasons the taxon was listed.</td>
<td>The Draft and Final Recovery Plans provide an update on current threats and stressors.</td>
</tr>
<tr>
<td>Sierra Vista Cochise Co.</td>
<td>The commenter states the Draft Recovery Plan attacks livestock grazing and is related to the personal agenda of one author of the plan.</td>
<td>The Draft and Final Recovery Plans note evidence that managed livestock grazing may benefit Lilaeopsis.</td>
</tr>
<tr>
<td>Sierra Vista Cochise Co.</td>
<td>The commenter states that rigorous examination of available scientific data is required to determine if the reduction of groundwater pumping within the San Pedro River Valley will have any impact on Lilaeopsis.</td>
<td>The best available information we have indicates that L. schaffneriana var. recurva is semi-aquatic to fully aquatic, inhabiting cienegas, rivers, streams, and springs. Numerous researchers have reported extirpation of sites that have dried out. Therefore a reduction in available water will have a negative impact on the taxon. We have included additional supporting additional analyses in the Final Recovery Plan.</td>
</tr>
<tr>
<td>Submitted by</td>
<td>Issue</td>
<td>Our Response</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Sierra Vista Cochise Co.</td>
<td>The commenter states that the Biological Assessment for Fort Huachuca (2014) was not utilized with regard to the impact of riparian vegetation evapotranspiration on Lilaeopsis.</td>
<td>We have incorporated information on evapotranspiration of riparian vegetation in the Final Recovery Plan. See also our response to Comment 40, below, which incorporates references that appeared in the Fort Huachuca Biological Assessment (Science Applications International Corporation) as well as other relevant literature.</td>
</tr>
<tr>
<td>Sierra Vista Cochise Co.</td>
<td>The commenter states that the recovery team must acknowledge that the Bureau of Land Management allows Sorghum halepense to stabilize banks.</td>
<td>The Draft and Final Recovery Plans include an analysis of the effects of Sorghum halepense (Johnson grass) on L. schaffneriana var. recurva. The Bureau of Land Management's management of non-native vegetation is under that agency's purview.</td>
</tr>
<tr>
<td>Sierra Vista Cochise Co.</td>
<td>The commenter states that the Draft Recovery Plan fails to acknowledge the key method of umbel spread is through flooding events.</td>
<td>The role of flooding in the spread of L. schaffneriana var. recurva is discussed on pages 7, 12, 13, 14, 15, and 20 of the Draft Recovery Plan and on pages 11, 13, 15, 23, 25, 41, and 88 in the Final Recovery Plan.</td>
</tr>
<tr>
<td>Sierra Vista Cochise Co.</td>
<td>The commenter states that cottonwood gallery forests reduce flood flow and the propagation of Lilaeopsis. They also note the cottonwood utilize water via transpiration, causing water courses to go dry.</td>
<td>We have revised the section "Factor A" in the Final Recovery Plan to include a rationale for why we do not consider the presence of cottonwood/willow gallery forest to be a threat to the continued existence of L. schaffneriana var. recurva. The taxon occurs along perennial reaches in sites that are frequently inundated and underlain by shallow groundwater (Leenhouts et al. 2006, pp. 78 and 102). The dependence of L. schaffneriana var. recurva on shallow groundwater results in its frequent co-occurrence with cottonwood/willow forests. Moreover, the presence of cottonwood/willow vegetation results in improved physical and biological site conditions for L. schaffneriana var. recurva (i.e refugial areas, and favorable changes to hydrology, geomorphology, and soil characteristics) (Correll 1996, entire) and is likely to further expand the taxon's habitat in the future via ongoing geomorphic and ecological processes (i.e. progression towards increased prevalence of sites with cienega characteristics) (Fogg et al. 2012, pp. 12-25 and Jackson et al. 1988, pp. 69-71 and 134).</td>
</tr>
<tr>
<td>Submitted by</td>
<td>Issue</td>
<td>Our Response</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Sierra Vista Co.</td>
<td>The commenter suggests that mesquite should be promoted over cottonwood, as they do not use as much water and provide higher avian and mammalian diversity. They also suggest referencing the books by Webb et al. in 2007 and 2014.</td>
<td>The relative proportions of area occupied by any plant species relative to another is the result of ecological processes. Influence over the results of such processes is under the purview of the land-owner or land management agency. Furthermore, mesquite woodlands (or bosques) already occupy greater areas than do cottonwood/willow-dominated communities. For example, on the upper San Pedro River, areal extent of land occupied by mesquite (723-973 ha / 1786.5- 2404.3 ac) appreciably exceeds the areal extent of cottonwood-willow woodlands (253 and 118 ha (625.2 and 291.6 ac) in perennial and intermittent sites, respectively) (see Table 52, p. 139 in Leenhouts et al. 2006). We reviewed and incorporated the relevant findings of Webb et al. (2007) within the Final Recovery Plan. We also reviewed Webb et al. (2014) and found that its contents were not directly relevant to the ecology of the upper San Pedro River or other sites within the range of L. schaffneriana var. recurva. We did note, however, that Webb et al. (2014, p. 123) did implicate groundwater withdrawal as among the anthropogenic factors in the destructions of the so-called Great Mesquite Forest on the Santa Cruz River near Tucson, Arizona.</td>
</tr>
<tr>
<td>Sierra Vista Co.</td>
<td>The commenter states that promotion of large cottonwood groves should be analyzed as take for Lilaeopsis under the Act. They also state that the dry river bed results in adverse modification and loss of designated critical habitat for Lilaeopsis.</td>
<td>There is no take for federally listed plant species. The Recovery Plan does not engage in adverse modification determinations.</td>
</tr>
<tr>
<td>Sierra Vista Co.</td>
<td>The commenter states that there is less fragmentation and more consistent perennial flow today than when the species was listed. They state that there is no evidence that intermittent stretches of Arizona waterways constitute impermeable barriers to gene flow.</td>
<td>If it is assumed that the commenter is referring primarily to conditions in the upper San Pedro River, we are aware that annual mapping of wet and dry reaches of the upper San Pedro River reveal that wetted length varies from year to year, but the river hadn’t exhibited overall changes in 12 years of monitoring (The Nature Conservancy 2016, entire). These relatively short-term trends in hydrologic conditions exist, however, within an overarching decline in regional hydrology. Thomas and Pool (2006, entire) conducted a regional analysis of streamflow trends in an area encompassing most, if not all, of the known range of L. schaffneriana var. recurva in the United States: the San Pedro River Basin and the Santa Cruz River Basin to the west. Thomas and Pool (2006, p. 62) found that, by most measures of precipitation and streamflow, the San Pedro River and</td>
</tr>
<tr>
<td>Submitted by</td>
<td>Issue</td>
<td>Our Response</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Santa Cruz River basins: (1) are vulnerable to changes in summer monsoon storms because more than half the annual precipitation and streamflow in the southwest part occurs in the summer; (2) have long-term problems with a decreasing surface-water supply; and (3) exhibit significant negative trends in precipitation and streamflow. Precipitation and streamflow records were analyzed for 11 time periods ranging from 1930 to 2002 (Thomas and Pool 2006, p. 1). In the upper San Pedro River specifically, annual total streamflow decreased from 7,117.2 hma to 2,713.7 hma (57,700 afa to 22,000 afa), and summer total flow decreased from 3,873.1 hma to 777 hma (31,400 to 6,300 afa). Annual low flow decreased from 974.5 hma to 530.4 hma (7,900 afa to 4,300 afa), and summer low flow decreased from 111 hma to 37 hma (900 to 300 afa). These ongoing flow losses, from a variety of causes, have caused, and will likely continue to cause, increased fragmentation and less consistent perennial flow in the upper San Pedro River over time. Declines in perennial flow are evident elsewhere in the range of L. schaffneriana var. recurva. Powell (2013, pp. ii and 15-30) reviewed available data for Cienega Creek and found that between 1990 and 2011, streamflow discharge (a measure of surface water volume) declined by 83 percent. Similarly, streamflow extent (i.e., the length of stream channel with surface water) declined by 88 percent. For many of the parameters, the hot, dry period prior to the monsoons was a period of extreme decline, such as for streamflow discharge, which declined by 97 percent when comparing June 1990 to June 2011 (at the Pantano Wash stream gage). Depth to groundwater, which is measured in a number of monitoring wells, declined less than other measures, yet declines were as much as 44 percent. These declines occurred in a stream reach formerly occupied by L. schaffneriana var. recurva. With respect to the role of intermittent reaches in the ecology of L. schaffneriana var. recurva, we do not consider intermittent stream flow conditions to be a barrier to gene flow; we consider such reaches to be an impediment to the establishment of occurrences. The Draft Recovery Plan stated that changes from perennial to intermittent and from intermittent to ephemeral can result in extirpation of isolated occurrences of the taxon; this narrative will remain in the Final Recovery Plan. Such changes constitute a threat to L. schaffneriana var. recurva regardless of whether flood flows are capable of moving plants and/or seeds through an intermittently or permanently-dry stream reach to another perennial reach downstream.</td>
</tr>
<tr>
<td>Submitted by</td>
<td>Issue</td>
<td>Our Response</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sierra Vista Cochine Co.</td>
<td>The commenter suggests a new analysis with emphasis on Lilaeopsis on water courses away from class one rivers.</td>
<td>We are not familiar with the classification system referenced by the commenter, but presume that a Class I river is a large, perennial stream. Our intent is to recover Lilaeopsis schaffneriana var. recurva where it has, does, and could occur, regardless of a given site's hydrologic classification.</td>
</tr>
<tr>
<td>Sierra Vista Cochine Co.</td>
<td>The commenter states that the downlisting and delisting criteria within the Draft Recovery Plan are not achievable and intended to preclude down- and de-listing.</td>
<td>The downlisting and delisting criteria were based on the distribution of the taxon across the range, the average patch size and number of patches known to occur today, and a time frame where stability can be assured. Downlisting and delisting criteria must be measurable based on statute.</td>
</tr>
<tr>
<td>Sierra Vista Cochine Co.</td>
<td>The commenter states that many of the conservation actions are unnecessary or already in place and that other actions would have better results for less cost.</td>
<td>Many of these conservation actions are already in progress. Many of these are mentioned in the “Past Conservation Efforts” section of the Draft and Final Recovery Plans, including those being done by Fort Huachuca.</td>
</tr>
<tr>
<td>Sierra Vista Cochine Co.</td>
<td>The commenter states that the FWS did not follow the Policy for Evaluations of Conservation Efforts</td>
<td>"The Policy for Evaluations of Conservation Efforts in Making Listing Decisions" is used in listing decisions, conservation agreements, conservation plans, and management plans, not during recovery planning. We are aware of ongoing and historical conservation of this taxon and this has been disclosed within the plan.</td>
</tr>
<tr>
<td>Sierra Vista Cochine Co.</td>
<td>The commenter provided a table with comments on specific recovery tasks.</td>
<td>The recovery narrative within the Draft and Final Recovery Plans explain the rationale behind these implementation tasks and need not include a cost-benefit analysis of each task. The statute requires us to "estimate the time required and cost to carry out conservation measures needed to achieve the plans goal and to achieve intermediate steps toward that goal."</td>
</tr>
<tr>
<td>Sierra Vista Cochine Co.</td>
<td>The commenter stated that the 1887 earthquake impacted cienegas and the Service did not attempt to study this impact.</td>
<td>We note on page 73 that the 1887 earthquake did alter hydrology leading to the drying of some marshy areas, as well as, creating new springs.</td>
</tr>
<tr>
<td>Sierra Vista Cochine Co.</td>
<td>The commenter requested an additional comment period be opened prior to finalization of the Recovery Plan which incorporates all public comment.</td>
<td>The Service will not reopen the public comment period. A Recovery Plan is not a regulatory document; therefore we can take public comment at any period. We have addressed public comments within the document when appropriate and within this matrix which is made available via our website.</td>
</tr>
<tr>
<td>Submitted by</td>
<td>Issue</td>
<td>Our Response</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Hereford NRCD</td>
<td>The commenter asks if the known threats to the taxon occur on all Federal lands where the plant occurs.</td>
<td>The Current Threats section of the Draft and Final Recovery Plans provide both generalized and specific examples of threats; Appendix A provides the current status of each known occurrence, often with reference to specific threats.</td>
</tr>
<tr>
<td>Hereford NRCD</td>
<td>The commenter asks what are the current measurements of stream gages and what measurements would the Service consider satisfactory? The commenter also asks how evapotranspiration is accounted for.</td>
<td>Stream gage records are continuously updated in real time by the United States Geological Survey; the data are publically available on-line within the National Water Information System Web Interface (NWISWeb; http://waterdata.usgs.gov/nwis). The Recovery Plan contains no discharge-based Recovery Criteria or Recovery Tasks; therefore, we have identified no specific, quantitative stream flows or other hydrologic parameters for recovery. Recovery is based on population status, distribution, and persistence. Evaporation, via direct losses from surface waters, as well as via evapotranspiration by plants, was considered in our response to Comment 37 and 38, above.</td>
</tr>
<tr>
<td>Hereford NRCD</td>
<td>The commenter requests the Service identify within Recovery Action 3.2 the different invasive non-native plants and methods of control to be applied.</td>
<td>The non-native species most commonly associated with the taxon are listed in the Ecology and the Current Threats sections of the Draft an Final Recovery Plans. Methods of control to be used will be developed in individual management plans. We have made a reference within section 3.2 to refer back to these sections for lists of species and Action 6.2 regarding the development of management plans.</td>
</tr>
<tr>
<td>Hereford NRCD</td>
<td>The commenter asks if a lot of the funding and actions mentioned in the Recovery Outline is already in place? The commenter requests existing mitigation measures be discussed in future versions of the plan.</td>
<td>Many of the Actions listed in the Draft and Final Recovery Plans are already occurring with funding already in place. The plan is intended to incorporate what is being done, what needs to continue, and what additional actions could be done in the future to aid the taxon. These mitigation measures are already addressed in this plan under the Past Conservation Efforts section and under the Aquatic Habitat Degradation section.</td>
</tr>
<tr>
<td>Western Watersheds</td>
<td>The commenter request that the term livestock overgrazing be changed to simply livestock grazing, as the presence of livestock adversely impact the taxon.</td>
<td>There is some evidence that light to moderate grazing may benefit the taxon and its habitat. The term overgrazing was removed from the document.</td>
</tr>
<tr>
<td>Submitted by</td>
<td>Issue</td>
<td>Our Response</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Western Watersheds</td>
<td>The commenter states that the assumption that the taxon can withstand light to moderate grazing is anecdotal with no scientific study illustrating this observation.</td>
<td>While the information requested by the commenter is not available, Action Item 5.1 addresses the need to identify information gaps, compatible land uses, and appropriate management actions that promote the conservation of the taxon.</td>
</tr>
<tr>
<td>Western Watersheds</td>
<td>The commenter states that the extent to which groundwater pumping for livestock grazing is not determined in the Draft Recovery Plan and that water currently being retained in the uplands for livestock may help create backwaters, ephemeral streams, or other appropriate riparian habitats where the taxon could persist. The commenter suggests identification and quantification of this possible water conservation.</td>
<td>While the information requested by the commenter is not available, Action Item 5.1 addresses the need to identify information gaps, compatible land uses, and appropriate management actions that promote the conservation of the taxon.</td>
</tr>
<tr>
<td>Western Watersheds</td>
<td>The commenter states that rather than applying herbicide to manage uplands with invading trees and shrubs, alternative management including prescribed burning and resting from grazing be applied instead.</td>
<td>The plan does not promote any one method of upland shrub and tree control. Methods of managing upland tree and shrubland invasion will be developed in individual management plans.</td>
</tr>
<tr>
<td>Western Watersheds</td>
<td>The commenter notes that trespass livestock are an issue within the San Pedro River and this is not addressed within the Draft Recovery Plan.</td>
<td>We have added language regarding trespass livestock issues into the Final Recovery Plan.</td>
</tr>
<tr>
<td>Submitted by</td>
<td>Issue</td>
<td>Our Response</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Western Watersheds</td>
<td>The commenter states that it is important to recognize that livestock congregate in riparian channels due to both the water and forage found there.</td>
<td>We have added language regarding livestock congregation due to water and forage into the Final Recovery Plan.</td>
</tr>
<tr>
<td>Western Watersheds</td>
<td>The commenter requests assessment of the threat of livestock in the spread of non-native invasive species.</td>
<td>Action Item 5.1 addresses the need to identify information gaps, compatible land uses, and appropriate management actions that promote the conservation of the taxon.</td>
</tr>
<tr>
<td>Western Watersheds</td>
<td>The commenter suggests grazing permit buy-out and retirement to protect public lands within high quality habitat.</td>
<td>We believe the purchase of conservation easements and surface water rights will be more beneficial to the taxon than the retirement of grazing permits.</td>
</tr>
</tbody>
</table>